# 865 EMBEDDED WAY INDUSTRIAL PROJECT AIR QUALITY ASSESSMENT

San José, California

**August 5, 2022** 

### Prepared for:

Michael Lisenbee Senior Project Manager David J. Powers & Associates, Inc. 1871 The Alameda, Suite 200 San José, CA 95126

### Prepared by:

Casey Divine William Popenuck

LLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue
Cotati, CA 94931
(707) 794-0400

**I&R Project#: 22-057** 

### Introduction

The purpose of this report is to address air quality and community health risk impacts associated with the proposed industrial project located at 865 Embedded Way in San José, California. The air quality impacts and greenhouse gas (GHG) emissions from this project would be associated with construction of the new buildings and operation of the facility. Air pollutant and GHG emissions associated with construction and operation of the project were predicted using appropriate computer models. In addition, the potential health risk impacts associated with construction and operation of the project, and the impact of existing toxic air contaminant (TAC) sources affecting the nearby sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).<sup>1</sup>

### **Project Description**

The current 10.17-acre project site is mostly vacant and consists of undeveloped grassland. The project proposes to construct a one-story, 121,850-square-foot (sf) industrial/manufacturing warehouse building surrounded by a paved parking lot with a total of 298 parking spaces. The northern side of the proposed building would include 12 truck loading docks and the southeast corner of the building would include a 472-horsepower (HP) diesel emergency fire pump. While a designated end use has not been determined for the proposed building, the project is designed for a research and development (R&D) use. The land use and zoning designation allow for a variety of industrial uses, such as R&D, manufacturing, assembly, testing, and offices. For purposes of this study, the project was assumed to be an R&D facility.

### Setting

The project is located in Santa Clara County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM<sub>10</sub>), and fine particulate matter (PM<sub>2.5</sub>).

### Air Pollutants of Concern

High ozone levels are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NOx). These precursor pollutants react under certain meteorological conditions to form high ozone levels. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ozone levels. The highest ozone levels in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone levels aggravate respiratory and cardiovascular diseases, reduce lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant of the Bay Area. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM<sub>10</sub>) and fine particulate matter where particles have a diameter of 2.5 micrometers or less (PM<sub>2.5</sub>). Elevated concentrations of PM<sub>10</sub> and PM<sub>2.5</sub> are the result of both

<sup>&</sup>lt;sup>1</sup> Bay Area Air Quality Management District, CEQA Air Quality Guidelines, May 2017.

region-wide emissions and localized emissions. High particulate matter levels aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

### **Toxic Air Contaminants**

TACs are a broad class of compounds known to cause morbidity or mortality, often because they cause cancer. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about three-quarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs. Health risks from TACs are estimated using the Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines, which were published in February of 2015.<sup>2</sup> See *Attachment 1* for a detailed description of the community risk modeling methodology used in this assessment.

### Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, people over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site are the single-family residences to the west of the project site opposite Coyote Creek. This project would not introduce new sensitive receptors (i.e., residents) to the area.

-

<sup>&</sup>lt;sup>2</sup> OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

### **Regulatory Setting**

### Federal Regulations

National Ambient Air Quality Standards (NAAQS) for criteria air pollutants are established by the United States Environmental Protection Agency (EPA). Where the standards are not met, States are required to develop a State Implementation Plan (SIP) to demonstrate a plan to meet the standard or show progress toward meeting the standard. EPA also establishes nationwide emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA sets nationwide fuel standards, however California also has the ability to set motor vehicle emission standards and standards for fuel, as long as they are the same or more stringent than the nationwide standards.

In the past decade the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel engines are a significant source of NO<sub>X</sub> and particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) and because the EPA has identified DPM as a probable carcinogen. Implementation of the heavy-duty diesel onroad vehicle standards and the non-road diesel engine standards are estimated to reduce particulate matter and NO<sub>X</sub> emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.<sup>3</sup>

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. Current standards have reduced the amount of sulfur allowed by 97 percent for highway diesel fuel (from 500 parts per million by weight [ppmw] to 15 ppmw), and by 99 percent for off-highway diesel fuel (from about 3,000 ppmw to 15 ppmw). The low sulfur highway fuel (15 ppmw sulfur), also called ultralow sulfur diesel (ULSD), is currently required for use by all diesel vehicles in the U.S.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

### **State Air Quality Regulations**

The CARB is the agency responsible for the coordination and oversight of state and local air pollution control programs in California and for implementing the California Clean Air Act (CCAA), adopted in 1988. The CCAA requires that all air districts in the state achieve and maintain the California Ambient Air Quality Standards (CAAQS) by the earliest practical date. The CCAA specifies that districts should focus on reducing the emissions from transportation and air-wide emission sources and provides districts with the authority to regulate indirect sources.

<sup>&</sup>lt;sup>3</sup> USEPA, 2000. Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements. EPA420-F-00-057. December.

CARB is also responsible for developing and implementing air pollution control plans to achieve and maintain the NAAQS. CARB is primarily responsible for statewide pollution sources and produces a major part of the SIP. Local air districts provide additional strategies for sources under their jurisdiction. CARB combines this data and submits the completed SIP to the EPA.

Other CARB duties include monitoring air quality (in conjunction with air monitoring networks maintained by air pollution control and air quality management districts), establishing CAAQS (which in many cases are more stringent than the NAAQS), determining and updating area designations and maps, and setting emissions standards for new mobile sources, consumer products, small utility engines, and off-road vehicles.

### California Clean Air Act

In 1988, the CCAA required that all air districts in the state endeavor to achieve and maintain CAAQS for CO, O<sub>3</sub>, SO<sub>2</sub>, and NO<sub>2</sub> by the earliest practical date. The CCAA provides districts with authority to regulate indirect sources and mandates that air quality districts focus particular attention on reducing emissions from transportation and area-wide emission sources. Each nonattainment district is required to adopt a plan to achieve a 5 percent annual reduction, averaged over consecutive 3-year periods, in district-wide emissions of each nonattainment pollutant or its precursors. A Clean Air Plan shows how a district would reduce emissions to achieve air quality standards. Generally, the state standards for these pollutants are more stringent than the national standards.

### California Air Resources Board Handbook

In 1998, CARB identified particulate matter from diesel-fueled engines (DPM) as a TAC. CARB has completed a risk management process that identified potential cancer risks for a range of activities using diesel-fueled engines.<sup>4</sup> CARB subsequently developed an Air Quality and Land Use Handbook<sup>5</sup> (Handbook) in 2005 that is intended to serve as a general reference guide for evaluating and reducing air pollution impacts associated with new projects that go through the land use decision-making process. The 2005 CARB Handbook recommends that planning agencies consider proximity to air pollution sources when considering new locations for "sensitive" land uses, such as residences, medical facilities, daycare centers, schools, and playgrounds.

Air pollution sources of concern include freeways, rail yards, ports, refineries, distribution centers, chrome plating facilities, dry cleaners, and large gasoline service stations. Key recommendations in the Handbook include taking steps to consider or avoid siting new, sensitive land uses:

• Within 500 feet of a freeway, urban roads with 100,000 vehicles/day or rural roads with 50,000 vehicles/day.

<sup>&</sup>lt;sup>4</sup> California Air Resources Board, 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. October.

<sup>&</sup>lt;sup>5</sup> California Air Resources Board, 2005. *Air Quality and Land Use Handbook: A Community Health Perspective*. April.

- Within 300 feet of gasoline fueling stations (note that new fueling stations utilize enhanced vapor recovery systems that substantially reduce emissions).
- Within 300 feet of dry-cleaning operations (note that dry cleaning with TACs is being phased out and will be prohibited in 2023).

### Truck and Bus Regulation

CARB is actively enforcing heavy-duty diesel vehicle regulations that require fleets to replace or retrofit heavy-duty diesel vehicles (i.e., "Truck and Bus Regulation"), with full implementation of the program scheduled for January 1, 2023. Compliance with the program is generally considered if vehicles are equipped with a 2010 or newer engine model year. As of January 1, 2020, the DMV cannot register any vehicle that does not meet the requirements of the Truck and Bus Regulation.

Other CARB diesel programs affecting heavy-duty diesel vehicles include:

- Idling limits of no more than 5 minutes with special exceptions.
- Emission Control Labels must be affixed to engines of all commercial heavy-duty diesel vehicles, and must be legible as proof the engine, at minimum, meets U.S. federal emissions standards for the engine model year.
- The Periodic Smoke Inspection Program requires owners of California-based fleets of two or more diesel vehicles to perform annual smoke opacity tests and to keep records for at least two years for each vehicle.
- The Heavy-Duty Vehicle Inspection Program uses random roadside inspections to verify that diesel engines do not smoke excessively and are tamper-free.

### Off-Road Vehicle and Equipment Regulations

CARB has also adopted and implemented regulations to reduce DPM and emissions of nitrogen oxides (NOx) from in-use (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce particulate matter and NOx exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleet-averaged emission rates. Implementation of this regulation, in conjunction with stringent Federal off-road equipment engine emission limits for new vehicles, is expected to substantially reduce emissions of DPM and NOx.

Fleet owners must report the vehicle and engine information for all vehicles within their fleets operating in California. Fleet owners must also report owner information. Fleet owners should report using DOORS, which is CARB's online reporting tool. CARB issues a unique Equipment

Identification Number (EIN) that is assigned to each vehicle. The fleet owner must label their vehicles with the EIN.

Other CARB diesel programs affecting off-road vehicles and equipment include:

- Idling limits of no more than 5 minutes with special exceptions.
- Portable engines 50 hp or greater may require a permit or registration to legally operate. BAAQMD is responsible for taking enforcement action against individuals who own or operate portable equipment without a registration or permit.

### Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the NAAQS and CAAQS. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area. The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program is being implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses will be used to focus emission reduction measures in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. The BAAQMD defines overburdened communities as areas located (i) within a census tract identified by the California Communities Environmental Health Screening Tool (CalEnviroScreen), Version 4.0 implemented by OEHHA, as having an overall score at or above the 70<sup>th</sup> percentile, or (ii) within 1,000 feet of any such census tract.<sup>7</sup> The CalEnviroScreen 4.0 overall percentile score is 67.0. The project site is not within a CARE area

<sup>&</sup>lt;sup>6</sup> See BAAQMD: <a href="https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program">https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program</a>, accessed 2/18/2021.

<sup>&</sup>lt;sup>7</sup> See BAAQMD: <a href="https://www.baaqmd.gov/~/media/dotgov/files/rules/reg-2-permits/2021-amendments/documents/20210722\_01\_appendixd\_mapsofoverburdenedcommunities-pdf.pdf?la=en">https://www.baaqmd.gov/~/media/dotgov/files/rules/reg-2-permits/2021-amendments/documents/20210722\_01\_appendixd\_mapsofoverburdenedcommunities-pdf.pdf?la=en</a>, accessed 10/1/2021.

and is not within a BAAQMD overburdened area as identified by CalEnviroScreen as the project site is scored at the 17<sup>th</sup> percentile.<sup>8</sup>

The BAAQMD California Environmental Quality Act (CEQA) Air Quality Guidelines<sup>9</sup> were prepared to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They also include assessment methodologies for TACs, odors, and GHG emissions.

### **BAAQMD** Rules and Regulations

Combustion equipment associated with the proposed project that includes new diesel engines to power fire pumps that would establish new sources of particulate matter and gaseous emissions. Emissions would primarily result from the testing of the emergency backup fire pumps. Certain emission sources would be subject to BAAQMD Regulations and Rules. The District's rules and regulations that may apply to the project include:

• Regulation 2 – Permits

Rule 2-1: General Requirements

Rule 2-2: New Source Review

Rule 2-5: New Source Review of Toxic Air Contaminants

- Regulation 6 Particulate Matter and Visible Emissions
- Regulation 9 Inorganic Gaseous Pollutants

Rule 9-1: Sulfur Dioxide

Rule 9-7: Nitrogen Oxides and Carbon Monoxide from Industrial, Institutional, and Commercial Boilers, Steam Generators, And Process Heaters

Rule 9-8: Nitrogen Oxides and Carbon Monoxide from Stationary Internal Combustion Engines

### **Permits**

Rule 2-1-301 requires that any person installing, modifying, or replacing any equipment, the use of which may reduce or control the emission of air contaminants, shall first obtain an Authority to Construct (ATC).

Rule 2-1-302 requires that written authorization from the BAAQMD in the form of a Permit to Operate (PTO) be secured before any such equipment is used or operated.

Rule 2-1 lists sources that are exempt from permitting.

<sup>&</sup>lt;sup>8</sup> OEHAA, CalEnviroScreen 4.0 Indicator Maps <a href="https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40">https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40</a>

<sup>&</sup>lt;sup>9</sup> Bay Area Air Quality Management District, 2017. CEQA Air Quality Guidelines. May.

### New Source Review

Rule 2-2, New Source Review (NSR), applies to all new and modified sources or facilities that are subject to the requirements of Rule 2-1-301. The purpose of the rule is to provide for review of such sources and to provide mechanisms by which no net increase in emissions will result.

Rule 2-2-301 requires that an applicant for an ATC or PTO apply Best Available Control Technology (BACT) to any new or modified source that results in an increase in emissions and has emissions of precursor organic compounds, non-precursor organic compounds, NOx, SO<sub>2</sub>, PM<sub>10</sub>, or CO of 10.0 pounds or more per highest day. Based on the estimated emissions from the proposed project, BACT will be required for NOx emissions from the diesel-fueled engines.

Rule 2-5 applies to new and modified sources of TAC emissions. BAAQMD evaluates the TAC emissions in order to evaluate potential public exposure and health risk, to mitigate potentially significant health risks resulting from these exposures, and to provide net health risk benefits by improving the level of control when existing sources are modified or replaced. Toxics BACT (or TBACT) is applied to any new or modified source of TACs where the source risk is a cancer risk greater than 1.0 in one million and/or a chronic hazard index greater than 0.20. Permits are not issued for any new or modified source that has risks or net project risks that exceed a cancer risk of 10.0 in one million or a chronic or acute hazard index (HI) of 1.0.

### Stationary Diesel Airborne Toxic Control Measure

The BAAQMD administers the CARB's Airborne Toxic Control Measure (ACTM) for Stationary Diesel engines (section 93115, title 17 CA Code of Regulations). The project's stationary sources will be new stationary emergency standby diesel engines for a fire pump larger than 50 hp. These limits vary based on maximum engine power. All engines are limited to PM emission rates of 0.15 g/hp-hour, regardless of size. This ACTM limits engine operation 50 hours per year for routine testing and maintenance.

### Offsets

Rule 2-2-302 require that offsets be provided for a new or modified source that emits more than 10 tons per year of NOx or precursor organic compounds. It is not expected that emissions of any pollutant will exceed the offset thresholds.

### Prohibitory Rules

Regulation 6 pertains to particulate matter and visible emissions. Although the engines will be fueled with diesel, they will be modern, low emission engines. Thus, the engines are expected to comply with Regulation 6.

Rule 9-1 applies to sulfur dioxide. The engines will use ultra-low sulfur diesel fuel (less than 15 ppm sulfur) and will not be a significant source of sulfur dioxide emissions and are expected to comply with the requirements of Rule 9-1.

Rule 9-7 limits the emissions of NOx CO from industrial, institutional and commercial boilers, steam generators and process heaters. This regulation typically applies to boilers with a heat rating of 2 million British Thermal Units (BTU) per hour

Rule 9-8 prescribes NOx and CO emission limits for stationary internal combustion engines. Since the proposed engines will be used in an emergency standby basis, Regulation 9-8-110 exempts the engines from the requirements of this Rule, except for the recordkeeping requirements (9-8-530) and limitations on hours of operation for reliability-related operation (maintenance and testing). The engines will not operate more than 50 hours per year, which will satisfy the requirements of 9-8-111.

### BACT for Diesel Engines

Since the fire pumps will be used exclusively for emergency use during involuntary loss of power, the BACT levels listed for IC compression engines in the BAAQMD BACT Guidelines would apply. These are provided for two separate size ranges of diesel engines:

<u>I.C. Engine – Compression Ignition >50hp and <1.000hp</u>: BAAQMD applies BACT 2 emission limits based on the ATCM for stationary emergency standby diesel engines larger than 50 brake-horsepower (BHP). NOx emission factor limit is subject to the CARB ACTM that ranges from 3.0 to 3.5 grams per horsepower hour (g/hp-hr). The PM (PM10 or PM2.5) limit is 0.15 g/hp-hr per CARB's ACTM.

<u>I.C. Engine – Compression Ignition >999hp</u>: BAAQMD applies specific BACT emission limits for stationary emergency standby diesel engines equal or larger than 1,000 brake-horsepower (BHP). NOx emission factor limit is subject to the CARB ACTM that ranges from 0.5 g/hp-hr. The PM (PM<sub>10</sub> or PM<sub>2.5</sub>) limit is 0.02 g/hp-hr. POC (i.e., ROG) limits are 0.14 g/hp-hr.

### San José Envision 2040 General Plan

The San José Envision 2040 General Plan includes goals, policies, and actions to reduce exposure of the City's sensitive population to exposure of air pollution and toxic air contaminants or TACs. The following goals, policies, and actions are applicable to the proposed project and this assessment:

Applicable Goals – Air Pollutant Emission Reduction Goal MS-10 Minimize emissions from new development.

### Applicable Policies – Air Pollutant Emission Reduction

MS-10.1 Assess projected air emissions from new development in conformance with the Bay Area Air Quality Management District (BAAQMD) CEQA Guidelines and relative to state and federal standards. Identify and implement feasible air emission reduction measures.

- MS-10.2 Consider the cumulative air quality impacts from proposed developments for proposed land use designation changes and new development, consistent with the region's Clean Air Plan and State law.
- MS-10.4 Encourage effective regulation of mobile and stationary sources of air pollution, both inside and outside of San José. In particular, support Federal and State regulations to improve automobile emission controls.
- MS-10.7 Encourage regional and statewide air pollutant emission reduction through energy conservation to improve air quality.

### Applicable Goals – Toxic Air Contaminants

Goal MS-11 Minimize exposure of people to air pollution and toxic air contaminants such as ozone, carbon monoxide, lead, and particulate matter.

### Applicable Policies – Toxic Air Contaminants

- MS-11.2 For projects that emit toxic air contaminants, require project proponents to prepare health risk assessments in accordance with BAAQMD-recommended procedures as part of environmental review and employ effective mitigation to reduce possible health risks to a less than significant level. Alternatively, require new projects (such as, but not limited to, industrial, manufacturing, and processing facilities) that are sources of TACs to be located an adequate distance from residential areas and other sensitive receptors.
- MS-11.3 Review projects generating significant heavy duty truck traffic to designate truck routes that minimize exposure of sensitive receptors to TACs and particulate matter.
- MS-11.4 Encourage the installation of appropriate air filtration at existing schools, residences, and other sensitive receptor uses adversely affected by pollution sources.
- MS-11.5 Encourage the use of pollution absorbing trees and vegetation in buffer areas between substantial sources of TACs and sensitive land uses.

### Actions – Toxic Air Contaminants

MS-11.6 Develop and adopt a comprehensive Community Risk Reduction Plan that includes: baseline inventory of toxic air contaminants (TACs) and particulate matter smaller than 2.5 microns (PM<sub>2.5</sub>), emissions from all sources, emissions reduction targets, and enforceable emission reduction strategies and performance measures. The Community Risk Reduction Plan will include enforcement and monitoring tools to ensure regular review of progress toward the emission reduction targets, progress reporting to the public and responsible agencies, and periodic updates of the plan, as appropriate

- MS-11.7 Consult with BAAQMD to identify stationary and mobile TAC sources and determine the need for and requirements of a health risk assessment for proposed developments.
- MS-11.8 For new projects that generate truck traffic, require signage which reminds drivers that the State truck idling law limits truck idling to five minutes.

Applicable Goals – Construction Air Emissions

Goal MS-13 Minimize air pollutant emissions during demolition and construction activities.

### Applicable Policies – Construction Air Emissions

MS-13.1 Include dust, particulate matter, and construction equipment exhaust control measures as conditions of approval for subdivision maps, site development and planned development permits, grading permits, and demolition permits. At minimum, conditions shall conform to construction mitigation measures recommended in the current BAAQMD CEQA Guidelines for the relevant project size and type.

### Applicable Actions – Construction Air Emissions

MS-13.4 Adopt and periodically update dust, particulate, and exhaust control standard measures for demolition and grading activities to include on project plans as conditions of approval based upon construction mitigation measures in the BAAQMD CEQA Guidelines.

### Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA and these significance thresholds were contained in the District's 2011 *CEQA Air Quality Guidelines*. These thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA. The thresholds were challenged through a series of court challenges and were mostly upheld. BAAQMD updated its thresholds in the *CEQA Air Quality Guidelines* in 2017 to include the latest BAAQMD significance thresholds that were used in this analysis and are summarized in Table 1. Community health risks are considered significant if they exceed these thresholds.

Table 1. BAAQMD CEQA Significance Thresholds

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Construction Thresholds</b>     | Operationa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al Thresholds                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Criteria Air PollutantAverage Daily Emis (lbs./day)ROG54NOx54PM1082 (Exhaust)PM2.554 (Exhaust)CONot ApplicableFugitive DustConstruction Dust Order or other Best Manage PracticesHealth Risks and HazardsSingle Sources With 1,000-foot Zone Influence                                                                                                                                                                                                                                                                                                                                                                                                                  | Average Daily Emissions (lbs./day) | Average Daily<br>Emissions (lbs./day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Annual Average<br>Emissions (tons/year) |
| ROG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54                                 | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                      |
| Average Daily Emissions (lbs./day)   Emissions (lbs./day)   Emissions (lbs./day)   Emissions (tons/yea Emissions (lbs./day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Average Daily Emissions (lbs./day)   Emissions (los./yea)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Average Daily Emissions (lbs./day)  ROG  S4  S4  S4  S4  S4  ROG  PM <sub>10</sub> ROG  S2 (Exhaust)  S4  CO  Not Applicable  Construction Dust Ordinance or other Best Management Practices  Health Risks and Hazards  Excess Cancer Risk  10 per one million  Average Daily Emissions (lbs./day)  Emissions (lbs./day)  Annual Average Daily Emissions (lbs./day)  Emissions (tons/stanta)  S4  10  9.0 ppm (8-hour average) or 20.0 ppm (1-hour average)  Construction Dust Ordinance or other Best Management Practices  Combined Sources (Cumulative from sources within 1000-foot zone of influence)  Excess Cancer Risk  10 per one million  100 per one million | 10                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| СО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not Applicable                     | 54 10  54 10  aust) 82 15  aust) 54 10  Sicable 9.0 ppm (8-hour average) or 20.0 ppm (1-hour average)  ast Ordinance Management ces  The Within Zone of the contract of the co |                                         |
| Combined Sources Within 1,000-foot Zone of Influence   Excess Cancer Risk   10   Emissions (lbs./day)   Emissions (tons/you                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jone                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Excess Cancer Risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 per one million                 | 100 per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | one million                             |
| Hazard Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                     |
| Incremental annual PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.3 \ \mu g/m^3$                  | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mu$ g/m <sup>3</sup>                  |

Note: ROG = reactive organic gases, NOx = nitrogen oxides,  $PM_{10}$  = course particulate matter or particulates with an aerodynamic diameter of 10 micrometers ( $\mu$ m) or less,  $PM_{2.5}$  = fine particulate matter or particulates with an aerodynamic diameter of 2.5 $\mu$ m or less.

Source: Bay Area Air Quality Management District, 2017

### AIR QUALITY IMPACTS AND MITIGATION MEASURES

Impact AIR-1: Conflict with or obstruct implementation of the applicable air quality plan?

BAAQMD is the regional agency responsible for overseeing compliance with State and Federal laws, regulations, and programs within the San Francisco Bay Area Air Basin (SFBAAB). BAAQMD, with assistance from the Association of Bay Area Governments (ABAG) and Metropolitan Transportation Commission (MTC), prepares and implements specific plans to meet the applicable laws, regulations, and programs. The most recent and comprehensive of which is the *Bay Area 2017 Clean Air Plan*. The primary goals of the Clean Air Plan are to attain air quality standards, reduce population exposure and protect public health, and reduce GHG emissions and protect the climate. The BAAQMD has also developed CEQA guidelines to assist lead agencies in evaluating the significance of air quality and GHG impacts. In formulating compliance strategies, BAAQMD relies on planned land uses established by local general plans. Land use planning affects vehicle travel, which, in turn, affects region-wide emissions of air pollutants and GHGs.

The 2017 Clean Air Plan, adopted by BAAQMD in April 2017, includes control measures that are intended to reduce air pollutant emissions in the Bay Area either directly or indirectly. Guidance provided in the BAAQMD CEQA guidelines recommends that Plans show consistency with the control measures listed within the Clean Air Plan. At the project-level, BAAQMD's CEQA guidance examines whether a project supports the Clean Air Plan's primary goals: (1) attain air quality standards, (2) reduce population exposure and protecting public health in the Bay Area; and (3) reduce GHG emissions and protect the climate. The proposed project would not conflict with the latest Clean Air planning efforts since 1) project would have emissions below the BAAQMD thresholds (see Impact below), 2) the project would be considered urban infill and approved to be an active commercial or industrial land use and would not adversely affect public health in the Bay Area, and 3) would not result in a significant impact on climate change.

Impact AIR-2: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

The Bay Area is considered a non-attainment area for ground-level O<sub>3</sub> and PM<sub>2.5</sub> under both the NAAQS and the CAAQS. The area is also considered non-attainment for PM<sub>10</sub> under the CAAQS, but not the NAAQS. The area has attained both State and Federal ambient air quality standards for carbon monoxide. As part of an effort to attain and maintain ambient air quality standards for O<sub>3</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>, the BAAQMD has established thresholds of significance for these air pollutants and their precursors. The O<sub>3</sub> precursor pollutant thresholds are for ROG and NOx, while PM<sub>10</sub>, and PM<sub>2.5</sub> have specific thresholds. The thresholds apply to both construction period emissions and operational period emissions.

<sup>&</sup>lt;sup>10</sup> Bay Area Air Quality Management District (BAAQMD), 2017. Final 2017 Clean Air Plan.

### **Construction Period Emissions**

The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size, and anticipated construction schedule were input to CalEEMod. The CARB EMission FACtors 2021 (EMFAC2021) model was used to predict emissions from construction traffic, which includes worker travel, vendor trucks, and haul trucks. The CalEEMod model output along with construction inputs are included in *Attachment 2* and EMFAC2021 vehicle emissions modeling outputs are included in *Attachment 3*.

### **CalEEMod Modeling**

### Land Use Inputs

The proposed project land uses were entered into CalEEMod as described in Table 2.

Table 2. Summary of Project Land Use Inputs

| <b>Project Land Uses</b> | Size   | Units          | Square Feet | Acreage |
|--------------------------|--------|----------------|-------------|---------|
| Research & Development   | 121.85 | 1,000-sf       | 121,850     | 10.17   |
| Parking Lot              | 298    | Parking Spaces | 86,000      | 10.17   |

### Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size, and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario, including equipment list and schedule, were based on project-specific construction information provided by the project applicant.

The CalEEMod construction equipment worksheet provided by the applicant included the schedule for each phase of construction (included in *Attachment 2*). Within each construction phase, the quantity of equipment to be used along with the average use hours per day and total number of workdays were provided. Since different equipment would have different estimates of the use per phase, the hours per day for each piece of equipment was computed by dividing the total number of hours that the equipment would be used by the total number of days in that phase. The construction schedule assumed that the earliest possible start date would be February 2023 and would be built out over a period of approximately 10 months, or 195 construction workdays. The earliest year of full operation was assumed to be 2024. Emission rates for construction equipment and traffic are lower in future years as newer equipment with lower emissions rates is introduced into the overall fleet replacing older equipment with high emission rates.

<sup>-</sup>

<sup>&</sup>lt;sup>11</sup> See CARB's EMFAC2021 Emissions Inventory at https://arb.ca.gov/emfac/emissions-inventory.

### Construction Truck Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the estimate of soil material imported and/or exported to the site and the estimate of concrete and asphalt truck trips. The total trips for those were computed by multiplying the daily trip rate by the number of days in that phase. Haul trips for grading were estimated from the provided grading volumes by assuming each truck could carry 10 tons per load. The number of concrete and asphalt total round haul trips were provided for the project and converted to total one-way trips, assuming two trips per delivery.

The latest version of the CalEEMod model is based on the older version of the CARB EMFAC2017 motor vehicle emission factor model. This model has been superseded by the EMFAC2021 model; however, CalEEMod has not been updated to include EMFAC2021. Therefore, the construction traffic information was combined with EMFAC2021 motor vehicle emissions factors. EMFAC2021 provides aggregate emission rates in grams per mile for each vehicle type. The vehicle mix for this study was based on CalEEMod default assumptions, where worker trips are assumed to be comprised of light-duty autos (EMFAC category LDA) and light duty trucks (EMFAC category LDT1and LDT2). Vendor trips are comprised of delivery and large trucks (EMFAC category MHDT and HHDT) and haul trips, including concrete trucks, are comprised of large trucks (EMFAC category HHDT). Travel distances are based on CalEEMod default lengths, which are 10.8 miles for worker travel, 7.3 miles for vendor trips and 20 miles for hauling (soil import/export). Each trip was assumed to include an idle time of 5 minutes. Emissions associated with vehicle starts were also included. On road emissions in Santa Clara County for the year 2023 were used in these calculations. Table 3 provides the traffic inputs that were combined with the EMFAC2021 emission database to compute vehicle emissions.

Table 3. Construction Traffic Data Used for EMFAC2021 Model Runs

| CalEEMod Run/Land              | Total                           | Trips by Tri         | р Туре            |                                                                           |
|--------------------------------|---------------------------------|----------------------|-------------------|---------------------------------------------------------------------------|
| Uses and Construction<br>Phase | Worker <sup>1</sup>             | Vendor <sup>1</sup>  | Haul <sup>2</sup> | Notes                                                                     |
| Vehicle mix <sup>1</sup>       | 50% LDA<br>25% LDT1<br>25% LDT2 | 50% MHDT<br>50% HHDT | 100% HHDT         |                                                                           |
| Trip Length (miles)            | 10.8                            | 7.3                  | 20.0              | CalEEMod default distance with 5-min truck idle time.                     |
| Demolition                     | 110                             | -                    | -                 | CalEEMod default worker trips.                                            |
| Site Preparation               | 345                             | -                    | -                 | CalEEMod default worker trips.                                            |
| Grading                        | 1,480                           | -                    | 2,250             | 14,000-cy soil import. CalEEMod default worker trips.                     |
| Trenching                      | 720                             | -                    | -                 | CalEEMod default worker trips.                                            |
| Building Construction          | 4,800                           | 2,176                | 1,320             | 660 concrete truck round trips. CalEEMod default worker and vendor trips. |
| Paving                         | 260                             | -                    | 240               | 1,000-cy asphalt hauling.<br>CalEEMod default worker trips.               |
| Architectural Coating          | 195                             | =                    | =                 | CalEEMod default worker trips                                             |

Notes: <sup>1</sup> Based on 2023 EMFAC2021 light-duty vehicle fleet mix for Santa Clara County.

<sup>&</sup>lt;sup>2</sup> Includes grading trips estimated by CalEEMod based on amount of material to be removed. Concrete and asphalt trips estimated based on data provided by the applicant.

### Summary of Computed Construction Period Emissions

Average daily emissions were annualized for each year of construction by dividing the annual construction emissions by the number of active construction workdays that year. Table 4 shows the annualized average daily construction emissions of ROG, NOx, PM<sub>10</sub> exhaust, and PM<sub>2.5</sub> exhaust during construction of the project. As indicated in Table 4, predicted annualized project construction emissions would not exceed the BAAQMD significance thresholds during any year of construction.

**Table 4.** Construction Period Emissions

| Year                               | ROG              | NOx              | PM <sub>10</sub><br>Exhaust                                                                                                                                                                                                                             | PM <sub>2.5</sub><br>Exhaust |
|------------------------------------|------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Construction                       | n Emissions Per  | Year (Tons)      |                                                                                                                                                                                                                                                         |                              |
| 2023                               | 0.76             | 1.08             | Exhaust   Exhaust                                                                                                                                                                                                                                       | 0.06                         |
| Average Daily Constru              | ection Emissions | Per Year (pound: |                                                                                                                                                                                                                                                         |                              |
| 2023 (195 construction workdays)   | 7.77             | 11.13            | 0.51                                                                                                                                                                                                                                                    | 0.62                         |
| BAAQMD Thresholds (pounds per day) | 54 lbs./day      | 54 lbs./day      | NOx         Exhaust         Exhaust           ar (Tons)         1.08         0.05         0.06           ar Year (pounds/day)         11.13         0.51         0.62           54 lbs./day         82 lbs./day         54 lbs./day         54 lbs./day | 54 lbs./day                  |
| Exceed Threshold?                  | No               | No               |                                                                                                                                                                                                                                                         | No                           |

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM<sub>10</sub> and PM<sub>2.5</sub>. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less-than-significant if best management practices are implemented to reduce these emissions. San Jose General Policy MS-10.1 specifies that projects should assess projected air emissions from new development in conformance with the BAAQMD CEQA Guidelines, relative to state and federal standards and identify and implement feasible air emission reduction measures. Thus, San Jose General Policy MS-10.1 requires construction projects implement BAAQMD-Recommended Standard Measures to control PM<sub>10</sub> and PM<sub>2.5</sub> emissions. *Mitigation Measure AQ-1 would implement BAAQMD's standard measures*.

# Mitigation Measure AQ-1: Implement BAAQMD-Recommended Standard Measures to Control Particulate Matter Emissions during Construction.

Measures to reduce fugitive dust (i.e., PM<sub>10</sub> and PM<sub>2.5</sub>) emissions from construction are recommended to reduce fugitive dust emissions and ensure that health impacts to nearby sensitive receptors are minimized. During any construction period ground disturbance, the applicant shall ensure that the project contractor implements basic measures to control dust and exhaust. Implementation of the dust control measures recommended by BAAQMD and listed below would reduce the air quality impacts associated with grading and new construction to a less-than-significant level. The contractor shall implement the following standard best management practices:

1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.

- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- 6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.
- 7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- 8. Post a publicly visible sign with the telephone number and person to contact at the Lead Agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number shall also be visible to ensure compliance with applicable regulations.

Effectiveness of Mitigation Measure AQ-1

Mitigation Measure AQ-1 represents standard mitigation measures that would achieve greater than a 50 percent reduction in on-site fugitive PM<sub>2.5</sub> emissions. These measures are consistent with recommendations in the BAAMQD CEQA Guidance for providing "best management practices" to control construction emissions.

### **Operational Period Emissions**

Operational air emissions from the project would be generated primarily from trucks using the industrial facility and autos driven by future employees. Evaporative emissions from architectural coatings and maintenance products (classified as consumer products) are typical emissions from these types of uses. CalEEMod was used to estimate emissions from operation of the proposed project assuming full build-out.

### CalEEMod Inputs

### Land Uses

The project land uses were input to CalEEMod as described above for the construction modeling.

### Model Year

Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CalEEMod. The earliest year of full operation would be 2024 if construction begins in 2023. Emissions associated with build-out later than 2024 would be lower.

### EMFAC2021 Adjustment

The vehicle emission factors and fleet mix used in CalEEMod are based on EMFAC2017, which is an older CARB emission inventory for on road mobile sources. Since the release of CalEEMod Version 2020.4.0, new emission factors have been produced by CARB. EMFAC2021 became available for use in January 2021. It includes the latest data on California's car and truck fleets and travel activity. The CalEEMod vehicle emission factors and fleet mix were updated with the emission rates and fleet mix from EMFAC2021. On road emission rates from 2024 Santa Clara County were used (See *Attachment 3*). More details about the updates in emissions calculation methodologies and data are available in the EMFAC2021 Technical Support Document.<sup>12</sup>

### Traffic Information

CalEEMod allows the user to enter specific vehicle trip generation rates. Project-specific traffic trip generation estimates were provided for this assessment. The project would produce 1,269 new daily trips after a *Location-Based Reduction* and *VMT-Based Reduction*. The daily trip generation was calculated using ITE trip generation rates, the size of the project, and the adjusted total automobile trips after reductions. The Saturday and Sunday trip rates were derived by multiplying the ratio of the CalEEMod default rates for Saturday and Sunday trips to the default weekday rate with the project-specific daily weekday trip rate. The default trip lengths and trip types specified by CalEEMod were used.

### Energy

CalEEMod defaults for energy use were used, which include the 2019 Title 24 Building Standards. GHG emissions modeling includes those indirect emissions from electricity consumption. The electricity produced emission rate was modified in CalEEMod. An emission factor of 178 pounds of CO<sub>2</sub> per megawatt of electricity produced was entered into CalEEMod, which is based on San Jose Clean Energy's 2020 emissions rate. <sup>14</sup> It should be noted that per Climate Smart San Jose and San Jose's Greenhouse Gas Reduction Strategy, SJCE's goal is provision of 100-percent carbon-free electricity prior to 2030. <sup>15</sup>

1

<sup>&</sup>lt;sup>12</sup> See CARB 2021: <a href="https://ww2.arb.ca.gov/our-work/programs/mobile-source-emissions-inventory/road-documentation/msei-modeling-tools-emfac">https://ww2.arb.ca.gov/our-work/programs/mobile-source-emissions-inventory/road-documentation/msei-modeling-tools-emfac</a>

<sup>&</sup>lt;sup>13</sup> Hexagon Transportation Consultants, Inc., *Embedded Way Industrial Development Transportation Analysis*, July 13, 2022.

<sup>&</sup>lt;sup>14</sup> San Jose Clean Energy Website, Standard GreenSource service. Web: <a href="https://sanjosecleanenergy.org/commercial-rates/">https://sanjosecleanenergy.org/commercial-rates/</a>

<sup>&</sup>lt;sup>15</sup> City of San José, 2020. "2030 Greenhouse Gas Reduction Strategy", August. Web: https://www.sanjoseca.gov/home/showpublisheddocument/63667/637347412207870000

The City of San José passed an ordinance in December 2020 that prohibits the use of natural gas infrastructure in new residential, office, and most retail-type buildings. <sup>16</sup> This ordinance applies to any new construction starting August 1, 2021. Natural gas use for the R&D land use was set to zero and reassigned to electricity use in CalEEMod.

### **Project Stationary Sources**

The project proposes to include one 462-horsepower (HP) diesel fire pump located in the southeast corner of the proposed building. For modeling purposes, it was assumed that the fire pump would be operated primarily for testing and maintenance purposes, and used during emergencies. CARB and BAAQMD requirements limit these engine operations to 50 hours each per year of non-emergency operation. During testing periods, the engines would typically be run for less than one hour. The engines would be required to meet CARB and EPA emission standards and consume commercially available California low-sulfur diesel fuel. Additionally, the generator would have to meet BAAQMD BACT requirements for IC Engine-Compression Ignition: Stationary Emergency, non-Agricultural, non-direct drive fire pump sources. The fire pump's emissions were modeled using CalEEMod.

### Other Inputs

Default model assumptions for emissions associated with solid waste generation and water/wastewater use were applied to the project. Water/wastewater use was estimated to be 100% aerobic conditions to represent City wastewater treatment plant conditions. The project site would not send wastewater to on-site septic tanks or facultative lagoons.

### Summary of Computed Operational Period Emissions

Annual emissions were predicted using CalEEMod. The daily emissions were calculated assuming 365 days of operation. Table 5 shows average daily emissions of ROG, NOx, total PM<sub>10</sub>, and total PM<sub>2.5</sub> during operation of the facility. The operational period emissions would not exceed the BAAQMD significance thresholds.

**Table 5.** Operational Period Emissions

| Scenario                                                   | ROG     | NOx     | PM <sub>10</sub> | PM <sub>2.5</sub> |
|------------------------------------------------------------|---------|---------|------------------|-------------------|
| 2024 Project Operational Emissions (tons/year)             | 1.16    | 0.50    | 0.82             | 0.21              |
| BAAQMD Thresholds (tons /year)                             | 10 tons | 10 tons | 15 tons          | 10 tons           |
| Exceed Thresholds?                                         | No      | No      | No               | No                |
| 2024 Project Operational Emissions (lbs./day) <sup>1</sup> | 6.38    | 2.74    | 4.49             | 1.16              |
| BAAQMD Thresholds (lbs./day)                               | 54 lbs. | 54 lbs. | 82 lbs.          | 54 lbs.           |
| Exceed Threshold?                                          | No      | No      | No               | No                |

Notes: <sup>1</sup> Assumes 365-day operation.

-

<sup>&</sup>lt;sup>16</sup> City of San José, 2020. "ORDINANCE NO. 30502", December. Web: <a href="https://www.sanjoseca.gov/home/showpublisheddocument/69230/637485403354170000njoseca.gov/home/Components/News/News/2210/4699">https://www.sanjoseca.gov/home/showpublisheddocument/69230/637485403354170000njoseca.gov/home/Components/News/News/2210/4699</a>

### **Impact AIR-3:** Expose sensitive receptors to substantial pollutant concentrations?

Project impacts related to increased community risk can occur either by introducing a new source of TACs with the potential to adversely affect existing sensitive receptors in the project vicinity or by significantly exacerbating existing cumulative TAC impacts. This project would introduce new sources of TACs during construction (i.e., on-site construction and truck hauling emissions) and operation (i.e., mobile and stationary sources).

Project construction activity would generate dust and equipment exhaust that would affect nearby sensitive receptors. The project would include the installation of an emergency fire pump powered by diesel engines. Traffic generated by the project would consist of light-duty gasoline-powered vehicles along with trucks, which would produce TAC and air pollutant emissions.

Project impacts to existing sensitive receptors were addressed for temporary construction activities and long-term operational conditions. There are also several sources of existing TACs and localized air pollutants in the vicinity of the project. The impact of the existing sources of TAC was also assessed in terms of the cumulative risk which includes the project contribution.

### **Community Risk Methodology for Construction and Operation**

Community risk impacts are addressed by predicting increased lifetime cancer risk, the increase in annual PM<sub>2.5</sub> concentrations, and computing the Hazard Index (HI) for non-cancer health risks. The risk impacts from the project are the combination of risks from construction and operation sources. These sources include on-site construction activity, construction truck hauling, and increased traffic from the project. To evaluate the increased cancer risks from the project, a 30-year exposure period was used, per BAAQMD guidance, with the sensitive receptors being exposed to both project construction and operation emissions during this timeframe.

The project increased cancer risk is computed by summing the project construction cancer risk and operation cancer risk contributions. Unlike the increased maximum cancer risk, the annual PM<sub>2.5</sub> concentration and HI values are not additive but based on the annual maximum values for the entirety of the project. The project maximally exposed individual (MEI) is identified as the sensitive receptor that is most impacted by the project's construction and operation.

The methodology for computing community risks impacts is contained in *Attachment 1*. This involved the calculation of TAC and PM<sub>2.5</sub> emissions, dispersion modeling of these emissions, and computations of cancer risk and non-cancer health effects.

### **Modeled Sensitive Receptors**

Receptors for this assessment included locations where sensitive populations would be present for extended periods of time (i.e., chronic exposures). This includes the existing residences to the west of the site, as shown in Figure 1. Residential receptors are assumed to include all receptor groups

20

<sup>&</sup>lt;sup>17</sup> BAAQMD, 2016. *BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines*. December 2016.

(i.e., third trimester, infants, children, and adults) with almost continuous exposure to project emissions.

### **Health Risks from the Project**

Construction equipment and associated heavy-duty truck traffic generates diesel exhaust, which is a known TAC. These exhaust emissions (i.e., DPM) pose health risks for sensitive receptors such as surrounding residents. The primary community risk impact issues associated with construction emissions are cancer risk and exposure to PM<sub>2.5</sub>. DPM poses both a potential health and nuisance impact to nearby receptors. A health risk assessment of the project construction activities was conducted that evaluated potential health effects to nearby sensitive receptors from construction emissions of DPM and PM<sub>2.5</sub>. This assessment included dispersion modeling to predict the offsite concentrations resulting from project construction, so that lifetime cancer risks and non-cancer health effects could be evaluated.

### **Construction Emissions**

The CalEEMod and EMFAC2021 models provided total annual PM<sub>10</sub> exhaust emissions (assumed to be DPM) for the off-road construction equipment and for exhaust emissions from on-road vehicles, with total DPM emissions from all construction stages estimated to be 0.04 tons (75 pounds). The on-road emissions are a result of haul truck travel during grading activities, worker travel, and vendor deliveries during construction. A trip length of half a mile was used to represent vehicle travel while at or near the construction site. It was assumed that these emissions from on-road vehicles traveling at or near the site would occur at the construction site. Fugitive PM<sub>2.5</sub> dust emissions were calculated by CalEEMod and EMFAC2021 to be 0.06 tons (111 pounds) for the overall construction period.

### Operational Truck Traffic Emissions

Based on the proposed 12 truck loading docks, it was estimated that there would be 24 trucks or 48 truck trips generated daily by the project, which are assumed to be heavy-duty diesel-powered trucks and a source of long-term DPM emissions. These trucks would travel to and from the site and are anticipated to idle at loading docks for 5 minutes for each trip.

Emissions of DPM (assumed to be PM<sub>10</sub> exhaust) from these activities were computed using the CARB EMFAC2021 model assuming trucks would travel along Hellyer Avenue at an average speed of 45 mph and along Embedded Way at 35 mph. While on-site, the trucks were assumed to travel at a speed of 5 miles per hour and each truck would idle at the warehouse site for 5 minutes per trip. Idling emissions were computed based on EMFAC2021 emission rates for 5-mph travel and converted to hourly emissions. Fugitive PM<sub>2.5</sub> emissions from truck travel would occur due to tire and brake wear and from road dust generated by the trucks. The fugitive PM<sub>2.5</sub> emissions were computed using the Caltrans CT-EMFAC2017 model.

 $^{18}\,\mathrm{DPM}$  is identified by California as a toxic air contaminant due to the potential to cause cancer.

### Operational Fire Pump Emissions

The fire pump would be operated for testing and maintenance purposes, with a maximum of 50 hours per year of non-emergency operation under normal conditions. The diesel engine powering the fire pump would be subject to CARB's Stationary Diesel Airborne Toxics Control Measure (ATCM) and require permits from the BAAQMD, since they will be equipped with an engine larger than 50-hp. BACT requirements would apply to these generators that would limit DPM emissions. During testing periods, the engine would typically be run for less than one hour under light engine loads. The fire pump engine would be required to meet EPA emission standards and consume commercially available low sulfur diesel fuel. Additionally, the generators would have to meet BAAQMD BACT requirements for IC Engine-Compression Ignition: Stationary Emergency, non-Agricultural, non-direct drive fire pump sources. The emissions from the operation of the fire pump were calculated using the CalEEMod model.

### Dispersion Modeling

The U.S. EPA AERMOD dispersion model was used to predict concentrations of DPM and PM<sub>2.5</sub> concentrations at sensitive receptors in the vicinity of the project area. The AERMOD dispersion model is a BAAQMD-recommended model for use in modeling analysis of these types of emission activities for CEQA projects.<sup>19</sup>

The modeling used a five-year meteorological data set (2013-2017) from the San José Airport prepared for use with the AERMOD model by the BAAQMD. Construction emissions were modeled as occurring during weekdays between 8:00 a.m. to 5:00 p.m. per the project applicant's construction schedule. Operational truck and generator emissions were assumed to occur at any time during a 24-hour day, 365 days per year. Construction, traffic, and stationary sources and receptor elevations were based on USGS NED data with a 10-meter resolution. Annual DPM and PM2.5 concentrations from construction activities during the 2023 period were calculated using the model. DPM and PM<sub>2.5</sub> concentrations were calculated at nearby sensitive receptors. Receptor heights of 5 feet (1.5 meters) were used to represent the breathing height of nearby residents.<sup>20</sup>

### Construction Sources

Emission sources for the construction site were grouped into two categories: exhaust emissions of DPM and fugitive PM<sub>2.5</sub> dust emissions. To represent the construction equipment exhaust emissions, an area source emission release height of 20 feet (6 meters) was used for the area sources.<sup>21</sup> The release height incorporates both the physical release height from the construction equipment (i.e., the height of the exhaust pipe) and plume rise after it leaves the exhaust pipe. Plume rise is due to both the high temperature of the exhaust and the high velocity of the exhaust gas. It should be noted that when modeling an area source, plume rise is not calculated by the

<sup>&</sup>lt;sup>19</sup> Bay Area Air Quality Management District (BAAQMD), 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May.

<sup>&</sup>lt;sup>20</sup> Bay Area Air Quality Management District, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: https://www.baaqmd.gov/~/media/files/planning-andresearch/ceqa/risk-modeling-approach-may-2012.pdf?la=en

21 California Air Resource Board, 2007. Proposed Regulation for In-Use Off-Road Diesel Vehicles, Appendix D:

Health Risk Methodology. April. Web: https://ww3.arb.ca.gov/regact/2007/ordiesl07/ordiesl07.htm

AERMOD dispersion model as it would be for a point source (exhaust stack). Therefore, the release height from an area source used to represent emissions from sources with plume rise, such as construction equipment, should be based on the height the exhaust plume is expected to achieve, not just the height of the top of the exhaust pipe.

For modeling fugitive PM<sub>2.5</sub> emissions, a near-ground level release height of 7 feet (2 meters) was used for the area source. Fugitive dust emissions at construction sites come from a variety of sources, including truck and equipment travel, grading activities, truck loading (with loaders) and unloading (rear or bottom dumping), loaders and excavators moving and transferring soil and other materials, etc. All of these activities result in fugitive dust emissions at various heights at the point(s) of generation. Once generated, the dust plume will tend to rise as it moves downwind across the site and exit the site at a higher elevation than when it was generated. For all these reasons, a 7-foot release height was used as the average release height across the construction site. Emissions from the construction equipment and on-road vehicle travel were distributed throughout the modeled area sources. Figure 1 shows the project site, construction area modeled, and receptors.

### Truck Traffic Sources

Project operation was assumed to occur for 365 days per year and that the trucks could be operating at any hour of the day (i.e., 24 hours/day). Operation with truck traffic was assumed to begin in 2024. The U.S. EPA AERMOD model was used with San Jose Airport meteorology data to model truck travel and idling emissions. Truck travel was modeled using line-volume sources at the project site and along Hellyer Avenue. Idle emissions were modeled as coming from 6 point sources located at the warehouse loading dock area. Truck idling emission source information was based on San Joaquin Valley Air Pollution Control District (SJVAPCD) information for these types of sources.<sup>22</sup> The effects of building downwash from the project building were included in the modeling. Figure 1 shows the project site, truck travel routes modeled, and truck idle locations.

### Fire Pump Sources

Fire pump stack parameters (exhaust flow rate, and exhaust gas temperature) for modeling the fire pump were based on BAAQMD default parameters for diesel engines<sup>23</sup> and estimated stack height of 5 feet above the rooftop level. Annual average DPM and PM<sub>2.5</sub> concentrations were modeled assuming that fire pump testing could occur at any time of the day (24 hours per day, 365 days per year). Figure 1 shows the locations of modeled fire pump sources.

### Health Risks of all Project TAC Sources at Project MEI

The maximum increased cancer risks were calculated using the modeled TAC concentrations combined with the OEHHA guidance for age-sensitivity factors and exposure parameters as recommended by BAAQMD, as described in *Attachment 1*. Non-cancer health hazards and maximum PM<sub>2.5</sub> concentrations were also calculated and identified. Age-sensitivity factors reflect

-

<sup>&</sup>lt;sup>22</sup> SJVAPCD, Guidance for Air Dispersion Modeling, Draft 01/07 Rev 2.0.

<sup>&</sup>lt;sup>23</sup> The San Francisco Community Risk Reduction Plan: Technical Support Document, BAAQMD, San Francisco Dept. of Public Health, and San Francisco Planning Dept., December 2012

the greater sensitivity of infants and small children to cancer causing TACs. Third trimester, infant, child, and adult exposures were assumed to occur at all residences during the entire construction period.

The maximum modeled annual PM<sub>2.5</sub> concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI values was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation DPM reference exposure level of 5  $\mu$ g/m<sup>3</sup>.

The maximum modeled annual DPM and PM<sub>2.5</sub> concentrations were identified at nearby sensitive receptors to find the maximally exposed individuals (MEI). The cumulative risk impacts from a project are the combination of construction and operation sources. These sources include on-site construction activity, truck traffic, and infrequent emergency fire pump operation. The maximum project cancer risk impact is computed by adding the construction cancer risk for an infant/child to the increased cancer risk for the project operational conditions from the truck traffic and fire pump operation at the MEI. Residential sensitive receptors were assumed be present near the site for up to 30 years. The cancer risks from construction and operation of the project were summed together. Unlike the increased maximum cancer risk, the annual PM<sub>2.5</sub> concentration and HI risks are not cumulative but based on an annual maximum risk for the entirety of the project.

Results of this assessment indicated that the project MEI was located at a single-family residence to the northwest of the project site opposite Coyote Creek. The unmitigated maximum cancer risks, annual PM<sub>2.5</sub> concentration, and non-cancer hazards at the MEI from project construction and operation activities would be below the single-source significance thresholds. Table 6 summarizes the maximum cancer risks, PM<sub>2.5</sub> concentrations, and HIs for project related construction and operational activities affecting the MEI. *Attachment 4* to this report includes the emission calculations used for the construction and operational modeling and the cancer risk calculations.

Table 6. Project Health Risk Impacts at the Off-Site MEI

| Source                                    |                    | Cancer Risk (per million) | Annual PM <sub>2.5</sub> (μg/m <sup>3</sup> ) | Hazard<br>Index |
|-------------------------------------------|--------------------|---------------------------|-----------------------------------------------|-----------------|
| P                                         | roject Impact at M | 1EI                       |                                               |                 |
| Project Construction (Years 0-1)          | Unmitigated        | 0.47 (infant)             | 0.01                                          | < 0.01          |
| Project Truck Traffic (Years 2-30)        | Unmitigated        | 0.21 (infant)             | < 0.01                                        | < 0.01          |
| Project Fire Pump (Years 2-30)            | Unmitigated        | 0.23 (infant)             | < 0.01                                        | < 0.01          |
| Total/Maximum Project Impact (Years 0-30) | Unmitigated        | 0.91 (infant)             | 0.01                                          | < 0.01          |
| BAAQMD Single-                            | Source Threshold   | 10                        | 0.3                                           | 1.0             |
| Exceed Threshold?                         | Unmitigated        | No                        | No                                            | No              |

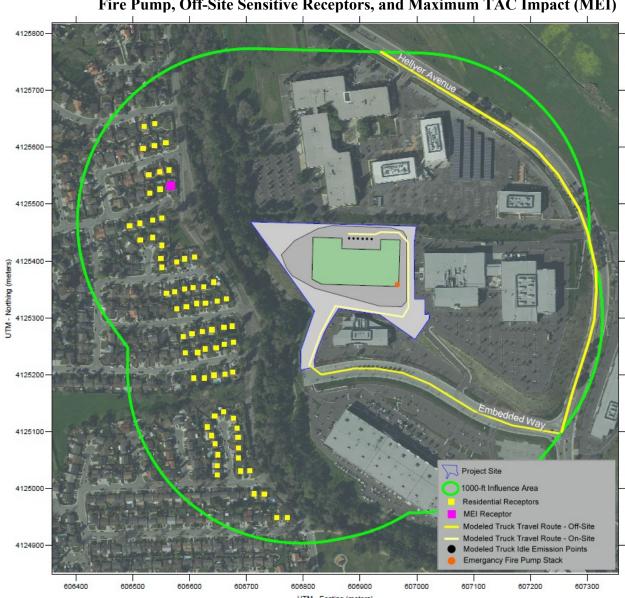



Figure 1. Locations of Project Construction Site, Truck Travel Routes, Truck Idling, Fire Pump, Off-Site Sensitive Receptors, and Maximum TAC Impact (MEI)

### **Cumulative Community Risks of all TAC Sources at the Off-Site Project MEI**

Community health risk assessments typically look at all substantial sources of TACs that can affect sensitive receptors that are located within 1,000 feet of a project site (i.e., influence area). These sources include rail lines, highways, busy surface streets, and stationary sources identified by BAAQMD.

A review of the project area based on provided traffic information indicated that Hellyer Avenue would have average daily traffic (ADT) exceeding 10,000 vehicles. Other streets within the influence area would have less than 10,000 vehicles per day. A review of BAAQMD's stationary source geographic information systems (GIS) map tool identified one stationary source with the

potential to affect the project site and MEI within the influence area. Figure 2 shows the project area, TAC sources within the influence area, and the location of the MEI. Community risk impacts from these sources upon the MEI are reported in Table 7. Details of the modeling and community risk calculations are included in *Attachment 5*.



Figure 2. Project Site, Project MEI, and Nearby TAC and PM<sub>2.5</sub> Sources

### Local Roadways - Hellyer Avenue

A refined analysis of potential health impacts from vehicle traffic on Hellyer Avenue was conducted since the roadway was estimated to have ADT exceeding 10,000 vehicles. The refined analysis involved predicting emissions for the traffic volume and mix of vehicle types on the roadway near the project site and using an atmospheric dispersion model to predict exposure to TACs. The associated cancer risks are then computed based on the modeled exposures. *Attachment I* includes a description of how community risk impacts, including cancer risk are computed.

### **Emission Rates**

This analysis involved the development of DPM, organic TACs, and PM<sub>2.5</sub> emissions for traffic on the roadways using the Caltrans version of the EMFAC2017 emissions model, known as CT-

EMFAC2017. CT-EMFAC2017 provides emission factors for mobile source criteria pollutants and TACs, including DPM.<sup>24</sup> Emission processes modeled include running exhaust for DPM, PM<sub>2.5</sub> and total organic compounds (e.g., TOG), running evaporative losses for TOG, and tire and brake wear and fugitive road dust for PM<sub>2.5</sub>. All PM<sub>2.5</sub> emissions from all vehicles were used, rather than just the PM<sub>2.5</sub> fraction from diesel powered vehicles, because all vehicle types (i.e., gasoline and diesel powered) produce PM<sub>2.5</sub>. Additionally, PM<sub>2.5</sub> emissions from vehicle tire and brake wear and from re-entrained roadway dust were included. DPM emissions are projected to decrease in the future and are reflected in the CT-EMFAC2017 emissions data. Inputs to the model include region (i.e., Santa Clara County), type of road (i.e., major/collector), truck percentage for non-state highways in Santa Clara County (3.51 percent),<sup>25</sup> traffic mix assigned by CT-EMFAC2017 for the county, year of analysis (2023 – construction start year), and season (annual).

In order to estimate TAC and PM<sub>2.5</sub> emissions over the 30-year exposure period used for calculating the increased cancer risks for sensitive receptors at the project MEI, the CT-EMFAC2017 model was used to develop vehicle emission factors for the year 2023 (project construction year). Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CT-EMFAC2017. Year 2023 emissions were conservatively assumed as being representative of future conditions over the time period that cancer risks are evaluated since, as discussed above, overall vehicle emissions, and in particular diesel truck emissions, will decrease in the future.

The ADT for Hellyer Avenue was based on AM and PM peak-hour background plus project traffic volumes for the nearby roadway provided by the project's traffic data.<sup>26</sup> The calculated ADT on Hellyer Avenue would be 12,710 vehicles. Average hourly traffic distributions for Santa Clara County roadways were developed using the EMFAC model,<sup>27</sup> which were then applied to the ADT volumes to obtain estimated hourly traffic volumes and emissions for the roadway. For all hours of the day, average speeds of 45 mph on Hellyer Avenue were assumed for all vehicles based on posted speed limits of the roadway.

### Dispersion Modeling

Dispersion modeling of TAC and PM<sub>2.5</sub> emissions was conducted using the EPA AERMOD air quality dispersion model, which is recommended by the BAAQMD for this type of analysis.<sup>28</sup> TAC and PM<sub>2.5</sub> emissions from traffic on Hellyer Avenue within 1,000 feet of the project site were evaluated. Vehicle traffic on the roadway was modeled using a series of volume sources along a

\_

<sup>&</sup>lt;sup>24</sup> The version CT-EMFAC2017 was used in the analysis because Caltrans has not yet release a CT-EMFAC version with the updated EMFAC2021 emissions that would provide TAC emission rates.

<sup>&</sup>lt;sup>25</sup> BAAQMD, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: <a href="https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en">https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</a>

<sup>&</sup>lt;sup>26</sup> Hexagon Transportation Consultants, Inc., *Embedded Way Industrial Development Transportation Analysis*, July 13, 2022.

<sup>&</sup>lt;sup>27</sup> The Burden output from EMFAC2007, a previous version of CARB's EMFAC model, was used for this since the current web-based version of EMFAC2014 does not include Burden type output with hour by hour traffic volume information.

<sup>&</sup>lt;sup>28</sup> BAAQMD. Recommended Methods for Screening and Modeling Local Risks and Hazards. May 2012

line (line volume sources); with line segments used for opposing travel directions on the roadway. The same meteorological data and off-site sensitive receptor locations from the previous project impact dispersion modeling were used in the roadway modeling. Other inputs to the model included road geometry, hourly traffic emissions, and receptor locations. Roadway sources and receptor elevations were based on USGS NED data with a 10-meter resolution. Annual TAC and PM<sub>2.5</sub> concentrations for 2023 from traffic on the roadway were calculated using the model. Concentrations were calculated at the project MEI with receptor heights of 5 feet (1.5 meters) to represent the breathing heights at the MEI receptor.

### Computed Cancer and Non-Cancer Health Impacts

The cancer risk, PM<sub>2.5</sub> concentration, and HI impacts from Hellyer Avenue on the project MEI are shown in Table 7. Figure 2 shows the roadway links used for the modeling and receptor locations where concentrations were calculated. Details of the emission calculations, dispersion modeling, and cancer risk calculations for the receptors with the maximum cancer risk from Hellyer Avenue traffic are provided in *Attachment 5*.

### **BAAQMD Permitted Stationary Sources**

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's *Permitted Stationary Sources 2020* GIS website,<sup>29</sup> which identifies the location of nearby stationary sources and their estimated risk and hazard impacts, including emissions and adjustments to account for new OEHHA guidance. One source was identified using this tool, with the source being diesel generator. The BAAQMD GIS website provided screening risks and hazards for this source; therefore, a stationary source information request was not required to be submitted to BAAQMD.

The screening level risks and hazards provided by BAAQMD for the stationary source was adjusted for distance using BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion Engines*. Community risk impacts from the stationary source upon the project MEI are reported in Table 7.

### Summary of Cumulative Health Risk Impact at Construction MEI

Table 7 reports both the project and cumulative community risk impacts at the sensitive receptor most affected by project construction and operation (i.e., the project MEI). The project would not have an exceedance with respect to community risk caused by project construction and operation activities since the unmitigated cancer risk, annual PM<sub>2.5</sub> concentration, and HI do not exceed the BAAQMD single-source or cumulative-source threshold.

-

https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=845658c19eae4594b9f4b805fb9d89a3

<sup>&</sup>lt;sup>29</sup> BAAOMD.

Table 7. Impacts from Combined Sources at Project MEI

|                                                                           |               | -                         |                                                  |                 |
|---------------------------------------------------------------------------|---------------|---------------------------|--------------------------------------------------|-----------------|
| Source                                                                    |               | Cancer Risk (per million) | Annual PM <sub>2.5</sub><br>(μg/m <sup>3</sup> ) | Hazard<br>Index |
| Pro                                                                       | ject Impacts  |                           |                                                  |                 |
| Total/Maximum Project Impact U:                                           | nmitigated    | 0.91                      | 0.01                                             | < 0.01          |
| Cum                                                                       | ulative Sourc | es                        |                                                  |                 |
| Hellyer Ave, ADT 12,710                                                   |               | 0.05                      | < 0.01                                           | < 0.01          |
| KBAY-KEZR Alpha Media LLC (Facility ID #2016 Generators), MEI at 750 feet | 538,          | 0.01                      | -                                                | -               |
| Combined Sources                                                          | Inmitigated   | 0.97                      | < 0.02                                           | < 0.02          |
| BAAQMD Cumulative Source                                                  | e Threshold   | 100                       | 0.8                                              | 10.0            |
| Exceed Threshold?                                                         | Unmitigated   | No                        | No                                               | No              |

### **Supporting Documentation**

Attachment 1 is the methodology used to compute community risk impacts, including the methods to compute increased cancer risk from exposure to project emissions.

Attachment 2 includes the CalEEMod output for project construction and operational criteria air pollutants. Also included are any modeling assumptions.

Attachment 3 includes the EMFAC2021 emissions modeling.

Attachment 4 is the health risk assessment. This includes the summary of the dispersion modeling and the cancer risk calculations for construction and operation. The AERMOD dispersion modeling files for this assessment, which are quite voluminous, are available upon request and would be provided in digital format.

Attachment 5 includes the cumulative community risk calculations, modeling results, and health risk calculations from sources affecting the project MEI.

### **Attachment 1: Health Risk Calculation Methodology**

A health risk assessment (HRA) for exposure to Toxic Air Contaminates (TACs) requires the application of a risk characterization model to the results from the air dispersion model to estimate potential health risk at each sensitive receptor location. The State of California Office of Environmental Health Hazard Assessment (OEHHA) and California Air Resources Board (CARB) develop recommended methods for conducting health risk assessments. The most recent OEHHA risk assessment guidelines were published in February of 2015. These guidelines incorporate substantial changes designed to provide for enhanced protection of children, as required by State law, compared to previous published risk assessment guidelines. CARB has provided additional guidance on implementing OEHHA's recommended methods. This HRA used the 2015 OEHHA risk assessment guidelines and CARB guidance. The BAAQMD has adopted recommended procedures for applying the newest OEHHA guidelines as part of Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants. Exposure parameters from the OEHHA guidelines and the recent BAAQMD HRA Guidelines were used in this evaluation.

### Cancer Risk

Potential increased cancer risk from inhalation of TACs is calculated based on the TAC concentration over the period of exposure, inhalation dose, the TAC cancer potency factor, and an age sensitivity factor to reflect the greater sensitivity of infants and children to cancer causing TACs. The inhalation dose depends on a person's breathing rate, exposure time and frequency and duration of exposure. These parameters vary depending on the age, or age range, of the persons being exposed and whether the exposure is considered to occur at a residential location or other sensitive receptor location.

The current OEHHA guidance recommends that cancer risk be calculated by age groups to account for different breathing rates and sensitivity to TACs. Specifically, they recommend evaluating risks for the third trimester of pregnancy to age zero, ages zero to less than two (infant exposure), ages two to less than 16 (child exposure), and ages 16 to 70 (adult exposure). Age sensitivity factors (ASFs) associated with the different types of exposure are an ASF of 10 for the third trimester and infant exposures, an ASF of 3 for a child exposure, and an ASF of 1 for an adult exposure. Also associated with each exposure type are different breathing rates, expressed as liters per kilogram of body weight per day (L/kg-day) or liters per kilogram of body weight per 8-hour period for the case of worker or school child exposures. As recommended by the BAAQMD for residential exposures, 95<sup>th</sup> percentile breathing rates are used for the third trimester and infant exposures, and 80<sup>th</sup> percentile breathing rates for child and adult exposures. For children at schools and daycare facilities, BAAQMD recommends using the 95<sup>th</sup> percentile 8-hour breathing rates. Additionally, CARB and the BAAQMD recommend the use of a residential exposure duration of

<sup>&</sup>lt;sup>30</sup> OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

<sup>&</sup>lt;sup>31</sup> CARB, 2015. Risk Management Guidance for Stationary Sources of Air Toxics. July 23.

<sup>&</sup>lt;sup>32</sup> BAAQMD, 2016. BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. December 2016.

30 years for sources with long-term emissions (e.g., roadways). For workers, assumed to be adults, a 25-year exposure period is recommended by the BAAQMD. For school children a 9-year exposure period is recommended by the BAAQMD.

Under previous OEHHA and BAAQMD HRA guidance, residential receptors are assumed to be at their home 24 hours a day, or 100 percent of the time. In the 2015 Risk Assessment Guidance, OEHHA includes adjustments to exposure duration to account for the fraction of time at home (FAH), which can be less than 100 percent of the time, based on updated population and activity statistics. The FAH factors are age-specific and are: 0.85 for third trimester of pregnancy to less than 2 years old, 0.72 for ages 2 to less than 16 years, and 0.73 for ages 16 to 70 years. Use of the FAH factors is allowed by the BAAQMD if there are no schools in the project vicinity have a cancer risk of one in a million or greater assuming 100 percent exposure (FAH = 1.0).

Functionally, cancer risk is calculated using the following parameters and formulas:

Cancer Risk (per million) =  $CPF \ x \ Inhalation \ Dose \ x \ ASF \ x \ ED/AT \ x \ FAH \ x \ 10^6$ Where:

 $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose =  $C_{air} \times DBR \times x \times (EF/365) \times 10^{-6}$ Where:

 $C_{air} = concentration in air (\mu g/m^3)$ 

DBR = daily breathing rate (L/kg body weight-day)

8HrBR = 8-hour breathing rate (L/kg body weight-8 hours)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 $10^{-6}$  = Conversion factor

The health risk parameters used in this evaluation are summarized as follows:

|                                | Exposure Type 🗲                         | Infa            | nt       | Child    | Adult    |
|--------------------------------|-----------------------------------------|-----------------|----------|----------|----------|
| Parameter                      | Age Range 🗲                             | 3 <sup>rd</sup> | 0<2      | 2 < 16   | 16 - 30  |
|                                |                                         | Trimester       |          |          |          |
| DPM Cancer Potency Factor (r   | ng/kg-day) <sup>-1</sup>                | 1.10E+00        | 1.10E+00 | 1.10E+00 | 1.10E+00 |
| Daily Breathing Rate (L/kg-day | y) 80 <sup>th</sup> Percentile Rate     | 273             | 758      | 572      | 261      |
| Daily Breathing Rate (L/kg-day | y) 95 <sup>th</sup> Percentile Rate     | 361             | 1,090    | 745      | 335      |
| 8-hour Breathing Rate (L/kg-8  | hours) 95 <sup>th</sup> Percentile Rate | -               | 1,200    | 520      | 240      |
| Inhalation Absorption Factor   |                                         | 1               | 1        | 1        | 1        |
| Averaging Time (years)         |                                         | 70              | 70       | 70       | 70       |
| Exposure Duration (years)      |                                         | 0.25            | 2        | 14       | 14*      |
| Exposure Frequency (days/yea   | r)                                      | 350             | 350      | 350      | 350*     |
| Age Sensitivity Factor         |                                         | 10              | 10       | 3        | 1        |
| Fraction of Time at Home (FA   | H)                                      | 0.85-1.0        | 0.85-1.0 | 0.72-1.0 | 0.73*    |
| * An 8-hour breathing rate (8H | rBR) is used for worker and             | school child ex | posures. |          |          |

### Non-Cancer Hazards

Non-cancer health risk is usually determined by comparing the predicted level of exposure to a chemical to the level of exposure that is not expected to cause any adverse effects (reference exposure level), even to the most susceptible people. Potential non-cancer health hazards from TAC exposure are expressed in terms of a hazard index (HI), which is the ratio of the TAC concentration to a reference exposure level (REL). OEHHA has defined acceptable concentration levels for contaminants that pose non-cancer health hazards. TAC concentrations below the REL are not expected to cause adverse health impacts, even for sensitive individuals. The total HI is calculated as the sum of the HIs for each TAC evaluated and the total HI is compared to the BAAQMD significance thresholds to determine whether a significant non-cancer health impact from a project would occur.

Typically, for residential projects located near roadways with substantial TAC emissions, the primary TAC of concern with non-cancer health effects is diesel particulate matter (DPM). For DPM, the chronic inhalation REL is 5 micrograms per cubic meter ( $\mu g/m^3$ ).

### Annual PM<sub>2.5</sub> Concentrations

While not a TAC, fine particulate matter (PM<sub>2.5</sub>) has been identified by the BAAQMD as a pollutant with potential non-cancer health effects that should be included when evaluating potential community health impacts under the California Environmental Quality Act (CEQA). The thresholds of significance for PM<sub>2.5</sub> (project level and cumulative) are in terms of an increase in the annual average concentration. When considering PM<sub>2.5</sub> impacts, the contribution from all sources of PM<sub>2.5</sub> emissions should be included. For projects with potential impacts from nearby local roadways, the PM<sub>2.5</sub> impacts should include those from vehicle exhaust emissions, PM<sub>2.5</sub> generated from vehicle tire and brake wear, and fugitive emissions from re-suspended dust on the roads.

## **Attachment 2: CalEEMod Modeling Inputs and Outputs**

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α                          | ir Quality/I              | Noise Cor     | struc         | tion Ir                                 | form        | ation Data Request                                                   |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|---------------|---------------|-----------------------------------------|-------------|----------------------------------------------------------------------|
| Project N      | lame:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oppidan Ir                 | ndustrial - S. Sar        | 1 Jose        | 1             |                                         |             | Complete ALL Portions in Yellow                                      |
|                | See Equipment Type TAB for typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e, horsepower an           | d load factor             |               |               |                                         |             |                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |               |               |                                         |             |                                                                      |
|                | Project Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Dwelling Units            | 10.165        | total projec  | t acres distur                          | bed         |                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | s.f. residential          |               |               |                                         |             | Pile Driving? Y/N? NO                                                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                          | s.f. retail               |               |               |                                         |             | D. L. L. L. COSERATIONAL OF USE AT OR OF SIDE BUILD 'A CAMO VEG.     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                          | s.f. office/commercial    |               |               |                                         |             | Project include OPERATIONAL GENERATOR OR FIRE PUMP on-site? Y/N? YES |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121,850                    | s.f. other, specify: Indu | ıstrial       |               |                                         |             | IF YES (if BOTH separate values)> FIRE PUMP ONLY                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | s.f. parking garage       |               | spaces        |                                         |             | Kilowatts/Horsepower: 472 HP                                         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86,000                     | s.f. parking lot          | 298           | spaces        |                                         |             | Fuel Type: DIESEL                                                    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |               |               |                                         |             | Location in project (Plans Desired if Available):                    |
|                | Construction Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                          | am to                     | 5             | pm            |                                         |             | position in project i lans pesned il Avallable).                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |               |               |                                         |             |                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |               |               |                                         |             | DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |               | Total<br>Work | Avg.<br>Hours per                       | Annual      |                                                                      |
| Quantity       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HP                         | Load Factor               | Hours/day     | Days          | day                                     | Hours       | Comments                                                             |
|                | Demolition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start Date:                | 2/8/2023                  | Total phase:  | 11            |                                         |             | Overall Import/Export Volumes                                        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | End Date:                  | 2/22/2023                 | - Lui piluoo. | .,            | *************************************** |             |                                                                      |
| 0<br>2         | Concrete/Industrial Saws Excavators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81<br>158                  | 0.73<br>0.38              | 0             | 3             | 0.0                                     | 0<br>54     |                                                                      |
| 1              | Rubber-Tired Dozers Tractors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 247<br>97                  | 0.4<br>0.37               | 9             | 2             | 1.6                                     | 18<br>18    | (or total tons to be hauled)                                         |
|                | Tradicio de Controlo de Control de C | 01                         | 0.01                      |               | _             | 1.0                                     |             | O Hauling volume (tons)  Any pavement demolished and hauled? 0 tons  |
|                | Site Preparation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Start Date:                |                           | Total phase:  | 15            |                                         |             | Any pavement demonstred and fladied: otolis                          |
| 5              | Graders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | End Date:<br>187           | <b>2/28/2023</b><br>0.41  | 9             | 5             | 3.0                                     | 225         |                                                                      |
| 2              | Rubber Tired Dozers Tractors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 247<br>97                  | 0.4<br>0.37               | 9             |               | 1.2                                     | 36<br>36    |                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           | T-4-1-1-1     |               |                                         |             |                                                                      |
|                | Grading / Excavation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Start Date:<br>End Date:   | 3/30/2023                 | Total phase:  | 37            |                                         |             | Soil Hauling Volume                                                  |
| 3              | Excavators<br>Graders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 158<br>187                 | 0.38<br>0.41              | 9             |               | 3.9                                     | 432<br>648  |                                                                      |
| 3              | Rubber Tired Dozers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 247                        | 0.4                       | 9             | 8             | 1.9                                     | 216<br>36   |                                                                      |
| 3              | Concrete/Industrial Saws<br>Tractors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81<br>97                   | 0.73<br>0.37              | 9             |               | 0.3                                     | 270         |                                                                      |
|                | Other Equipment?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |               |               |                                         |             |                                                                      |
|                | Trenching/Foundation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Start Date:<br>End Date:   | 3/30/2023<br>7/7/2023     | Total phase:  | 72            |                                         |             |                                                                      |
| 2              | Tractor/Loader/Backhoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                         | 0.37                      | 9             |               | 0.5                                     | 72          |                                                                      |
| 2              | Excavators Other Equipment?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 158                        | 0.38                      | 9<br>40       |               | 0.8                                     | 108         |                                                                      |
|                | Building - Exterior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Start Date:                | 7/11/2023                 | Total phase:  | 64            |                                         |             | Cement Trucks 660 Total Round-Trips                                  |
| 1              | Cranes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | End Date:<br>231           | 10/6/2023<br>0.29         | 5             | 60            | 4.7                                     | 300         |                                                                      |
| 2              | Forklifts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89                         | 0.2                       | 6             |               | 6.0                                     | 768         | Liquid Propane (LPG)? (Y/N) Y Otherwise Assumed diesel               |
| 3              | Generator Sets Tractors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84<br>97                   | 0.74<br>0.37              | 9             |               |                                         | 1728        |                                                                      |
| 4              | Welders<br>Boom Lift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46<br>62                   | 0.45<br>0.31              | 9             | 20<br>64      | 2.8                                     | 720<br>1024 |                                                                      |
| Building - Int | erior/Architectural Coating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start Date:                |                           | Total phase:  | 13            |                                         |             |                                                                      |
|                | Air Compressors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | End Date:<br>78            | 10/20/2023<br>0.48        |               |               | 0.0                                     | 0           |                                                                      |
| 2              | Aerial Lift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                         | 0.31                      | 4             | 13            |                                         | 104         |                                                                      |
|                | Other Equipment?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |               |               |                                         |             |                                                                      |
|                | Paving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Start Date:<br>Start Date: | 10/2/2023<br>11/6/2023    | Total phase:  | 26            |                                         |             |                                                                      |
|                | Cement and Mortar Mixers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                          | 0.56                      |               |               | 0.0                                     | 0           |                                                                      |
| 1              | Pavers Paving Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130<br>132                 | 0.42<br>0.36              | 8             | 10            |                                         | 80          |                                                                      |
| 1              | Rollers Tractors/Loaders/Backhoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80<br>97                   | 0.38<br>0.37              | 8             |               |                                         | 64<br>112   |                                                                      |
|                | Other Equipment?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |               |               | 0                                       | 0           |                                                                      |
|                | Additional Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Start Date:                |                           | Total phase:  |               |                                         |             |                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Date:                |                           |               |               |                                         |             |                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |               |               |                                         |             |                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |               |               |                                         |             |                                                                      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                           |               |               |                                         |             |                                                                      |
| Equipment ty   | pes listed in "Equipment Types" v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vorksheet tab.             |                           |               |               |                                         |             |                                                                      |
|                | ted in this sheet is to provide an exar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                           | Complete      | e one         | sheet                                   | for ea      | ach project component                                                |
|                | that water trucks would be used duri<br>act phases and equipment, as app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                           |               |               |                                         |             |                                                                      |
|                | ower or load factor, as appropriat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                           |               |               |                                         |             |                                                                      |

|                      | CalEEMod Default |        |             |           |                  |         |      |      |
|----------------------|------------------|--------|-------------|-----------|------------------|---------|------|------|
| Land Use             |                  | Size   | Daily Trips | New Trips | Weekday Trip Gen | Weekday | Sat  | Sun  |
| Apartmetns High Rise | ksf              | 121.85 | 1350        | 1269      | 10.41            | 11.26   | 1.9  | 1.11 |
| Location-Based Redu  | ction 5%         |        | -68         |           |                  | Rev     | 1.76 | 1.03 |
| VMT-Based Redu       | ction 1.05%      |        | -13         |           |                  |         |      |      |

### **Project Trip Generation Estimates**

|                                  | - Research and Development Center |          |         |                     |        |       |       |     | AM Peak | ( Hour |      |       |       | F   | PM Peak | Hour |      |       |
|----------------------------------|-----------------------------------|----------|---------|---------------------|--------|-------|-------|-----|---------|--------|------|-------|-------|-----|---------|------|------|-------|
|                                  | Reduction                         | ı VI     | ΛT      |                     | Da     | ily   |       | Sp  | olit    |        | Trip |       |       | Sp  | olit    |      | Trip | )     |
| Land Use                         | %                                 | Existing | Project | Size                | Rate   | Trip  | Rate  | ln  | Out     | In     | Out  | Total | Rate  | ln  | Out     | In   | Out  | Total |
|                                  |                                   |          |         |                     |        |       |       |     |         |        |      |       |       |     |         |      |      |       |
| #760 - Research and Developn     | nent Center                       | •        |         | 121,850 Square Feet | 11.080 | 1,350 | 1.030 | 82% | 18%     | 103    | 23   | 126   | 0.980 | 16% | 84%     | 19   | 100  | 119   |
| Location-Based Reduction 1       | 5%                                |          |         |                     |        | -68   |       |     |         | -5     | -1   | -6    |       |     |         | -1   | -5   | -6    |
| VMT-Based Reduction <sup>2</sup> | 1.05%                             | 15.19    | 15.03   |                     |        | -13   |       |     |         | -1     | 0    | -1    |       |     |         | 0    | -1   | -1    |
|                                  |                                   |          |         |                     |        |       |       |     |         |        |      |       |       |     |         |      |      |       |
| Total Project Trips              |                                   |          |         |                     |        | 1,269 |       |     |         | 97     | 22   | 119   |       |     |         | 18   | 94   | 112   |

Source: ITE Trip Generation Manual, 11<sup>th</sup> Edition 2021.

<sup>&</sup>lt;sup>1</sup> The place type for the project site (Suburban with Single-Family Homes) is obtained from the City of San Jose VMT Evaluation Tool (February 29, 2019). The location-based vehicle mode shares are obtained from Table 6 of the City of San Jose Transportation Analysis Handbook (April 2020). The trip reductions are based on the percent of mode share for all of the other modes of travel header whicle

<sup>&</sup>lt;sup>2</sup> Existing and project VMTs were estimated using the City of San Jose VMT Evaluation Tool. It is assumed that every percent reduction in VMT per-employee is equivalent to one percent reduction in peak-hour vehicle trips.

|                         |                        | Construction (  | Criteria Air Pollut | ants          |        |        |
|-------------------------|------------------------|-----------------|---------------------|---------------|--------|--------|
| Unmitigated             | ROG                    | NOX             | PM10 Exhaust        | PM2.5 Exhaust | CO2e   |        |
| Year                    |                        |                 | Tons                |               | MT     |        |
|                         | Construction Equipment |                 |                     |               |        |        |
| 2023                    | 0.74                   | 0.89            | 0.04                | 0.06          | 139.98 |        |
|                         |                        |                 | EMFAC               |               |        |        |
| 2023                    | 0.02                   | 0.20            | 0.01                | 0.01          | 151.85 |        |
|                         |                        | Total Construct | tion Emissions by   | Year          |        |        |
| 2023                    | 0.76                   | 1.08            | 0.05                | 0.06          | 291.82 |        |
|                         |                        | Total Const     | ruction Emissions   |               |        |        |
| Tons                    | 0.76                   | 1.08            | 0.05                | 0.06          | 291.82 |        |
| Pounds/Workdays         |                        | Average         | Daily Emissions     |               | Work   | davs   |
| 2023                    | 7.77                   | 11.13           | •                   | 0.62          | 17511  | 195    |
| Threshold - lbs/day     | 54.0                   | 54.0            | 82.0                |               |        | 133    |
| conoid 185/ day         | 34.0                   |                 | ruction Emissions   |               |        |        |
| Pounds                  | 7.77                   | 11.13           |                     |               | 0.00   |        |
| Average                 | 7.77                   | 11.13           | 0.51                |               | 0.00   | 195.00 |
| Threshold - lbs/day     | 54.0                   | 54.0            | 82.0                |               | 0.00   | 155.00 |
| Till estiblu - ibs/ day | 34.0                   | 34.0            | 02.0                | 54.0          |        |        |
|                         |                        | Operational C   | Criteria Air Pollut | ants          |        |        |
| Unmitigated             | ROG                    | NOX             | Total PM10          | Total PM2.5   |        |        |
| Year                    | ROG                    | NOX             | Tons                | TOTAL FIVIZ.5 |        |        |
| Total                   | 1.16                   | 0.50            | 0.82                | 0.21          |        |        |
| Total                   | 1.10                   |                 | Use Emissions       | 0.21          |        |        |
| Total                   |                        | EXISTING        | <u> </u>            |               |        |        |
| 1000                    |                        | Net Annual Or   | nerational Emissio  | ons           |        |        |
| Tons/year               | 1.16                   | 0.50            |                     | 0.21          |        |        |
| Threshold - Tons/year   | 10.0                   | 10.0            | 15.0                |               |        |        |
|                         |                        |                 |                     |               |        |        |
|                         |                        | Average I       | Daily Emissions     |               |        |        |
| Pounds Per Day          | 6.38                   |                 | •                   | 1.16          |        |        |
| Threshold - lbs/day     | 54.0                   |                 |                     |               |        |        |
| . ,                     |                        |                 |                     |               |        |        |
| Category                |                        |                 | CO2e                |               |        |        |
|                         | Project                | Existing        | Project 2030        | Existing      | ,      |        |
| Area                    | 0.01                   |                 | -                   |               |        |        |
| Energy                  | 83.25                  |                 |                     |               | •      |        |
| Mobile                  | 827.21                 |                 |                     |               | •      |        |
| Waste                   | 4.66                   |                 |                     |               |        |        |
| Water                   | 63.23                  |                 |                     |               |        |        |
| TOTAL                   | 978.35                 | 0.00            | 0.00                | 0.00          |        |        |
| Net GHG Emissions       |                        | 978.35          |                     | 0.00          |        |        |
| Service Population      | 0.00                   |                 |                     |               |        |        |
| Per Capita Emissions    |                        | #DIV/0!         |                     | #DIV/0!       |        |        |
| <u> </u>                |                        |                 |                     |               |        |        |

0 units

0 pphh

CA DOF 2020 =

#### 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

#### 865 Embedded Way, San Jose

Santa Clara County, Annual

#### 1.0 Project Characteristics

#### 1.1 Land Usage

| Land Uses              | Size   | Metric   | Lot Acreage | Floor Surface Area | Population |
|------------------------|--------|----------|-------------|--------------------|------------|
| Research & Development | 121.85 | 1000sqft | 10.17       | 121,850.00         | 0          |
| Parking Lot            | 298.00 | Space    | 0.00        | 86,000.00          | 0          |

#### 1.2 Other Project Characteristics

| Urbanization               | Urban                 | Wind Speed (m/s)           | 2.2   | Precipitation Freq (Days)  | 58    |
|----------------------------|-----------------------|----------------------------|-------|----------------------------|-------|
| Climate Zone               | 4                     |                            |       | Operational Year           | 2024  |
| Utility Company            | San Jose Clean Energy |                            |       |                            |       |
| CO2 Intensity<br>(lb/MWhr) | 178                   | CH4 Intensity<br>(lb/MWhr) | 0.033 | N2O Intensity<br>(lb/MWhr) | 0.004 |

#### 1.3 User Entered Comments & Non-Default Data

Project Characteristics - SJCE 2020 Rate = 178

Land Use - Provided land uses - project description, construction worksheet, and traffic data

Construction Phase - Provided construction schedule

Off-road Equipment - Provided construction equip & hours

Grading - grading = 18,000-cy import

#### 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Trips and VMT - EMFAC2021 0 trip adjustment, build ext = 660 cement truck round trips, paving = 1,000-cy asphalt hauling

Vehicle Trips - Provided traffic trip gen with reductions

Vehicle Emission Factors - EMFAC2021 vehicle emission factors Santa Clara Co 2024

Fleet Mix - EMFAC2021 fleet mix Santa Clara Co 2024

Energy Use - San Jose Reach Codes - no natural gas

Water And Wastewater - Wastewater treatment 100% aerobic, no septic tanks or lagoons

Stationary Sources - Emergency Generators and Fire Pumps - one diesel powered fire pump, 472-hp, 50 hrs/year

Construction Off-road Equipment Mitigation - BMPs, Tier 4 interim mitigation

| Table Name              | Column Name                  | Default Value | New Value      |
|-------------------------|------------------------------|---------------|----------------|
| tblConstDustMitigation  | WaterUnpavedRoadVehicleSpeed | 0             | 15             |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 7.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 3.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 1.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 2.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 9.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 1.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 1.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 6.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 12.00          |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 1.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 4.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 6.00           |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Final   |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblConstEquipMitigation | Tier           | No Change | Tier 4 Interim |
|-------------------------|----------------|-----------|----------------|
| tblConstEquipMitigation | Tier           | No Change | Tier 4 Interim |
| tblConstEquipMitigation | Tier           | No Change | Tier 4 Interim |
| tblConstEquipMitigation | Tier           | No Change | Tier 4 Interim |
| tblConstEquipMitigation | Tier           | No Change | Tier 4 Interim |
| tblConstEquipMitigation |                | No Change | Tier 4 Interim |
| tblConstEquipMitigation | Tier           | No Change | Tier 4 Interim |
| tblConstEquipMitigation | Tier           | No Change | Tier 4 Interim |
| tblConstEquipMitigation | Tier           | No Change | Tier 4 Interim |
| tblConstructionPhase    | NumDays        | 20.00     | 13.00          |
| tblConstructionPhase    | NumDays        | 300.00    | 64.00          |
| tblConstructionPhase    | NumDays        | 20.00     | 11.00          |
| tblConstructionPhase    | NumDays        | 30.00     | 37.00          |
| tblConstructionPhase    | NumDays        | 20.00     | 26.00          |
| tblConstructionPhase    | NumDays        | 10.00     | 15.00          |
| tblConstructionPhase    | PhaseEndDate   | 8/20/2024 | 10/20/2023     |
| tblConstructionPhase    | PhaseEndDate   | 6/25/2024 | 10/6/2023      |
| tblConstructionPhase    | PhaseEndDate   | 3/7/2023  | 2/22/2023      |
| tblConstructionPhase    | PhaseEndDate   | 5/2/2023  | 3/30/2023      |
| tblConstructionPhase    | PhaseEndDate   | 7/23/2024 | 11/6/2023      |
| tblConstructionPhase    | PhaseEndDate   | 3/21/2023 | 2/28/2023      |
| tblConstructionPhase    | PhaseStartDate | 7/24/2024 | 10/4/2023      |
| tblConstructionPhase    | PhaseStartDate | 5/3/2023  | 7/11/2023      |
| tblConstructionPhase    | PhaseStartDate | 3/22/2023 | 2/8/2023       |
| tblConstructionPhase    | PhaseStartDate | 6/26/2024 | 10/2/2023      |
| tblConstructionPhase    | PhaseStartDate | 3/8/2023  | 2/8/2023       |
| tblEnergyUse            | NT24E          | 3.70      | 3.71           |
| tblEnergyUse            | NT24NG         | 6.67      | 0.00           |
| tblEnergyUse            | T24E           | 1.32      | 1.33           |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblEnergyUse | T24NG             | 19.51       | 0.00                                    |
|--------------|-------------------|-------------|-----------------------------------------|
| tblFleetMix  | HHD               | 6.4040e-003 | 7.3070e-003                             |
| tblFleetMix  | HHD               | 6.4040e-003 | 7.3070e-003                             |
| tblFleetMix  | LDA               | 0.57        | 0.53                                    |
| tblFleetMix  | LDA               | 0.57        | 0.53                                    |
| tblFleetMix  | LDT1              | 0.06        | 0.04                                    |
| tblFleetMix  | LDT1              | 0.06        | 0.04                                    |
| tblFleetMix  | LDT2              | 0.19        | 0.23                                    |
| tblFleetMix  | LDT2              | 0.19        | 0.23                                    |
| tblFleetMix  | LHD1              | 0.02        | 0.02                                    |
| tblFleetMix  | LHD1              | 0.02        | 0.02                                    |
| tblFleetMix  | LHD2              | 5.1020e-003 | 5.6410e-003                             |
| tblFleetMix  | LHD2              | 5.1020e-003 | 5.6410e-003                             |
| tblFleetMix  | MCY               | 0.02        | 0.02                                    |
| tblFleetMix  | MCY               | 0.02        | 0.02                                    |
| tblFleetMix  | MDV               | 0.12        | 0.13                                    |
| tblFleetMix  | MDV               | 0.12        | 0.13                                    |
| tblFleetMix  | МН                | 2.7760e-003 | 2.6660e-003                             |
| tblFleetMix  | МН                | 2.7760e-003 | 2.6660e-003                             |
| tblFleetMix  | MHD               | 7.9340e-003 | 9.3580e-003                             |
| tblFleetMix  | MHD               | 7.9340e-003 | 9.3580e-003                             |
| tblFleetMix  | OBUS              | 9.0000e-004 | 1.0550e-003                             |
| tblFleetMix  | OBUS              | 9.0000e-004 | 1.0550e-003                             |
| tblFleetMix  | SBUS              | 9.1400e-004 | 6.8200e-004                             |
| tblFleetMix  | SBUS              | 9.1400e-004 | 6.8200e-004                             |
| tblFleetMix  | UBUS              | 3.8000e-004 | 4.1700e-004                             |
| tblFleetMix  | UBUS              | 3.8000e-004 | 4.1700e-004                             |
| tblGrading   | MaterialImported  | 0.00        | 18,000.00                               |
| tblLandUse   | LandUseSquareFeet | 119,200.00  | 86,000.00                               |
| <b>-</b>     | 1                 |             | ••••••••••••••••••••••••••••••••••••••• |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblLandUse  tblOffRoadEquipment  tblOffRoadEquipment | LotAcreage  LotAcreage  LoadFactor  LoadFactor  CodfRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType | 2.80 2.68 0.31 0.37 0.31              | 10.17  0.00  0.31  0.37  0.31  Tractors/Loaders/Backhoes  Graders  Concrete/Industrial Saws  Tractors/Loaders/Backhoes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| tblOffRoadEquipment                                                                            | LotAcreage  LoadFactor  LoadFactor  LoadFactor  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType                                              | 0.31<br>0.37                          | 0.31  0.37  0.31  Tractors/Loaders/Backhoes  Graders  Concrete/Industrial Saws                                         |
| tblOffRoadEquipment                                                                                                 | LoadFactor  LoadFactor  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType                                                | 0.37                                  | 0.37  0.31  Tractors/Loaders/Backhoes  Graders  Concrete/Industrial Saws                                               |
| tblOffRoadEquipment                                                                                                                                           | LoadFactor  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType  OffRoadEquipmentType                                                            | , , , , , , , , , , , , , , , , , , , | 0.31 Tractors/Loaders/Backhoes Graders Concrete/Industrial Saws                                                        |
| tblOffRoadEquipment                                                                                                                                           | LoadFactor OffRoadEquipmentType OffRoadEquipmentType OffRoadEquipmentType OffRoadEquipmentType OffRoadEquipmentType                                                                 | 0.31                                  | Tractors/Loaders/Backhoes<br>Graders<br>Concrete/Industrial Saws                                                       |
| tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment                                                                                                                                                                                     | OffRoadEquipmentType OffRoadEquipmentType OffRoadEquipmentType OffRoadEquipmentType                                                                                                 |                                       | Tractors/Loaders/Backhoes<br>Graders<br>Concrete/Industrial Saws                                                       |
| tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment                                                                                                                                                                                     | OffRoadEquipmentType OffRoadEquipmentType OffRoadEquipmentType                                                                                                                      |                                       | Graders<br>Concrete/Industrial Saws                                                                                    |
| tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment                                                                                                                                                                                                                               | OffRoadEquipmentType OffRoadEquipmentType                                                                                                                                           |                                       | <u> </u>                                                                                                               |
| tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment                                                                                                                                                                                                                                                    | OffRoadEquipmentType                                                                                                                                                                |                                       |                                                                                                                        |
| tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment  tblOffRoadEquipment                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                               |                                       | <u> </u>                                                                                                               |
| tblOffRoadEquipment<br>tblOffRoadEquipment<br>tblOffRoadEquipment                                                                                                                                                                                                                                                                                          | OffRoadEquipmentType                                                                                                                                                                |                                       | Excavators                                                                                                             |
| tblOffRoadEquipment<br>tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                       | Aerial Lifts                                                                                                           |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentType                                                                                                                                                                |                                       | Tractors/Loaders/Backhoes                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                            | OffRoadEquipmentType                                                                                                                                                                |                                       | Aerial Lifts                                                                                                           |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 1.00                                  | 0.00                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                            | OffRoadEquipmentUnitAmount                                                                                                                                                          | 1.00                                  | 0.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 3.00                                  | 2.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 2.00                                  | 3.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 3.00                                  | 2.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 1.00                                  | 0.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 1.00                                  | 4.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 2.00                                  | 1.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 2.00                                  | 1.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 2.00                                  | 1.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 2.00                                  | 1.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 1.00                                  | 3.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 3.00                                  | 2.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          | 2.00                                  | 0.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                     | 2.00                                  | 3.00                                                                                                                   |
| tblOffRoadEquipment                                                                                                                                                                                                                                                                                                                                        | OffRoadEquipmentUnitAmount                                                                                                                                                          |                                       | 5.00                                                                                                                   |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblOffRoadEquipment             | OffRoadEquipmentUnitAmount | 1.00        | 4.00        |
|---------------------------------|----------------------------|-------------|-------------|
| tblOffRoadEquipment             | UsageHours                 | 6.00        | 0.00        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 0.00        |
| tblOffRoadEquipment             | UsageHours                 | 7.00        | 4.70        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 2.50        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 3.90        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 6.00        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 0.00        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 4.40        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 1.20        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 3.10        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 2.50        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 1.60        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 1.90        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 1.20        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 0.00        |
| tblOffRoadEquipment             | UsageHours                 | 7.00        | 9.00        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 2.40        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 1.20        |
| tblOffRoadEquipment             | UsageHours                 | 8.00        | 2.80        |
| tblProjectCharacteristics       | CO2IntensityFactor         | 807.98      | 178         |
| tblStationaryGeneratorsPumpsEF  | CH4_EF                     | 0.07        | 0.07        |
| tblStationaryGeneratorsPumpsEF  | ROG_EF                     | 2.2480e-003 | 2.2477e-003 |
| tblStationaryGeneratorsPumpsUse | HorsePowerValue            | 0.00        | 472.00      |
| tblStationaryGeneratorsPumpsUse | HoursPerYear               | 0.00        | 50.00       |
| tblStationaryGeneratorsPumpsUse | NumberOfEquipment          | 0.00        | 1.00        |
| tblTripsAndVMT                  | HaulingTripNumber          | 2,250.00    | 0.00        |
| tblTripsAndVMT                  | VendorTripNumber           | 34.00       | 0.00        |
| tblTripsAndVMT                  | WorkerTripNumber           | 10.00       | 0.00        |
| <b>-</b>                        | 1                          |             | •           |

#### 865 Embedded Way, San Jose - Santa Clara County, Annual

|                | wioder Adjustille III Tactors for Gasonii | .og a., . o o.o .o | 1 101 tilo 07 ti 2 10111010 1 talo 1 |
|----------------|-------------------------------------------|--------------------|--------------------------------------|
| tblTripsAndVMT | WorkerTripNumber                          | 23.00              | 0.00                                 |
| tblTripsAndVMT | WorkerTripNumber                          | 40.00              | 0.00                                 |
| tblTripsAndVMT | WorkerTripNumber                          | 75.00              | 0.00                                 |
| tblTripsAndVMT | WorkerTripNumber                          | 10.00              | 0.00                                 |
| tblTripsAndVMT | WorkerTripNumber                          | 15.00              | 0.00                                 |
| tblTripsAndVMT | WorkerTripNumber                          | 10.00              | 0.00                                 |
| tblVehicleEF   | HHD                                       | 0.02               | 0.23                                 |
| tblVehicleEF   | HHD                                       | 0.05               | 0.12                                 |
| tblVehicleEF   | HHD                                       | 6.33               | 5.20                                 |
| tblVehicleEF   | HHD                                       | 0.40               | 0.77                                 |
| tblVehicleEF   | HHD                                       | 5.9420e-003        | 6.2600e-004                          |
| tblVehicleEF   | HHD                                       | 1,048.88           | 832.32                               |
| tblVehicleEF   | HHD                                       | 1,413.90           | 1,617.13                             |
| tblVehicleEF   | HHD                                       | 0.05               | 0.02                                 |
| tblVehicleEF   | HHD                                       | 0.17               | 0.13                                 |
| tblVehicleEF   | HHD                                       | 0.22               | 0.26                                 |
| tblVehicleEF   | HHD                                       | 7.0000e-006        | 1.9000e-005                          |
| tblVehicleEF   | HHD                                       | 5.39               | 4.08                                 |
| tblVehicleEF   | HHD                                       | 2.69               | 1.85                                 |
| tblVehicleEF   | HHD                                       | 2.32               | 2.73                                 |
| tblVehicleEF   | HHD                                       | 2.5820e-003        | 2.1820e-003                          |
| tblVehicleEF   | HHD                                       | 0.06               | 0.08                                 |
| tblVehicleEF   | HHD                                       | 0.04               | 0.04                                 |
| tblVehicleEF   | HHD                                       | 0.02               | 0.03                                 |
| tblVehicleEF   | HHD                                       | 2.4710e-003        | 2.0820e-003                          |
| tblVehicleEF   | HHD                                       | 0.03               | 0.03                                 |
| tblVehicleEF   | HHD                                       | 8.8830e-003        | 8.7810e-003                          |
| tblVehicleEF   | HHD                                       | 0.02               | 0.02                                 |
| tblVehicleEF   | HHD                                       | 2.0000e-006        | 1.9600e-004                          |

#### 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | HHD | 9.3000e-005 | 5.8000e-005 |
|--------------|-----|-------------|-------------|
| tblVehicleEF | HHD | 0.43        | 0.33        |
| tblVehicleEF | HHD | 1.0000e-006 | 0.00        |
| tblVehicleEF | HHD | 0.03        | 0.02        |
| tblVehicleEF | ННО | 4.1000e-005 | 5.2500e-004 |
| tblVehicleEF | ННО | 2.0000e-006 | 0.00        |
| tblVehicleEF | ННО | 9.7610e-003 | 7.2800e-003 |
| tblVehicleEF | HHD | 0.01        | 0.01        |
| tblVehicleEF | HHD | 2.0000e-006 | 1.9600e-004 |
| tblVehicleEF | HHD | 9.3000e-005 | 5.8000e-005 |
| tblVehicleEF | HHD | 0.49        | 0.59        |
| tblVehicleEF | HHD | 1.0000e-006 | 0.00        |
| tblVehicleEF | HHD | 0.08        | 0.14        |
| tblVehicleEF | HHD | 4.1000e-005 | 5.2500e-004 |
| tblVehicleEF | HHD | 3.0000e-006 | 0.00        |
| tblVehicleEF | LDA | 1.7200e-003 | 2.0530e-003 |
| tblVehicleEF | LDA | 0.04        | 0.06        |
| tblVehicleEF | LDA | 0.52        | 0.65        |
| tblVehicleEF | LDA | 2.08        | 2.89        |
| tblVehicleEF | LDA | 234.59      | 245.08      |
| tblVehicleEF | LDA | 49.79       | 63.51       |
| tblVehicleEF | LDA | 3.9560e-003 | 4.1620e-003 |
| tblVehicleEF | LDA | 0.02        | 0.03        |
| tblVehicleEF | LDA | 0.03        | 0.04        |
| tblVehicleEF | LDA | 0.16        | 0.23        |
| tblVehicleEF | LDA | 0.04        | 7.1680e-003 |
| tblVehicleEF | LDA | 1.2900e-003 | 1.1710e-003 |
| tblVehicleEF | LDA | 1.6800e-003 | 1.9100e-003 |
| tblVehicleEF | LDA | 0.02        | 2.5090e-003 |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | LDA  | 1.1880e-003 | 1.0780e-003 |
|--------------|------|-------------|-------------|
| tblVehicleEF | LDA  | 1.5440e-003 | 1.7560e-003 |
| tblVehicleEF | LDA  | 0.04        | 0.27        |
| tblVehicleEF | LDA  | 0.08        | 0.08        |
| tblVehicleEF | LDA  | 0.03        | 0.00        |
| tblVehicleEF | LDA  | 6.4090e-003 | 7.8860e-003 |
| tblVehicleEF | LDA  | 0.03        | 0.20        |
| tblVehicleEF | LDA  | 0.19        | 0.30        |
| tblVehicleEF | LDA  | 2.3210e-003 | 2.4230e-003 |
| tblVehicleEF | LDA  | 4.9300e-004 | 6.2800e-004 |
| tblVehicleEF | LDA  | 0.04        | 0.27        |
| tblVehicleEF | LDA  | 0.08        | 0.08        |
| tblVehicleEF | LDA  | 0.03        | 0.00        |
| tblVehicleEF | LDA  | 9.3170e-003 | 0.01        |
| tblVehicleEF | LDA  | 0.03        | 0.20        |
| tblVehicleEF | LDA  | 0.21        | 0.32        |
| tblVehicleEF | LDT1 | 3.6010e-003 | 6.2220e-003 |
| tblVehicleEF | LDT1 | 0.06        | 0.10        |
| tblVehicleEF | LDT1 | 0.85        | 1.42        |
| tblVehicleEF | LDT1 | 2.26        | 5.22        |
| tblVehicleEF | LDT1 | 280.86      | 325.38      |
| tblVehicleEF | LDT1 | 60.30       | 85.98       |
| tblVehicleEF | LDT1 | 5.8110e-003 | 9.3750e-003 |
| tblVehicleEF | LDT1 | 0.03        | 0.04        |
| tblVehicleEF | LDT1 | 0.07        | 0.13        |
| tblVehicleEF | LDT1 | 0.21        | 0.38        |
| tblVehicleEF | LDT1 | 0.04        | 9.2260e-003 |
| tblVehicleEF | LDT1 | 1.6380e-003 | 1.9270e-003 |
| tblVehicleEF | LDT1 | 2.1080e-003 | 2.8980e-003 |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | LDT1 | 0.02        | 3.2290e-003 |
|--------------|------|-------------|-------------|
| tblVehicleEF | LDT1 | 1.5070e-003 | 1.7740e-003 |
| tblVehicleEF | LDT1 | 1.9380e-003 | 2.6650e-003 |
| tblVehicleEF | LDT1 | 0.07        | 0.60        |
| tblVehicleEF | LDT1 | 0.15        | 0.16        |
| tblVehicleEF | LDT1 | 0.06        | 0.00        |
| tblVehicleEF | LDT1 | 0.02        | 0.03        |
| tblVehicleEF | LDT1 | 0.08        | 0.47        |
| tblVehicleEF | LDT1 | 0.27        | 0.54        |
| tblVehicleEF | LDT1 | 2.7790e-003 | 3.2170e-003 |
| tblVehicleEF | LDT1 | 5.9700e-004 | 8.5000e-004 |
| tblVehicleEF | LDT1 | 0.07        | 0.60        |
| tblVehicleEF | LDT1 | 0.15        | 0.16        |
| tblVehicleEF | LDT1 | 0.06        | 0.00        |
| tblVehicleEF | LDT1 | 0.02        | 0.04        |
| tblVehicleEF | LDT1 | 0.08        | 0.47        |
| tblVehicleEF | LDT1 | 0.30        | 0.59        |
| tblVehicleEF | LDT2 | 2.9320e-003 | 2.8180e-003 |
| tblVehicleEF | LDT2 | 0.06        | 0.08        |
| tblVehicleEF | LDT2 | 0.73        | 0.83        |
| tblVehicleEF | LDT2 | 2.69        | 3.62        |
| tblVehicleEF | LDT2 | 301.75      | 336.52      |
| tblVehicleEF | LDT2 | 65.36       | 86.38       |
| tblVehicleEF | LDT2 | 5.6680e-003 | 6.0160e-003 |
| tblVehicleEF | LDT2 | 0.03        | 0.04        |
| tblVehicleEF | LDT2 | 0.06        | 0.07        |
| tblVehicleEF | LDT2 | 0.25        | 0.33        |
| tblVehicleEF | LDT2 | 0.04        | 8.8660e-003 |
| tblVehicleEF | LDT2 | 1.3400e-003 | 1.3330e-003 |

#### 865 Embedded Way, San Jose - Santa Clara County, Annual

|              | dei Aujustinent i actors for Gasoni |             | it for the SALL Vehicle Rule N |
|--------------|-------------------------------------|-------------|--------------------------------|
| tblVehicleEF | LDT2                                | 1.7010e-003 | 2.1080e-003                    |
| tblVehicleEF | LDT2                                | 0.02        | 3.1030e-003                    |
| tblVehicleEF | LDT2                                | 1.2340e-003 | 1.2260e-003                    |
| tblVehicleEF | LDT2                                | 1.5640e-003 | 1.9380e-003                    |
| tblVehicleEF | LDT2                                | 0.06        | 0.29                           |
| tblVehicleEF | LDT2                                | 0.12        | 0.08                           |
| tblVehicleEF | LDT2                                | 0.06        | 0.00                           |
| tblVehicleEF | LDT2                                | 0.01        | 0.01                           |
| tblVehicleEF | LDT2                                | 0.06        | 0.21                           |
| tblVehicleEF | LDT2                                | 0.28        | 0.38                           |
| tblVehicleEF | LDT2                                | 2.9850e-003 | 3.3260e-003                    |
| tblVehicleEF | LDT2                                | 6.4700e-004 | 8.5400e-004                    |
| tblVehicleEF | LDT2                                | 0.06        | 0.29                           |
| tblVehicleEF | LDT2                                | 0.12        | 0.08                           |
| tblVehicleEF | LDT2                                | 0.06        | 0.00                           |
| tblVehicleEF | LDT2                                | 0.02        | 0.02                           |
| tblVehicleEF | LDT2                                | 0.06        | 0.21                           |
| tblVehicleEF | LDT2                                | 0.31        | 0.42                           |
| tblVehicleEF | LHD1                                | 4.9880e-003 | 5.3690e-003                    |
| tblVehicleEF | LHD1                                | 7.8580e-003 | 8.1950e-003                    |
| tblVehicleEF | LHD1                                | 0.01        | 0.02                           |
| tblVehicleEF | LHD1                                | 0.18        | 0.20                           |
| tblVehicleEF | LHD1                                | 0.71        | 0.90                           |
| tblVehicleEF | LHD1                                | 1.05        | 2.16                           |
| tblVehicleEF | LHD1                                | 8.86        | 8.72                           |
| tblVehicleEF | LHD1                                | 779.34      | 782.62                         |
| tblVehicleEF | LHD1                                | 11.55       | 17.84                          |
| tblVehicleEF | LHD1                                | 7.4200e-004 | 6.4000e-004                    |
| tblVehicleEF | LHD1                                | 0.04        | 0.04                           |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | LHD1 | 0.02        | 0.04        |
|--------------|------|-------------|-------------|
| tblVehicleEF | LHD1 | 0.06        | 0.05        |
| tblVehicleEF | LHD1 | 0.65        | 0.66        |
| tblVehicleEF | LHD1 | 0.30        | 0.44        |
| tblVehicleEF | LHD1 | 8.4200e-004 | 6.8100e-004 |
| tblVehicleEF | LHD1 | 0.08        | 0.08        |
| tblVehicleEF | LHD1 | 9.7790e-003 | 9.4140e-003 |
| tblVehicleEF | LHD1 | 9.6230e-003 | 0.01        |
| tblVehicleEF | LHD1 | 2.4700e-004 | 2.2700e-004 |
| tblVehicleEF | LHD1 | 8.0500e-004 | 6.5100e-004 |
| tblVehicleEF | LHD1 | 0.03        | 0.03        |
| tblVehicleEF | LHD1 | 2.4450e-003 | 2.3540e-003 |
| tblVehicleEF | LHD1 | 9.1590e-003 | 0.01        |
| tblVehicleEF | LHD1 | 2.2800e-004 | 2.0900e-004 |
| tblVehicleEF | LHD1 | 1.9120e-003 | 0.13        |
| tblVehicleEF | LHD1 | 0.07        | 0.03        |
| tblVehicleEF | LHD1 | 0.02        | 0.02        |
| tblVehicleEF | LHD1 | 9.8500e-004 | 0.00        |
| tblVehicleEF | LHD1 | 0.09        | 0.09        |
| tblVehicleEF | LHD1 | 0.20        | 0.18        |
| tblVehicleEF | LHD1 | 0.07        | 0.11        |
| tblVehicleEF | LHD1 | 8.6000e-005 | 8.5000e-005 |
| tblVehicleEF | LHD1 | 7.6080e-003 | 7.6450e-003 |
| tblVehicleEF | LHD1 | 1.1400e-004 | 1.7600e-004 |
| tblVehicleEF | LHD1 | 1.9120e-003 | 0.13        |
| tblVehicleEF | LHD1 | 0.07        | 0.03        |
| tblVehicleEF | LHD1 | 0.03        | 0.03        |
| tblVehicleEF | LHD1 | 9.8500e-004 | 0.00        |
| tblVehicleEF | LHD1 | 0.11        | 0.11        |
| <b>-</b>     | h    |             |             |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | LHD1 | 0.20        | 0.18        |
|--------------|------|-------------|-------------|
| tblVehicleEF | LHD1 | 0.08        | 0.12        |
| tblVehicleEF | LHD2 | 3.0380e-003 | 3.1580e-003 |
| tblVehicleEF | LHD2 | 6.6540e-003 | 6.9670e-003 |
| tblVehicleEF | LHD2 | 7.7290e-003 | 0.01        |
| tblVehicleEF | LHD2 | 0.14        | 0.14        |
| tblVehicleEF | LHD2 | 0.59        | 0.57        |
| tblVehicleEF | LHD2 | 0.60        | 1.22        |
| tblVehicleEF | LHD2 | 13.88       | 13.77       |
| tblVehicleEF | LHD2 | 754.92      | 827.31      |
| tblVehicleEF | LHD2 | 7.59        | 9.92        |
| tblVehicleEF | LHD2 | 1.7350e-003 | 1.6800e-003 |
| tblVehicleEF | LHD2 | 0.07        | 0.08        |
| tblVehicleEF | LHD2 | 0.01        | 0.02        |
| tblVehicleEF | LHD2 | 0.09        | 0.09        |
| tblVehicleEF | LHD2 | 0.77        | 0.90        |
| tblVehicleEF | LHD2 | 0.17        | 0.24        |
| tblVehicleEF | LHD2 | 1.4370e-003 | 1.3710e-003 |
| tblVehicleEF | LHD2 | 0.09        | 0.09        |
| tblVehicleEF | LHD2 | 0.01        | 0.01        |
| tblVehicleEF | LHD2 | 0.02        | 0.02        |
| tblVehicleEF | LHD2 | 1.2700e-004 | 1.0100e-004 |
| tblVehicleEF | LHD2 | 1.3750e-003 | 1.3110e-003 |
| tblVehicleEF | LHD2 | 0.04        | 0.03        |
| tblVehicleEF | LHD2 | 2.6920e-003 | 2.6640e-003 |
| tblVehicleEF | LHD2 | 0.01        | 0.02        |
| tblVehicleEF | LHD2 | 1.1700e-004 | 9.3000e-005 |
| tblVehicleEF | LHD2 | 9.8500e-004 | 0.07        |
| tblVehicleEF | LHD2 | 0.04        | 0.02        |
| •            |      | ā           |             |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | LHD2 | 0.02        | 0.02        |
|--------------|------|-------------|-------------|
|              |      |             |             |
| tblVehicleEF | LHD2 | 5.1400e-004 | 0.00        |
| tblVehicleEF | LHD2 | 0.11        | 0.12        |
| tblVehicleEF | LHD2 | 0.09        | 0.09        |
| tblVehicleEF | LHD2 | 0.04        | 0.06        |
| tblVehicleEF | LHD2 | 1.3300e-004 | 1.3200e-004 |
| tblVehicleEF | LHD2 | 7.2890e-003 | 7.9720e-003 |
| tblVehicleEF | LHD2 | 7.5000e-005 | 9.8000e-005 |
| tblVehicleEF | LHD2 | 9.8500e-004 | 0.07        |
| tblVehicleEF | LHD2 | 0.04        | 0.02        |
| tblVehicleEF | LHD2 | 0.02        | 0.02        |
| tblVehicleEF | LHD2 | 5.1400e-004 | 0.00        |
| tblVehicleEF | LHD2 | 0.13        | 0.13        |
| tblVehicleEF | LHD2 | 0.09        | 0.09        |
| tblVehicleEF | LHD2 | 0.04        | 0.07        |
| tblVehicleEF | MCY  | 0.33        | 0.16        |
| tblVehicleEF | MCY  | 0.25        | 0.18        |
| tblVehicleEF | MCY  | 18.60       | 12.67       |
| tblVehicleEF | MCY  | 9.06        | 8.00        |
| tblVehicleEF | MCY  | 210.08      | 187.74      |
| tblVehicleEF | MCY  | 60.71       | 48.38       |
| tblVehicleEF | MCY  | 0.07        | 0.04        |
| tblVehicleEF | MCY  | 0.02        | 8.0200e-003 |
| tblVehicleEF | MCY  | 1.15        | 0.57        |
| tblVehicleEF | MCY  | 0.27        | 0.14        |
| tblVehicleEF | MCY  | 0.01        | 0.01        |
| tblVehicleEF | MCY  | 1.9970e-003 | 1.9020e-003 |
| tblVehicleEF | MCY  | 2.9300e-003 | 3.4560e-003 |
| tblVehicleEF | MCY  | 5.0400e-003 | 4.2000e-003 |
| <b></b>      | ā    |             |             |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | MCY | 1.8650e-003 | 1.7790e-003 |
|--------------|-----|-------------|-------------|
| tblVehicleEF | MCY | 2.7520e-003 | 3.2480e-003 |
| tblVehicleEF | MCY | 0.90        | 3.90        |
| tblVehicleEF | MCY | 0.68        | 3.56        |
| tblVehicleEF | MCY | 0.49        | 0.00        |
| tblVehicleEF | MCY | 2.19        | 1.06        |
| tblVehicleEF | MCY | 0.53        | 3.75        |
| tblVehicleEF | MCY | 1.93        | 1.35        |
| tblVehicleEF | MCY | 2.0790e-003 | 1.8560e-003 |
| tblVehicleEF | MCY | 6.0100e-004 | 4.7800e-004 |
| tblVehicleEF | MCY | 0.90        | 0.09        |
| tblVehicleEF | MCY | 0.68        | 3.56        |
| tblVehicleEF | MCY | 0.49        | 0.00        |
| tblVehicleEF | MCY | 2.72        | 1.28        |
| tblVehicleEF | MCY | 0.53        | 3.75        |
| tblVehicleEF | MCY | 2.10        | 1.46        |
| tblVehicleEF | MDV | 3.4000e-003 | 3.7500e-003 |
| tblVehicleEF | MDV | 0.07        | 0.10        |
| tblVehicleEF | MDV | 0.78        | 0.94        |
| tblVehicleEF | MDV | 2.95        | 3.90        |
| tblVehicleEF | MDV | 364.87      | 405.81      |
| tblVehicleEF | MDV | 77.92       | 103.32      |
| tblVehicleEF | MDV | 7.5920e-003 | 8.3410e-003 |
| tblVehicleEF | MDV | 0.03        | 0.04        |
| tblVehicleEF | MDV | 0.07        | 0.10        |
| tblVehicleEF | MDV | 0.29        | 0.41        |
| tblVehicleEF | MDV | 0.04        | 9.0000e-003 |
| tblVehicleEF | MDV | 1.4300e-003 | 1.3730e-003 |
| tblVehicleEF | MDV | 1.8100e-003 | 2.1610e-003 |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | MDV | 0.02        | 3.1500e-003 |
|--------------|-----|-------------|-------------|
| tblVehicleEF | MDV | 1.3190e-003 | 1.2660e-003 |
| tblVehicleEF | MDV | 1.6640e-003 | 1.9870e-003 |
| tblVehicleEF | MDV | 0.07        | 0.35        |
| tblVehicleEF | MDV | 0.13        | 0.09        |
| tblVehicleEF | MDV | 0.07        | 0.00        |
| tblVehicleEF | MDV | 0.01        | 0.02        |
| tblVehicleEF | MDV | 0.06        | 0.27        |
| tblVehicleEF | MDV | 0.34        | 0.49        |
| tblVehicleEF | MDV | 3.6060e-003 | 4.0090e-003 |
| tblVehicleEF | MDV | 7.7100e-004 | 1.0210e-003 |
| tblVehicleEF | MDV | 0.07        | 0.35        |
| tblVehicleEF | MDV | 0.13        | 0.09        |
| tblVehicleEF | MDV | 0.07        | 0.00        |
| tblVehicleEF | MDV | 0.02        | 0.02        |
| tblVehicleEF | MDV | 0.06        | 0.27        |
| tblVehicleEF | MDV | 0.38        | 0.54        |
| tblVehicleEF | МН  | 9.5570e-003 | 0.01        |
| tblVehicleEF | МН  | 0.02        | 0.03        |
| tblVehicleEF | МН  | 0.93        | 1.29        |
| tblVehicleEF | МН  | 2.03        | 2.49        |
| tblVehicleEF | МН  | 1,501.42    | 1,686.59    |
| tblVehicleEF | MH  | 18.14       | 22.55       |
| tblVehicleEF | МН  | 0.06        | 0.07        |
| tblVehicleEF | МН  | 0.03        | 0.03        |
| tblVehicleEF | МН  | 1.31        | 1.54        |
| tblVehicleEF | МН  | 0.24        | 0.30        |
| tblVehicleEF | МН  | 0.13        | 0.04        |
| tblVehicleEF | МН  | 0.01        | 0.01        |

#### 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | MH  | 0.02        | 0.03                   |
|--------------|-----|-------------|------------------------|
|              |     |             |                        |
| tblVehicleEF | MH  | 2.6100e-004 | 3.1300e-004            |
| tblVehicleEF | MH  | 0.06        | 0.02                   |
| tblVehicleEF | МН  | 3.2790e-003 | 3.3010e-003            |
| tblVehicleEF | МН  | 0.02        | 0.03                   |
| tblVehicleEF | MH  | 2.4000e-004 | 2.8800e-004            |
| tblVehicleEF | MH  | 0.64        | 32.73                  |
| tblVehicleEF | MH  | 0.05        | 8.70                   |
| tblVehicleEF | MH  | 0.23        | 0.00                   |
| tblVehicleEF | MH  | 0.06        | 0.08                   |
| tblVehicleEF | MH  | 0.01        | 0.20                   |
| tblVehicleEF | MH  | 0.09        | 0.11                   |
| tblVehicleEF | МН  | 0.01        | 0.02                   |
| tblVehicleEF | МН  | 1.7900e-004 | 2.2300e-004            |
| tblVehicleEF | MH  | 0.64        | 32.73                  |
| tblVehicleEF | MH  | 0.05        | 8.70                   |
| tblVehicleEF | MH  | 0.23        | 0.00                   |
| tblVehicleEF | MH  | 0.08        | 0.11                   |
| tblVehicleEF | MH  | 0.01        | 0.20                   |
| tblVehicleEF | MH  | 0.10        | 0.12                   |
| tblVehicleEF | MHD | 3.5790e-003 | 0.01                   |
| tblVehicleEF | MHD | 1.6940e-003 | 9.6580e-003            |
| tblVehicleEF | MHD | 9.1320e-003 | 8.7730e-003            |
| tblVehicleEF | MHD | 0.39        | 5.7750C-5005<br>5 0.67 |
| tblVehicleEF |     |             | 0.07                   |
|              | MHD | 0.23        |                        |
| tblVehicleEF | MHD | 1.07        | 1.07                   |
| tblVehicleEF | MHD | 72.08       | 160.26                 |
| tblVehicleEF | MHD | 1,080.76    | 1,229.18               |
| tblVehicleEF | MHD | 9.15        | 8.53                   |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | MHD | 0.01        | 0.02        |
|--------------|-----|-------------|-------------|
| tblVehicleEF | MHD | 0.14        | 0.16        |
| tblVehicleEF | MHD | 7.2440e-003 | 6.0320e-003 |
| tblVehicleEF | MHD | 0.41        | 0.89        |
| tblVehicleEF | MHD | 1.45        | 1.11        |
| tblVehicleEF | MHD | 1.70        | 1.41        |
| tblVehicleEF | MHD | 3.6900e-004 | 2.1280e-003 |
| tblVehicleEF | MHD | 0.13        | 0.05        |
| tblVehicleEF | MHD | 7.0230e-003 | 0.01        |
| tblVehicleEF | MHD | 1.1500e-004 | 1.0700e-004 |
| tblVehicleEF | MHD | 3.5300e-004 | 2.0350e-003 |
| tblVehicleEF | MHD | 0.06        | 0.02        |
| tblVehicleEF | MHD | 6.7130e-003 | 0.01        |
| tblVehicleEF | MHD | 1.0600e-004 | 9.8000e-005 |
| tblVehicleEF | MHD | 3.8300e-004 | 0.03        |
| tblVehicleEF | MHD | 0.02        | 6.2600e-003 |
| tblVehicleEF | MHD | 0.02        | 0.03        |
| tblVehicleEF | MHD | 1.9800e-004 | 0.00        |
| tblVehicleEF | MHD | 0.02        | 0.04        |
| tblVehicleEF | MHD | 0.02        | 0.05        |
| tblVehicleEF | MHD | 0.05        | 0.05        |
| tblVehicleEF | MHD | 6.8400e-004 | 1.4900e-003 |
| tblVehicleEF | MHD | 0.01        | 0.01        |
| tblVehicleEF | MHD | 9.1000e-005 | 8.4000e-005 |
| tblVehicleEF | MHD | 3.8300e-004 | 0.03        |
| tblVehicleEF | MHD | 0.02        | 6.2600e-003 |
| tblVehicleEF | MHD | 0.02        | 0.04        |
| tblVehicleEF | MHD | 1.9800e-004 | 0.00        |
| tblVehicleEF | MHD | 0.02        | 0.05        |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | MHD  | 0.02        | 0.05        |
|--------------|------|-------------|-------------|
| tblVehicleEF | MHD  | 0.05        | 0.05        |
| tblVehicleEF | OBUS | 7.0640e-003 | 7.4580e-003 |
| tblVehicleEF | OBUS | 3.6240e-003 | 9.2750e-003 |
| tblVehicleEF | OBUS | 0.02        | 0.02        |
| tblVehicleEF | OBUS | 0.58        | 0.51        |
| tblVehicleEF | OBUS | 0.43        | 0.49        |
| tblVehicleEF | OBUS | 1.84        | 1.96        |
| tblVehicleEF | OBUS | 92.66       | 85.71       |
| tblVehicleEF | OBUS | 1,326.08    | 1,388.86    |
| tblVehicleEF | OBUS | 15.18       | 15.49       |
| tblVehicleEF | OBUS | 0.01        | 0.01        |
| tblVehicleEF | OBUS | 0.13        | 0.16        |
| tblVehicleEF | OBUS | 0.02        | 0.02        |
| tblVehicleEF | OBUS | 0.38        | 0.37        |
| tblVehicleEF | OBUS | 1.47        | 1.01        |
| tblVehicleEF | OBUS | 1.09        | 0.98        |
| tblVehicleEF | OBUS | 1.2200e-004 | 4.2300e-004 |
| tblVehicleEF | OBUS | 0.13        | 0.05        |
| tblVehicleEF | OBUS | 7.3930e-003 | 0.02        |
| tblVehicleEF | OBUS | 1.4500e-004 | 1.3400e-004 |
| tblVehicleEF | OBUS | 1.1700e-004 | 4.0500e-004 |
| tblVehicleEF | OBUS | 0.06        | 0.02        |
| tblVehicleEF | OBUS | 7.0600e-003 | 0.02        |
| tblVehicleEF | OBUS | 1.3300e-004 | 1.2400e-004 |
| tblVehicleEF | OBUS | 1.0900e-003 | 0.07        |
| tblVehicleEF | OBUS | 0.02        | 0.02        |
| tblVehicleEF | OBUS | 0.05        | 0.04        |
| tblVehicleEF | OBUS | 4.8500e-004 | 0.00        |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | OBUS | 0.02        | 0.05        |
|--------------|------|-------------|-------------|
| tblVehicleEF | OBUS | 0.04        | 0.08        |
| tblVehicleEF | OBUS | 0.09        | 0.09        |
| tblVehicleEF | OBUS | 8.8000e-004 | 8.1100e-004 |
| tblVehicleEF | OBUS | 0.01        | 0.01        |
| tblVehicleEF | OBUS | 1.5000e-004 | 1.5300e-004 |
| tblVehicleEF | OBUS | 1.0900e-003 | 0.07        |
| tblVehicleEF | OBUS | 0.02        | 0.02        |
| tblVehicleEF | OBUS | 0.06        | 0.05        |
| tblVehicleEF | OBUS | 4.8500e-004 | 0.00        |
| tblVehicleEF | OBUS | 0.03        | 0.06        |
| tblVehicleEF | OBUS | 0.04        | 0.08        |
| tblVehicleEF | OBUS | 0.10        | 0.10        |
| tblVehicleEF | SBUS | 0.05        | 0.07        |
| tblVehicleEF | SBUS | 6.0180e-003 | 0.09        |
| tblVehicleEF | SBUS | 4.9720e-003 | 4.8000e-003 |
| tblVehicleEF | SBUS | 2.27        | 1.65        |
| tblVehicleEF | SBUS | 0.49        | 0.88        |
| tblVehicleEF | SBUS | 0.72        | 0.66        |
| tblVehicleEF | SBUS | 346.78      | 189.38      |
| tblVehicleEF | SBUS | 1,049.23    | 1,027.72    |
| tblVehicleEF | SBUS | 4.12        | 3.73        |
| tblVehicleEF | SBUS | 0.05        | 0.03        |
| tblVehicleEF | SBUS | 0.13        | 0.13        |
| tblVehicleEF | SBUS | 4.7550e-003 | 4.2250e-003 |
| tblVehicleEF | SBUS | 3.44        | 1.39        |
| tblVehicleEF | SBUS | 4.65        | 2.57        |
| tblVehicleEF | SBUS | 0.86        | 0.48        |
| tblVehicleEF | SBUS | 3.6120e-003 | 1.3090e-003 |
| •            |      | 5           |             |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| tblVehicleEF | SBUS | 0.74        | 0.04        |
|--------------|------|-------------|-------------|
| tblVehicleEF | SBUS | 0.01        | 0.01        |
| tblVehicleEF | SBUS | 0.03        | 0.01        |
| tblVehicleEF | SBUS | 4.8000e-005 | 4.0000e-005 |
| tblVehicleEF | SBUS | 3.4560e-003 | 1.2520e-003 |
| tblVehicleEF | SBUS | 0.32        | 0.02        |
| tblVehicleEF | SBUS | 2.7190e-003 | 2.6500e-003 |
| tblVehicleEF | SBUS | 0.03        | 0.01        |
| tblVehicleEF | SBUS | 4.4000e-005 | 3.6000e-005 |
| tblVehicleEF | SBUS | 5.6700e-004 | 0.03        |
| tblVehicleEF | SBUS | 5.5090e-003 | 7.3010e-003 |
| tblVehicleEF | SBUS | 0.25        | 0.18        |
| tblVehicleEF | SBUS | 2.4700e-004 | 0.00        |
| tblVehicleEF | SBUS | 0.08        | 0.06        |
| tblVehicleEF | SBUS | 0.01        | 0.02        |
| tblVehicleEF | SBUS | 0.03        | 0.03        |
| tblVehicleEF | SBUS | 3.3010e-003 | 1.7230e-003 |
| tblVehicleEF | SBUS | 0.01        | 9.5530e-003 |
| tblVehicleEF | SBUS | 4.1000e-005 | 3.7000e-005 |
| tblVehicleEF | SBUS | 5.6700e-004 | 0.03        |
| tblVehicleEF | SBUS | 5.5090e-003 | 7.3010e-003 |
| tblVehicleEF | SBUS | 0.36        | 0.30        |
| tblVehicleEF | SBUS | 2.4700e-004 | 0.00        |
| tblVehicleEF | SBUS | 0.10        | 0.16        |
| tblVehicleEF | SBUS | 0.01        | 0.02        |
| tblVehicleEF | SBUS | 0.03        | 0.03        |
| tblVehicleEF | UBUS | 1.35        | 0.35        |
| tblVehicleEF | UBUS | 1.5380e-003 | 3.7340e-003 |
| tblVehicleEF | UBUS | 10.12       | 4.17        |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

| th!\/abialaFF | UBUS | 0.44        | 0.52        |
|---------------|------|-------------|-------------|
| tblVehicleEF  | OBOS | 0.14        | 0.53        |
| tblVehicleEF  | UBUS | 1,597.16    | 1,098.80    |
| tblVehicleEF  | UBUS | 1.39        | 3.20        |
| tblVehicleEF  | UBUS | 0.26        | 0.17        |
| tblVehicleEF  | UBUS | 1.0770e-003 | 6.2180e-003 |
| tblVehicleEF  | UBUS | 0.73        | 0.33        |
| tblVehicleEF  | UBUS | 0.01        | 0.04        |
| tblVehicleEF  | UBUS | 0.07        | 0.11        |
| tblVehicleEF  | UBUS | 0.03        | 0.03        |
| tblVehicleEF  | UBUS | 5.3280e-003 | 6.2290e-003 |
| tblVehicleEF  | UBUS | 1.5000e-005 | 1.2000e-005 |
| tblVehicleEF  | UBUS | 0.03        | 0.04        |
| tblVehicleEF  | UBUS | 8.3320e-003 | 8.1710e-003 |
| tblVehicleEF  | UBUS | 5.0960e-003 | 5.9560e-003 |
| tblVehicleEF  | UBUS | 1.4000e-005 | 1.1000e-005 |
| tblVehicleEF  | UBUS | 2.1000e-005 | 9.8940e-003 |
| tblVehicleEF  | UBUS | 1.6100e-004 | 3.3030e-003 |
| tblVehicleEF  | UBUS | 9.0000e-006 | 0.00        |
| tblVehicleEF  | UBUS | 0.02        | 0.06        |
| tblVehicleEF  | UBUS | 2.9000e-005 | 7.9870e-003 |
| tblVehicleEF  | UBUS | 6.4070e-003 | 0.01        |
| tblVehicleEF  | UBUS | 0.01        | 9.4250e-003 |
| tblVehicleEF  | UBUS | 1.4000e-005 | 3.2000e-005 |
| tblVehicleEF  | UBUS | 2.1000e-005 | 9.8940e-003 |
| tblVehicleEF  | UBUS | 1.6100e-004 | 3.3030e-003 |
| tblVehicleEF  | UBUS | 9.0000e-006 | 0.00        |
| tblVehicleEF  | UBUS | 1.38        | 0.42        |
| tblVehicleEF  | UBUS | 2.9000e-005 | 7.9870e-003 |
| tblVehicleEF  | UBUS | 7.0150e-003 | 0.01        |
| <b>I</b> i,   |      |             |             |

Page 1 of 1

Date: 7/14/2022 12:18 PM

# 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblVehicleTrips | ST_TR                                 | 1.90  | 1.76   |
|-----------------|---------------------------------------|-------|--------|
| tblVehicleTrips | SU_TR                                 | 1.11  | 1.03   |
| tblVehicleTrips | WD_TR                                 | 11.26 | 10.41  |
| tblWater        | AerobicPercent                        | 87.46 | 100.00 |
| tblWater        | AerobicPercent                        | 87.46 | 100.00 |
| tblWater        | AnaerobicandFacultativeLagoonsPercent | 2.21  | 0.00   |
| tblWater        | AnaerobicandFacultativeLagoonsPercent | 2.21  | 0.00   |
| tblWater        | SepticTankPercent                     | 10.33 | 0.00   |
| tblWater        | SepticTankPercent                     | 10.33 | 0.00   |
|                 |                                       |       |        |

# 2.0 Emissions Summary

# 2.1 Overall Construction <u>Unmitigated Construction</u>

|         | ROG    | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Year    |        |        |        |             | tor              | ns/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |          |
| 2023    | 0.7418 | 0.8877 | 0.8528 | 1.6000e-003 | 0.1312           | 0.0371          | 0.1683     | 0.0553            | 0.0344           | 0.0896      | 0.0000   | 138.9078  | 138.9078  | 0.0428 | 0.0000 | 139.9781 |
| Maximum | 0.7418 | 0.8877 | 0.8528 | 1.6000e-003 | 0.1312           | 0.0371          | 0.1683     | 0.0553            | 0.0344           | 0.0896      | 0.0000   | 138.9078  | 138.9078  | 0.0428 | 0.0000 | 139.9781 |

#### **Mitigated Construction**

# 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|         | ROG     | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------|---------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Year    | tons/yr |        |        |             |                  |                 |            |                   |                  |             |          |           | МТ        | /yr    |        |          |
| 2023    | 0.6813  | 0.5550 | 1.0207 | 1.6000e-003 | 0.0590           | 7.0300e-<br>003 | 0.0661     | 0.0249            | 7.0300e-<br>003  | 0.0319      | 0.0000   | 138.9077  | 138.9077  | 0.0428 | 0.0000 | 139.9780 |
| Maximum | 0.6813  | 0.5550 | 1.0207 | 1.6000e-003 | 0.0590           | 7.0300e-<br>003 | 0.0661     | 0.0249            | 7.0300e-<br>003  | 0.0319      | 0.0000   | 138.9077  | 138.9077  | 0.0428 | 0.0000 | 139.9780 |

|                      | ROG  | NOx   | со     | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|-------|--------|------|------------------|-----------------|------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 8.15 | 37.47 | -19.68 | 0.00 | 55.00            | 81.07           | 60.76      | 55.00             | 79.56            | 64.42          | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

| Quarter | Start Date | End Date  | Maximum Unmitigated ROG + NOX (tons/quarter) | Maximum Mitigated ROG + NOX (tons/quarter) |
|---------|------------|-----------|----------------------------------------------|--------------------------------------------|
| 1       | 2-8-2023   | 5-7-2023  | 0.4991                                       | 0.1744                                     |
| 2       | 5-8-2023   | 8-7-2023  | 0.1443                                       | 0.1257                                     |
| 3       | 8-8-2023   | 9-30-2023 | 0.2548                                       | 0.2153                                     |
|         |            | Highest   | 0.4991                                       | 0.2153                                     |

# 2.2 Overall Operational <a href="Unmitigated Operational">Unmitigated Operational</a>

|          | ROG    | NOx         | СО              | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4             | N2O         | CO2e     |
|----------|--------|-------------|-----------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|-------------|----------|
| Category |        |             |                 |             |                  |                 |             |                   |                  |             |          |                 | MT              | /yr             |             |          |
| Area     | 0.5471 | 3.0000e-005 | 3.8500e-<br>003 | 0.0000      |                  | 1.0000e-<br>005 | 1.0000e-005 |                   | 1.0000e-<br>005  | 1.0000e-005 | 0.0000   | 7.5000e-<br>003 | 7.5000e-<br>003 | 2.0000e-<br>005 | 0.0000      | 7.99E-03 |
| Energy   | 0.0000 | 0.0000      | 0.0000          | 0.0000      |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 82.3156         | 82.3156         | 0.0153          | 1.8500e-003 | 83.2484  |
| Mobile   | 0.5972 | 0.4454      | 4.0116          | 8.8200e-003 | 0.8106           | 6.2900e-<br>003 | 0.8169      | 0.2022            | 5.8700e-<br>003  | 0.2080      | 0.0000   | 814.6552        | 814.6552        | 0.0446          | 0.0384      | 827.2076 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

# 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Stationary | 0.0194 | 0.0541 | 0.0494 | 9.0000e-005 |        | 2.8500e-<br>003 | 2.8500e-003 |        | 2.8500e-<br>003 | 2.8500e-003 | 0.0000  | 8.9868   | 8.9868   | 1.2600e-<br>003 | 0.0000 | 9.0183   |
|------------|--------|--------|--------|-------------|--------|-----------------|-------------|--------|-----------------|-------------|---------|----------|----------|-----------------|--------|----------|
| Waste      |        |        |        |             |        | 0.0000          | 0.0000      |        | 0.0000          | 0.0000      | 1.8797  | 0.0000   | 1.8797   | 0.1111          | 0.0000 | 4.6569   |
| Water      |        |        |        |             |        | 0.0000          | 0.0000      |        | 0.0000          | 0.0000      | 21.1973 | 26.1748  | 47.3721  | 0.0778          | 0.0467 | 63.2296  |
| Total      | 1.1637 | 0.4996 | 4.0649 | 8.9100e-003 | 0.8106 | 9.1500e-<br>003 | 0.8198      | 0.2022 | 8.7300e-<br>003 | 0.2109      | 23.0770 | 932.1400 | 955.2169 | 0.2501          | 0.0869 | 987.3688 |

# **Mitigated Operational**

|            | ROG    | NOx         | CO              | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4             | N2O         | CO2e            |
|------------|--------|-------------|-----------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|-------------|-----------------|
| Category   |        |             |                 |             | tor              | ns/yr           |             |                   |                  |             |          |                 | МТ              | /yr             |             |                 |
| Area       | 0.5471 | 3.0000e-005 | 3.8500e-<br>003 | 0.0000      |                  | 1.0000e-<br>005 | 1.0000e-005 |                   | 1.0000e-<br>005  | 1.0000e-005 | 0.0000   | 7.5000e-<br>003 | 7.5000e-<br>003 | 2.0000e-<br>005 | 0.0000      | 7.9900e-<br>003 |
| Energy     | 0.0000 | 0.0000      | 0.0000          | 0.0000      |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 82.3156         | 82.3156         | 0.0153          | 1.8500e-003 | 83.2484         |
| Mobile     | 0.5972 | 0.4454      | 4.0116          | 8.8200e-003 | 0.8106           | 6.2900e-<br>003 | 0.8169      | 0.2022            | 5.8700e-<br>003  | 0.2080      | 0.0000   | 814.6552        | 814.6552        | 0.0446          | 0.0384      | 827.2076        |
| Stationary | 0.0194 | 0.0541      | 0.0494          | 9.0000e-005 |                  | 2.8500e-<br>003 | 2.8500e-003 |                   | 2.8500e-<br>003  | 2.8500e-003 | 0.0000   | 8.9868          | 8.9868          | 1.2600e-<br>003 | 0.0000      | 9.0183          |
| Waste      |        |             |                 |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 1.8797   | 0.0000          | 1.8797          | 0.1111          | 0.0000      | 4.6569          |
| Water      |        |             |                 |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 21.1973  | 26.1748         | 47.3721         | 0.0778          | 0.0467      | 63.2296         |
| Total      | 1.1637 | 0.4996      | 4.0649          | 8.9100e-003 | 0.8106           | 9.1500e-<br>003 | 0.8198      | 0.2022            | 8.7300e-<br>003  | 0.2109      | 23.0770  | 932.1400        | 955.2169        | 0.2501          | 0.0869      | 987.3688        |

|                      | ROG  | NOx  | СО   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00       | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

#### 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.0 Construction Detail

#### **Construction Phase**

|   | Phase<br>Number | Phase Name            | Phase Type            | Start Date | End Date   | Num Days<br>Week | Num Days | Phase Description |
|---|-----------------|-----------------------|-----------------------|------------|------------|------------------|----------|-------------------|
| ľ | l               | Demolition            | Demolition            | 2/8/2023   | 2/22/2023  | 5                | 11       |                   |
| 2 | <u>)</u>        | Site Preparation      | Site Preparation      | 2/8/2023   | 2/28/2023  | 5                | 15       |                   |
| ( | }               | Grading               | Grading               | 2/8/2023   | 3/30/2023  | 5                | 37       |                   |
| 4 | ļ               | Trenching             | Trenching             | 3/30/2023  | 7/7/2023   | 5                | 72       |                   |
| į | 5               | Building Construction | Building Construction | 7/11/2023  | 10/6/2023  | 5                | 64       |                   |
| 6 | }               | Paving                | Paving                | 10/2/2023  | 11/6/2023  | 5                | 26       |                   |
| ľ | 7               | Architectural Coating | Architectural Coating | 10/4/2023  | 10/20/2023 | 5                | 13       |                   |

Acres of Grading (Site Preparation Phase): 16.31

Acres of Grading (Grading Phase): 53.88

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 182,775; Non-Residential Outdoor: 60,925; Striped Parking Area: 5,160

#### OffRoad Equipment

| Phase Name            | Offroad Equipment Type   | Amount | Usage Hours | Horse Power | Load Factor |
|-----------------------|--------------------------|--------|-------------|-------------|-------------|
| Architectural Coating | Air Compressors          | 0      | 0.00        | 78          | 0.48        |
| Demolition            | Concrete/Industrial Saws | 0      | 0.00        | 81          | 0.73        |
| Building Construction | Cranes                   | 1      | 4.70        | 231         | 0.29        |
| Demolition            | Excavators               | 2      | 2.50        | 158         | 0.38        |
| Grading               | Excavators               | 3      | 3.90        | 158         | 0.38        |
| Building Construction | Forklifts                | 2      | 6.00        | 89          | 0.20        |
| Building Construction | Generator Sets           | 0      | 0.00        | 84          | 0.74        |
| Grading               | Graders                  | 4      | 4.40        | 187         | 0.41        |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Paving                | Pavers                    | 1 | 1.20 | 130 | 0.42 |
|-----------------------|---------------------------|---|------|-----|------|
| Paving                | Paving Equipment          | 1 | 3.10 | 132 | 0.36 |
| Paving                | Rollers                   | 1 | 2.50 | 80  | 0.38 |
| Demolition            | Rubber Tired Dozers       | 1 | 1.60 | 247 | 0.40 |
| Grading               | Rubber Tired Dozers       | 3 | 1.90 | 247 | 0.40 |
| Site Preparation      | Rubber Tired Dozers       | 2 | 1.20 | 247 | 0.40 |
| Grading               | Scrapers                  | 0 | 0.00 | 367 | 0.48 |
| Building Construction | Tractors/Loaders/Backhoes | 3 | 9.00 | 97  | 0.37 |
| Grading               | Tractors/Loaders/Backhoes | 3 | 2.40 | 97  | 0.37 |
| Site Preparation      | Tractors/Loaders/Backhoes | 2 | 1.20 | 97  | 0.37 |
| Building Construction | Welders                   | 4 | 2.80 | 46  | 0.45 |
| Demolition            | Tractors/Loaders/Backhoes | 1 | 1.60 | 97  | 0.37 |
| Site Preparation      | Graders                   | 5 | 3.00 | 187 | 0.41 |
| Grading               | Concrete/Industrial Saws  | 3 | 0.30 | 81  | 0.73 |
| Trenching             | Tractors/Loaders/Backhoes | 2 | 0.50 | 97  | 0.37 |
| Trenching             | Excavators                | 2 | 0.80 | 158 | 0.38 |
| Building Construction | Aerial Lifts              | 4 | 4.00 | 63  | 0.31 |
| Paving                | Tractors/Loaders/Backhoes | 1 | 4.30 | 97  | 0.37 |
| Architectural Coating | Aerial Lifts              | 2 | 4.00 | 63  | 0.31 |

# **Trips and VMT**

| Phase Name            | Offroad Equipment | Worker Trip | Vendor Trip | Hauling Trip | Worker Trip | Vendor Trip | Hauling Trip | Worker Vehicle | Vendor Vehicle | Hauling Vehicle |
|-----------------------|-------------------|-------------|-------------|--------------|-------------|-------------|--------------|----------------|----------------|-----------------|
|                       | Count             | Number      | Number      | Number       | Length      | Length      | Length       | Class          | Class          | Class           |
|                       |                   |             |             |              |             |             |              |                |                |                 |
| Demolition            | 4                 | 0.00        | 0.00        | 0.00         | 10.80       | 7.30        | 20.00        | LD_Mix         | HDT_Mix        | HHDT            |
| Site Preparation      | 9                 | 0.00        | 0.00        | 0.00         | 10.80       | 7.30        | 20.00        | LD_Mix         | HDT_Mix        | HHDT            |
| Grading               | 16                | 0.00        | 0.00        | 0.00         | 10.80       | 7.30        | 20.00        | LD_Mix         | HDT_Mix        | HHDT            |
| Building Construction | 14                | 0.00        | 0.00        | 0.00         | 10.80       | 7.30        | 20.00        | LD_Mix         | HDT_Mix        | HHDT            |
| Paving                | 4                 | 0.00        | 0.00        | 0.00         | 10.80       | 7.30        | 20.00        | LD_Mix         | HDT_Mix        | HHDT            |

Page 1 of 1

Date: 7/14/2022 12:18 PM

#### 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Architectural Coating | 2 | 0.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 LD_Mix | HDT_Mix | HHDT |
|-----------------------|---|------|------|------|-------|------|--------------|---------|------|
| Trenching             | 4 | 0.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 LD_Mix | HDT_Mix | HHDT |

#### **3.1 Mitigation Measures Construction**

Use Cleaner Engines for Construction Equipment

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

#### 3.2 **Demolition - 2023**

#### **Unmitigated Construction On-Site**

|          | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | ton              | s/yr            |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Off-Road | 1.5700e-<br>003 | 0.0149 | 0.0171 | 3.0000e-005 |                  | 7.0000e-<br>004 | 7.0000e-004 |                   | 6.4000e-<br>004  | 6.4000e-004 | 0.0000   | 2.6858    | 2.6858    | 8.7000e-<br>004 | 0.0000 | 2.7075 |
| Total    | 1.5700e-<br>003 | 0.0149 | 0.0171 | 3.0000e-005 |                  | 7.0000e-<br>004 | 7.0000e-004 |                   | 6.4000e-<br>004  | 6.4000e-004 | 0.0000   | 2.6858    | 2.6858    | 8.7000e-<br>004 | 0.0000 | 2.7075 |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | ton              | s/yr            |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

# 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Total  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

# **Mitigated Construction On-Site**

|          | ROG             | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | tons             | s/yr            |             |                   |                  |             |          |           | MT        | /yr             |        |        |
| Off-Road | 4.5000e-<br>004 | 0.0118 | 0.0210 | 3.0000e-005 |                  | 5.0000e-<br>005 | 5.0000e-005 |                   | 5.0000e-<br>005  | 5.0000e-005 | 0.0000   | 2.6858    | 2.6858    | 8.7000e-<br>004 | 0.0000 | 2.7075 |
| Total    | 4.5000e-<br>004 | 0.0118 | 0.0210 | 3.0000e-005 |                  | 5.0000e-<br>005 | 5.0000e-005 |                   | 5.0000e-<br>005  | 5.0000e-005 | 0.0000   | 2.6858    | 2.6858    | 8.7000e-<br>004 | 0.0000 | 2.7075 |

#### **Mitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ıs/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

# 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Total  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

#### 3.3 Site Preparation - 2023

#### **Unmitigated Construction On-Site**

|               | ROG             | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------|
| Category      |                 |        |        |             | tor              | ns/yr           |             |                   |                  |             |          |           | МТ        | -/yr            |        |         |
| Fugitive Dust |                 |        |        |             | 0.0222           | 0.0000          | 0.0222      | 8.3800e-<br>003   | 0.0000           | 8.3800e-003 | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Off-Road      | 7.2700e-<br>003 | 0.0849 | 0.0358 | 1.2000e-004 |                  | 3.0100e-<br>003 | 3.0100e-003 |                   | 2.7700e-<br>003  | 2.7700e-003 | 0.0000   | 10.4792   | 10.4792   | 3.3900e-<br>003 | 0.0000 | 10.5639 |
| Total         | 7.2700e-<br>003 | 0.0849 | 0.0358 | 1.2000e-004 | 0.0222           | 3.0100e-<br>003 | 0.0252      | 8.3800e-<br>003   | 2.7700e-<br>003  | 0.0112      | 0.0000   | 10.4792   | 10.4792   | 3.3900e-<br>003 | 0.0000 | 10.5639 |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ıs/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

# 865 Embedded Way, San Jose - Santa Clara County, Annual

# EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Total  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

#### **Mitigated Construction On-Site**

|               | ROG             | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------|
| Category      |                 |        |        |             | tor              | ns/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |         |
| Fugitive Dust |                 |        |        |             | 9.9900e-<br>003  | 0.0000          | 9.9900e-003 | 3.7700e-<br>003   | 0.0000           | 3.7700e-003 | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Off-Road      | 1.6100e-<br>003 | 0.0131 | 0.0573 | 1.2000e-004 |                  | 1.9000e-<br>004 | 1.9000e-004 |                   | 1.9000e-<br>004  | 1.9000e-004 | 0.0000   | 10.4792   | 10.4792   | 3.3900e-<br>003 | 0.0000 | 10.5639 |
| Total         | 1.6100e-<br>003 | 0.0131 | 0.0573 | 1.2000e-004 | 9.9900e-<br>003  | 1.9000e-<br>004 | 0.0102      | 3.7700e-<br>003   | 1.9000e-<br>004  | 3.9600e-003 | 0.0000   | 10.4792   | 10.4792   | 3.3900e-<br>003 | 0.0000 | 10.5639 |

#### **Mitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | ton              | s/yr            |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

# 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Total  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

# 3.4 Grading - 2023

#### **Unmitigated Construction On-Site**

|               | ROG    | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|---------------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------|
| Category      |        |        |        |             | ton              | ıs/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |         |
| Fugitive Dust |        |        |        |             | 0.1090           | 0.0000          | 0.1090     | 0.0469            | 0.0000           | 0.0469      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Off-Road      | 0.0330 | 0.3562 | 0.2427 | 5.9000e-004 |                  | 0.0140          | 0.0140     |                   | 0.0129           | 0.0129      | 0.0000   | 51.5004   | 51.5004   | 0.0164 | 0.0000 | 51.9091 |
| Total         | 0.0330 | 0.3562 | 0.2427 | 5.9000e-004 | 0.1090           | 0.0140          | 0.1229     | 0.0469            | 0.0129           | 0.0597      | 0.0000   | 51.5004   | 51.5004   | 0.0164 | 0.0000 | 51.9091 |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | ton              | ıs/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

# 865 Embedded Way, San Jose - Santa Clara County, Annual

# EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Total  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

#### **Mitigated Construction On-Site**

|               | ROG             | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------|
| Category      |                 |        |        |             | tor              | ns/yr           |             |                   |                  |             |          |           | МТ        | /yr    |        |         |
| Fugitive Dust |                 |        |        |             | 0.0490           | 0.0000          | 0.0490      | 0.0211            | 0.0000           | 0.0211      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Off-Road      | 8.2600e-<br>003 | 0.1327 | 0.3338 | 5.9000e-004 |                  | 9.5000e-<br>004 | 9.5000e-004 |                   | 9.5000e-<br>004  | 9.5000e-004 | 0.0000   | 51.5003   | 51.5003   | 0.0164 | 0.0000 | 51.9090 |
| Total         | 8.2600e-<br>003 | 0.1327 | 0.3338 | 5.9000e-004 | 0.0490           | 9.5000e-<br>004 | 0.0500      | 0.0211            | 9.5000e-<br>004  | 0.0220      | 0.0000   | 51.5003   | 51.5003   | 0.0164 | 0.0000 | 51.9090 |

#### **Mitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ıs/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Worker | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Total  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

# 3.5 Trenching - 2023

#### **Unmitigated Construction On-Site**

|          | ROG             | NOx    | СО     | SO2         | 0       | xhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|---------|----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | tons/yr |                |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Off-Road | 2.0400e-<br>003 | 0.0181 | 0.0335 | 5.0000e-005 | =       | 9000e-<br>004  | 8.9000e-004 |                   | 8.2000e-<br>004  | 8.2000e-004 | 0.0000   | 4.4977    | 4.4977    | 1.4500e-<br>003 | 0.0000 | 4.5341 |
| Total    | 2.0400e-<br>003 | 0.0181 | 0.0335 | 5.0000e-005 |         | 9000e-<br>004  | 8.9000e-004 |                   | 8.2000e-<br>004  | 8.2000e-004 | 0.0000   | 4.4977    | 4.4977    | 1.4500e-<br>003 | 0.0000 | 4.5341 |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | ton              | s/yr            |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

# 865 Embedded Way, San Jose - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Total | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

#### **Mitigated Construction On-Site**

|          | ROG             | NOx    | СО     | SO2         | Fugitive Exh | aust PN<br>110 | M10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|--------------|----------------|-----------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | tons/yr      |                |           |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Off-Road | 7.7000e-<br>004 | 0.0225 | 0.0388 | 5.0000e-005 | 8.00<br>00   |                | 0000e-005 |                   | 8.0000e-<br>005  | 8.0000e-005 | 0.0000   | 4.4977    | 4.4977    | 1.4500e-<br>003 | 0.0000 | 4.5341 |
| Total    | 7.7000e-<br>004 | 0.0225 | 0.0388 | 5.0000e-005 | 8.00         |                | 0000e-005 |                   | 8.0000e-<br>005  | 8.0000e-005 | 0.0000   | 4.4977    | 4.4977    | 1.4500e-<br>003 | 0.0000 | 4.5341 |

# **Mitigated Construction Off-Site**

|          | ROG     | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|---------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category | tons/yr |        |        |        |                  |                 |            |                   |                  |             | MT/yr    |           |           |        |        |        |
| Hauling  | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.6 Building Construction - 2023 <u>Unmitigated Construction On-Site</u>

|          | ROG    | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|----------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------|
| Category |        |        |        |             | tor              | ıs/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |         |
| Off-Road | 0.0415 | 0.3812 | 0.4751 | 7.4000e-004 |                  | 0.0171          | 0.0171     |                   | 0.0159           | 0.0159      | 0.0000   | 63.3431   | 63.3431   | 0.0187 | 0.0000 | 63.8101 |
| Total    | 0.0415 | 0.3812 | 0.4751 | 7.4000e-004 |                  | 0.0171          | 0.0171     |                   | 0.0159           | 0.0159      | 0.0000   | 63.3431   | 63.3431   | 0.0187 | 0.0000 | 63.8101 |

## **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | ton              | s/yr            |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## **Mitigated Construction On-Site**

|          | ROG    | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|----------|--------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------|
| Category |        |        |        |             | tons             | s/yr            |             |                   |                  |             |          |           | MT        | /yr    |        |         |
| Off-Road | 0.0156 | 0.3417 | 0.5146 | 7.4000e-004 |                  | 5.3900e-<br>003 | 5.3900e-003 |                   | 5.3900e-<br>003  | 5.3900e-003 | 0.0000   | 63.3430   | 63.3430   | 0.0187 | 0.0000 | 63.8100 |
| Total    | 0.0156 | 0.3417 | 0.5146 | 7.4000e-004 |                  | 5.3900e-<br>003 | 5.3900e-003 |                   | 5.3900e-<br>003  | 5.3900e-003 | 0.0000   | 63.3430   | 63.3430   | 0.0187 | 0.0000 | 63.8100 |

## **Mitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | s/yr            |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|          | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | ton              | s/yr            |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Off-Road | 2.9100e-<br>003 | 0.0290 | 0.0416 | 6.0000e-005 |                  | 1.4500e-<br>003 | 1.4500e-003 |                   | 1.3400e-<br>003  | 1.3400e-003 | 0.0000   | 5.4484    | 5.4484    | 1.7600e-<br>003 | 0.0000 | 5.4925 |
| Paving   | 0.0000          |        |        |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Total    | 2.9100e-<br>003 | 0.0290 | 0.0416 | 6.0000e-005 |                  | 1.4500e-<br>003 | 1.4500e-003 |                   | 1.3400e-<br>003  | 1.3400e-003 | 0.0000   | 5.4484    | 5.4484    | 1.7600e-<br>003 | 0.0000 | 5.4925 |

## **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | ton              | ns/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

## **Mitigated Construction On-Site**

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|          | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | tons             | s/yr            |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Off-Road | 1.0900e-<br>003 | 0.0272 | 0.0469 | 6.0000e-005 |                  | 1.0000e-<br>004 | 1.0000e-004 |                   | 1.0000e-<br>004  | 1.0000e-004 | 0.0000   | 5.4484    | 5.4484    | 1.7600e-<br>003 | 0.0000 | 5.4925 |
| Paving   | 0.0000          |        |        |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Total    | 1.0900e-<br>003 | 0.0272 | 0.0469 | 6.0000e-005 |                  | 1.0000e-<br>004 | 1.0000e-004 |                   | 1.0000e-<br>004  | 1.0000e-004 | 0.0000   | 5.4484    | 5.4484    | 1.7600e-<br>003 | 0.0000 | 5.4925 |

## **Mitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

3.8 Architectural Coating - 2023 <u>Unmitigated Construction On-Site</u>

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                 | ROG             | NOx             | СО          | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-----------------|-----------------|-----------------|-------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category        |                 |                 |             |             | ton              | ıs/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Archit. Coating | 0.6533          |                 |             |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Off-Road        | 2.2000e-<br>004 | 3.4500e-<br>003 | 7.0600e-003 | 1.0000e-005 |                  | 6.0000e-<br>005 | 6.0000e-005 |                   | 5.0000e-<br>005  | 5.0000e-005 | 0.0000   | 0.9534    | 0.9534    | 3.1000e-<br>004 | 0.0000 | 0.9611 |
| Total           | 0.6535          | 3.4500e-<br>003 | 7.0600e-003 | 1.0000e-005 |                  | 6.0000e-<br>005 | 6.0000e-005 |                   | 5.0000e-<br>005  | 5.0000e-005 | 0.0000   | 0.9534    | 0.9534    | 3.1000e-<br>004 | 0.0000 | 0.9611 |

## **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | ton              | s/yr            |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

## **Mitigated Construction On-Site**

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                 | ROG             | NOx             | CO          | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-----------------|-----------------|-----------------|-------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category        |                 |                 |             |             | tons             | s/yr            |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Archit. Coating | 0.6533          |                 |             |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Off-Road        | 2.7000e-<br>004 | 6.1000e-<br>003 | 8.2400e-003 | 1.0000e-005 |                  | 2.5000e-<br>004 | 2.5000e-004 |                   | 2.5000e-<br>004  | 2.5000e-004 | 0.0000   | 0.9534    | 0.9534    | 3.1000e-<br>004 | 0.0000 | 0.9611 |
| Total           | 0.6536          | 6.1000e-<br>003 | 8.2400e-003 | 1.0000e-005 |                  | 2.5000e-<br>004 | 2.5000e-004 |                   | 2.5000e-<br>004  | 2.5000e-004 | 0.0000   | 0.9534    | 0.9534    | 3.1000e-<br>004 | 0.0000 | 0.9611 |

## **Mitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | ton              | s/yr            |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

## 4.0 Operational Detail - Mobile

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## **4.1 Mitigation Measures Mobile**

|             | ROG    | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|-------------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category    |        |        |        |             | toı              | ns/yr           |            |                   |                  |             |          |           | МТ        | √yr    |        |          |
| Mitigated   | 0.5972 | 0.4454 | 4.0116 | 8.8200e-003 | 0.8106           | 6.2900e-<br>003 | 0.8169     | 0.2022            | 5.8700e-<br>003  | 0.2080      | 0.0000   | 814.6552  | 814.6552  | 0.0446 | 0.0384 | 827.2076 |
| Unmitigated | 0.5972 | 0.4454 | 4.0116 | 8.8200e-003 | 0.8106           | 6.2900e-<br>003 | 0.8169     | 0.2022            | 5.8700e-<br>003  | 0.2080      | 0.0000   | 814.6552  | 814.6552  | 0.0446 | 0.0384 | 827.2076 |

## **4.2 Trip Summary Information**

|                        | Ave      | erage Daily Trip Ra | te     | Unmitigated | Mitigated  |
|------------------------|----------|---------------------|--------|-------------|------------|
| Land Use               | Weekday  | Saturday            | Sunday | Annual VMT  | Annual VMT |
| Parking Lot            | 0.00     | 0.00                | 0.00   |             |            |
| Research & Development | 1,268.46 | 214.46              | 125.51 | 2,392,483   | 2,392,483  |
| Total                  | 1,268.46 | 214.46              | 125.51 | 2,392,483   | 2,392,483  |

## **4.3 Trip Type Information**

|                        |            | Miles      |             |            | Trip %     |             |         | Trip Purpos | e %     |
|------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------|
| Land Use               | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted    | Pass-by |
| Parking Lot            | 9.50       | 7.30       | 7.30        | 0.00       | 0.00       | 0.00        | 0       | 0           | 0       |
| Research & Development | 9.50       | 7.30       | 7.30        | 33.00      | 48.00      | 19.00       | 82      | 15          | 3       |

## 4.4 Fleet Mix

| Land Use               | LDA      | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | MH       |
|------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Parking Lot            | 0.531160 | 0.041583 | 0.227794 | 0.127091 | 0.023141 | 0.005641 | 0.009358 | 0.007307 | 0.001055 | 0.000417 | 0.022105 | 0.000682 | 0.002666 |
| Research & Development | 0.531160 | 0.041583 | 0.227794 | 0.127091 | 0.023141 | 0.005641 | 0.009358 | 0.007307 | 0.001055 | 0.000417 | 0.022105 | 0.000682 | 0.002666 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 5.0 Energy Detail

Historical Energy Use: N

## **5.1 Mitigation Measures Energy**

|                            | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O         | CO2e    |
|----------------------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|-------------|---------|
| Category                   |        |        |        |        | ton              | ıs/yr           |            |                   |                  |             |          |           | MT        | /yr    |             |         |
| Electricity Mitigated      |        |        |        |        |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 82.3156   | 82.3156   | 0.0153 | 1.8500e-003 | 83.2484 |
| Electricity<br>Unmitigated |        |        |        |        |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 82.3156   | 82.3156   | 0.0153 | 1.8500e-003 | 83.2484 |
| NaturalGas<br>Mitigated    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000      | 0.0000  |
| NaturalGas<br>Unmitigated  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000      | 0.0000  |

## **5.2 Energy by Land Use - NaturalGas**

## **Unmitigated**

|             | NaturalGa<br>s Use | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|-------------|--------------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Land Use    | kBTU/yr            |        |        |        |        | tor              |                 |            | МТ                | /yr              |             |          |           |           |        |        |        |
| Parking Lot | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Research &<br>Development | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|---------------------------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Total                     |   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

## **Mitigated**

|                           | NaturalGa<br>s Use | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|---------------------------|--------------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Land Use                  | kBTU/yr            |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Parking Lot               | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Research &<br>Development | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                     |                    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

## 5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

|                           | Electricity<br>Use | Total CO2 | CH4         | N2O         | CO2e    |
|---------------------------|--------------------|-----------|-------------|-------------|---------|
| Land Use                  | kWh/yr             |           | M           | T/yr        |         |
| Parking Lot               | 30100              | 2.4303    | 4.5000e-004 | 5.0000e-005 | 2.4578  |
| Research &<br>Development | 989422             | 79.8854   | 0.0148      | 1.8000e-003 | 80.7906 |

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Total | 82.3156 | 0.0153 | 1.8500e-003 | 83.2484 |
|-------|---------|--------|-------------|---------|
|       |         |        |             |         |

## **Mitigated**

|                           | Electricity<br>Use | Total CO2 | CH4         | N2O           | CO2e    |
|---------------------------|--------------------|-----------|-------------|---------------|---------|
| Land Use                  | kWh/yr             |           | M           | T/yr          |         |
| Parking Lot               | 30100              | 2.4303    | 4.5000e-004 | 4 5.0000e-005 | 2.4578  |
| Research &<br>Development | 989422             | 79.8854   | 0.0148      | 1.8000e-003   | 80.7906 |
| Total                     |                    | 82.3156   | 0.0153      | 1.8500e-003   | 83.2484 |

## 6.0 Area Detail

## **6.1 Mitigation Measures Area**

|           | ROG     | NOx         | СО              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4             | N2O    | CO2e            |
|-----------|---------|-------------|-----------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|-----------------|
| Category  | tons/yr |             |                 |        |                  |                 |             |                   |                  |             |          |                 | МТ              | /yr             |        |                 |
| Mitigated |         | 3.0000e-005 | 3.8500e-<br>003 | 0.0000 |                  | 1.0000e-<br>005 | 1.0000e-005 |                   | 1.0000e-<br>005  | 1.0000e-005 | 0.0000   | 7.5000e-<br>003 | 7.5000e-<br>003 | 2.0000e-<br>005 | 0.0000 | 7.9900e-<br>003 |

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|             |        | ,           |          |        |     | , <b>.</b> | . <u></u>   |   |          |             |        |          |          | · · · · · · · · · · · · · · · · · · · | £      | <u>.</u> |
|-------------|--------|-------------|----------|--------|-----|------------|-------------|---|----------|-------------|--------|----------|----------|---------------------------------------|--------|----------|
| Unmitigated | 0.5471 | 3.0000e-005 | 3.8500e- | 0.0000 | E : | 1.0000e-   | 1.0000e-005 | Ē | 1.0000e- | 1.0000e-005 | 0.0000 | 7.5000e- | 7.5000e- | 2.0000e-                              | 0.0000 | 7.9900e- |
| ū           |        |             | 003      | Ē      |     | 005        |             |   | 005      |             |        | 003      | 003      | 005                                   |        | 003      |
|             | -      |             |          | -      | -   |            | •           | - | -        |             |        | -        | -        | -                                     | -      | -        |

## 6.2 Area by SubCategory

## **Unmitigated**

|                          | ROG             | NOx         | СО              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4             | N2O    | CO2e            |
|--------------------------|-----------------|-------------|-----------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|-----------------|
| SubCategory              |                 |             |                 |        | ton              | s/yr            |             |                   |                  |             |          |                 | MT              | /yr             |        |                 |
| Architectural<br>Coating | 0.0653          |             |                 |        |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000          | 0.0000          | 0.0000          | 0.0000 | 0.0000          |
| Consumer<br>Products     | 0.4814          |             |                 |        |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000          | 0.0000          | 0.0000          | 0.0000 | 0.0000          |
| Landscaping              | 3.6000e-<br>004 | 3.0000e-005 | 3.8500e-<br>003 | 0.0000 |                  | 1.0000e-<br>005 | 1.0000e-005 |                   | 1.0000e-<br>005  | 1.0000e-005 | 0.0000   | 7.5000e-<br>003 | 7.5000e-<br>003 | 2.0000e-<br>005 | 0.0000 | 7.9900e-<br>003 |
| Total                    | 0.5471          | 3.0000e-005 | 3.8500e-<br>003 | 0.0000 |                  | 1.0000e-<br>005 | 1.0000e-005 |                   | 1.0000e-<br>005  | 1.0000e-005 | 0.0000   | 7.5000e-<br>003 | 7.5000e-<br>003 | 2.0000e-<br>005 | 0.0000 | 7.9900e-<br>003 |

## **Mitigated**

|                          | ROG    | NOx | CO | SO2 | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|--------------------------|--------|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| SubCategory              |        |     |    |     | tor              | ıs/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Architectural<br>Coating | 0.0653 |     |    |     |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Consumer<br>Products     | 0.4814 |     |    |     |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Landscaping |        | 3.0000e-005 | 3.8500e-<br>003 | 0.0000 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1.0000e-<br>005 | 1.0000e-005 | <br>1.0000e-<br>005 | 1.0000e-005 | 0.0000 | 7.5000e-<br>003 | 7.5000e-<br>003 | 2.0000e-<br>005 | 0.0000 | 7.9900e-<br>003 |
|-------------|--------|-------------|-----------------|--------|-----------------------------------------|-----------------|-------------|---------------------|-------------|--------|-----------------|-----------------|-----------------|--------|-----------------|
| Total       | 0.5471 | 3.0000e-005 | 3.8500e-<br>003 | 0.0000 |                                         | 1.0000e-<br>005 | 1.0000e-005 | 1.0000e-<br>005     | 1.0000e-005 | 0.0000 | 7.5000e-<br>003 | 7.5000e-<br>003 | 2.0000e-<br>005 | 0.0000 | 7.9900e-<br>003 |

## 7.0 Water Detail

## 7.1 Mitigation Measures Water

|             | Total CO2 | CH4    | N2O    | CO2e    |  |  |  |  |  |
|-------------|-----------|--------|--------|---------|--|--|--|--|--|
| Category    | MT/yr     |        |        |         |  |  |  |  |  |
| Mitigated   | 47.3721   | 0.0778 | 0.0467 | 63.2296 |  |  |  |  |  |
| Unmitigated | 47.3721   | 0.0778 | 0.0467 | 63.2296 |  |  |  |  |  |

## 7.2 Water by Land Use <u>Unmitigated</u>

|             | Indoor/Out<br>door Use | Total CO2 | CH4    | N2O    | CO2e   |
|-------------|------------------------|-----------|--------|--------|--------|
| Land Use    | Mgal                   |           | МТ     | -/yr   |        |
| Parking Lot | 0/0                    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Research &<br>Development | 59.9129 / 0 | 47.3721 | 0.0778 | 0.0467 | 63.2296 |
|---------------------------|-------------|---------|--------|--------|---------|
| Total                     |             | 47.3721 | 0.0778 | 0.0467 | 63.2296 |

## **Mitigated**

|                           | Indoor/Out<br>door Use | Total CO2 | CH4    | N2O    | CO2e    |
|---------------------------|------------------------|-----------|--------|--------|---------|
| Land Use                  | Mgal                   |           | МТ     | /yr    |         |
| Parking Lot               | 0/0                    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Research &<br>Development | 59.9129 / 0            | 47.3721   | 0.0778 | 0.0467 | 63.2296 |
| Total                     |                        | 47.3721   | 0.0778 | 0.0467 | 63.2296 |

## 8.0 Waste Detail

## 8.1 Mitigation Measures Waste

## Category/Year

| Total CO2 | CH4 | N2O  | CO2e |
|-----------|-----|------|------|
|           | М   | T/yr |      |

865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Mitigated | 1.8797 | 0.1111 | 0.0000 | 4.6569 |
|-----------|--------|--------|--------|--------|
|           | 1.8797 |        | 0.0000 | 4.6569 |

## 8.2 Waste by Land Use

## **Unmitigated**

|                           | Waste<br>Disposed | Total CO2 | CH4    | N2O    | CO2e   |
|---------------------------|-------------------|-----------|--------|--------|--------|
| Land Use                  | tons              |           | МТ     | -/yr   |        |
| Parking Lot               | 0                 | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Research &<br>Development | 9.26              | 1.8797    | 0.1111 | 0.0000 | 4.6569 |
| Total                     |                   | 1.8797    | 0.1111 | 0.0000 | 4.6569 |

## **Mitigated**

|                           | Waste<br>Disposed | Total CO2 | CH4    | N2O    | CO2e   |
|---------------------------|-------------------|-----------|--------|--------|--------|
| Land Use                  | tons              |           | МТ     | /yr    |        |
| Parking Lot               | 0                 | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Research &<br>Development | 9.26              | 1.8797    | 0.1111 | 0.0000 | 4.6569 |

## 865 Embedded Way, San Jose - Santa Clara County, Annual

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Total | 1.8797 | 0.1111 | 0.0000 | 4.6569 |
|-------|--------|--------|--------|--------|
|       |        |        |        |        |

## 9.0 Operational Offroad

| Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type |
|----------------|--------|-----------|-----------|-------------|-------------|-----------|

## **10.0 Stationary Equipment**

## **Fire Pumps and Emergency Generators**

| Equipment Type | Number | Hours/Day | Hours/Year | Horse Power | Load Factor | Fuel Type |
|----------------|--------|-----------|------------|-------------|-------------|-----------|
| Fire Pump      | 1      | 0         | 50         | 472         | 0.73        | Diesel    |

### **Boilers**

| Equipment Type | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type |
|----------------|--------|----------------|-----------------|---------------|-----------|
|----------------|--------|----------------|-----------------|---------------|-----------|

## **User Defined Equipment**

| Equipment Type | Number |
|----------------|--------|

## 10.1 Stationary Sources

## **Unmitigated/Mitigated**

|                                      | ROG    | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|--------------------------------------|--------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Equipment Type                       |        |        |        |             | tor              | ns/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Fire Pump - Diesel<br>(300 - 600 HP) | 0.0194 | 0.0541 | 0.0494 | 9.0000e-005 |                  | 2.8500e-<br>003 | 2.8500e-003 |                   | 2.8500e-<br>003  | 2.8500e-003 | 0.0000   | 8.9868    | 8.9868    | 1.2600e-<br>003 | 0.0000 | 9.0183 |
| Total                                | 0.0194 | 0.0541 | 0.0494 | 9.0000e-005 |                  | 2.8500e-<br>003 | 2.8500e-003 |                   | 2.8500e-<br>003  | 2.8500e-003 | 0.0000   | 8.9868    | 8.9868    | 1.2600e-<br>003 | 0.0000 | 9.0183 |

Page 1 of 1

Date: 7/14/2022 12:18 PM

865 Embedded Way, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 11.0 Vegetation

## **Attachment 3: EMFAC2021 Calculations**

## **Summary of Construction Traffic Emissions (EMFAC2021)**

|                   |        |        |        |        |          |             |           |              | •            |        | •         |        |        |          |
|-------------------|--------|--------|--------|--------|----------|-------------|-----------|--------------|--------------|--------|-----------|--------|--------|----------|
|                   |        |        |        |        | Fugitive | Exhaust     | PM10      | Fugitive     | Exhaust      | PM2.5  |           |        |        |          |
| <b>Pollutants</b> | ROG    | NOx    | CO     | SO2    | PM10     | PM10        | Total     | PM2.5        | PM2.5        | Total  | NBio- CO2 | CH4    | N2O    | CO2e     |
| YEAR              |        |        |        |        | To       | ns          |           |              |              |        |           | Metric | Tons   |          |
|                   |        |        |        |        |          |             | Criteria  | a Pollutants |              |        |           |        |        |          |
| 2023              | 0.0155 | 0.1972 | 0.2146 | 0.0015 | 0.0520   | 0.0124      | 0.0644    | 0.0078       | 0.0053       | 0.0131 | 145.7275  | 0.0103 | 0.0197 | 151.8451 |
|                   |        |        |        |        |          |             |           |              |              |        |           |        |        |          |
|                   |        |        |        |        |          |             |           |              |              |        |           |        |        |          |
|                   |        |        |        |        |          | Toxic Air ( | Contamina | nts (0.5 Mil | e Trip Lengt | h)     |           |        |        |          |
| 2023              | 0.0124 | 0.0488 | 0.0711 | 0.0001 | 0.0023   | 0.0005      | 0.0028    | 0.0003       | 0.0002       | 0.0006 | 10 8248   | 0.0022 | 0.0017 | 11 3961  |

### **CalEEMod Construction Inputs**

|                       | CalEEMod<br>WORKER | CalEEMod<br>VENDOR | Total<br>Worker | Total<br>Vendor | CalEEMod<br>HAULING | Worker Trip | Vendor Trip | Hauling Trip | ) Worker Vehicle | Vendor Vehicle | Hauling Vehicle | Worker | Vendor  | Hauling |
|-----------------------|--------------------|--------------------|-----------------|-----------------|---------------------|-------------|-------------|--------------|------------------|----------------|-----------------|--------|---------|---------|
| Phase                 | TRIPS              | TRIPS              | Trips           | Trips           | TRIPS               | Length      | Length      | Length       | Class            | Class          | Class           | VMT    | VMT     | VMT     |
| Demolition            | 1                  | 10                 | 0               | 110             | 0                   | 0 10.       | 8 7.3       | 3 2          | 0 LD_Mix         | HDT_Mix        | HHDT            | 1188   | 0       | 0       |
| Site Preparation      | 2                  | 23                 | 0               | 345             | 0                   | 0 10.       | 8 7.3       | 3 2          | 0 LD_Mix         | HDT_Mix        | HHDT            | 3726   | 0       | 0       |
| Grading               | 4                  | 10                 | 0 1,            | 480             | 0 2,25              | 0 10.       | 8 7.3       | 3 2          | 0 LD_Mix         | HDT_Mix        | HHDT            | 15984  | 0       | 45000   |
| Trenching             | 1                  | 10                 | 0               | 720             | 0                   | 0 10.8      | 8 7.3       | 3 2          | 0 LD_Mix         | HDT_Mix        | HHDT            | 7776   | 0       | 0       |
| Building Construction | 7                  | 75 3               | 4 4,            | 800 2,1         | 76 1,32             | 0 10.       | 8 7.3       | 3 7.         | 3 LD_Mix         | HDT_Mix        | HHDT            | 51840  | 15884.8 | 9636    |
| Paving                | 1                  | 10                 | 0               | 260             | 0 24                | 0 10.       | 8 7.3       | 3 7.         | 3 LD_Mix         | HDT_Mix        | HHDT            | 2808   | 0       | 1752    |
| Architectural Coating | 1                  | 15                 | 0               | 195             | 0                   | 0 10.       | 8 7.3       | 3 2          | 0 LD_Mix         | HDT_Mix        | HHDT            | 2106   | 0       | 0       |

 Number of Days Per Year
 2/8/23
 11/6/23
 272

272 195
 272 **195** Total Workdays

| Phase                 | Start Date | End Date   | Days/Week | Workdays |
|-----------------------|------------|------------|-----------|----------|
| Demolition            | 2/8/2023   | 2/22/2023  | 5         | 11       |
| Site Preparation      | 2/8/2023   | 2/28/2023  | 5         | 15       |
| Grading               | 2/8/2023   | 3/30/2023  | 5         | 37       |
| Trenching             | 3/30/2023  | 7/7/2023   | 5         | 72       |
| Building Construction | 7/11/2023  | 10/6/2023  | 5         | 64       |
| Paving                | 10/2/2023  | 11/6/2023  | 5         | 26       |
| Architectural Coating | 10/4/2023  | 10/20/2023 | 5         | 13       |

| Category |      | Mix % Adj | ROG_DIURN ROG_HTSK ROG_ID          | LEX ROG_RESTL | ROG_RUNEX ROG_RUNLS ROG_STREX     | NOX_IDLEX NOX_RUNEX NOX_STREX     | CO_IDLEX CO_RUNEX CO_STREX   | SO2_IDLEX SO2_RUNEX SO2_STREX      | Road Dust<br>PM10 | PM10_PM PM10_PM<br>BW TW | PM10_IDL PM10_RU PM10_STREX EX | Road Dust<br>PM25 | PM25_PM PM25_PM<br>BW TW | PM25_IDL PM25_RUN PM25_STR<br>EX EX EX EX<br>19 22 23 | CO2_NBIO CO2_NBIO CO2_NBIO<br>_IDLEX _RUNEX _STREX<br>8 9 10 | CH4_IDLE CH4_RUNEX CH4_STREX     | N2O_IDLEXN2O_RUNEX N2O_STREX     |
|----------|------|-----------|------------------------------------|---------------|-----------------------------------|-----------------------------------|------------------------------|------------------------------------|-------------------|--------------------------|--------------------------------|-------------------|--------------------------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------|----------------------------------|
| Hauling  | HHDT | 100.0     | 1 0.000287604 8.55424E-05 0.3324   | 04817         | 0.01953334 0.00077057 5.28839E-07 | 4.1629787 1.930480649 2.692504026 | 5.211988 0.79481483 0.000555 | 0.00746083 0.01488345 2.65981E-07  |                   | 0.081444 0.035123        | 0.002283 0.025833 9.98684E-07  |                   | 0.028506 0.008781        | 0.002179 0.0247116 9.183E-07                          | 850.51039 1643.0479 0.0269048                                | 0.235881 0.125647179 9.74075E-08 | 0.136898 0.262148415 2.46823E-05 |
|          | MHD  | 0.0       | 0 0.028424515 0.006961572 0.0275   |               | 0.04434978 0.05660825 0.052337336 | 0.9240436 1.219274528 1.396113281 | 0.673566 0.40377012 1.152494 | 0.00150213 0.011767743 8.73526E-05 | 0.299             | 0.045469 0.012           | 0.002542 0.014931 0.000112942  |                   | 0.015914 0.003           | 0.002431 0.0142769 0.0001038                          |                                                              |                                  | 0.024829 0.159885109 0.006096523 |
|          |      |           |                                    |               |                                   |                                   |                              |                                    |                   |                          |                                |                   |                          |                                                       |                                                              |                                  |                                  |
| Vendor   | HHDT | 50.0      | 0.5 0.000143802 4.27712E-05 0.1662 | 02408         | 0.00976667 0.00038529 2.6442E-07  | 2.0814893 0.965240325 1.346252013 | 2.605994 0.39740742 0.000277 | 0.00373041 0.007441725 1.32991E-07 |                   | 0.040722 0.017561        | 0.001142 0.012916 4.99342E-07  |                   | 0.014253 0.00439         | 0.001089 0.0123558 4.591E-07                          | 425.2552 821.52395 0.0134524                                 | 0.11794 0.06282359 4.87037E-08   | 0.068449 0.131074208 1.23411E-05 |
|          | MHD  | 50.0      | 0.5 0.014212257 0.003480786 0.0137 | 64828         | 0.02217489 0.02830413 0.026168668 | 0.4620218 0.609637264 0.698056641 | 0.336783 0.20188506 0.576247 | 0.00075106 0.005883871 4.36763E-05 |                   | 0.022735 0.006           | 0.001271 0.007465 5.64711E-05  |                   | 0.007957 0.0015          | 0.001216 0.0071384 5.192E-05                          | 80.66867 619.79918 4.417987                                  | 0.006471 0.004953388 0.004622749 | 0.012414 0.079942554 0.003048262 |
|          |      |           | 1 0.01435606 0.003523557 0.1799    | 67236         | 0.03194156 0.02868941 0.026168932 | 2.5435111 1.574877589 2.044308654 | 2.942777 0.59929248 0.576524 | 0.00448148 0.013325596 4.38093E-05 | 0.299             | 0.063457 0.023561        | 0.002413 0.020382 5.69705E-05  | 0.04499           | 0.02221 0.00589          | 0.002305 0.0194942 5.238E-05                          | 505.92387 1441.3231 4.4314394                                | 0.124412 0.067776978 0.004622797 | 0.080863 0.211016762 0.003060603 |
|          |      |           |                                    |               |                                   |                                   |                              |                                    |                   |                          |                                |                   |                          |                                                       |                                                              |                                  |                                  |
| Worker   | LDA  | 50.0      | 0.5 0.143306127 0.042683769        | 0 (           | 0.0045285 0.10768412 0.159592017  | 0 0.021192179 0.122461753         | 0 0.35031163 1.546631        | 0 0.001247244 0.00032278           |                   | 0.0036 0.004             | 0 0.000614 0.000990927         |                   | 0.00126 0.001            | 0 0.0005655 0.0009111                                 | 0 126.17319 32.650143                                        | 0 0.001154545 0.034539145        | 0 0.00224937 0.015441065         |
|          | LDT1 | 25.0 0    | 0.25 0.156677436 0.04332923        | 0 (           | 0.00778025 0.12516577 0.145126689 | 0 0.035722679 0.100614187         | 0 0.38639467 1.408382        | 0 0.000818289 0.000217331          |                   | 0.002307 0.002           | 0 0.000514 0.000767762         |                   | 0.000807 0.0005          | 0 0.0004735 0.000706                                  | 0 82.773349 21.983712                                        | 0 0.00173807 0.028010471         | 0 0.00255413 0.009913954         |
|          | LDT2 | 25.0 0    | 0.25 0.074138692 0.021036563       | 0 (           | 0.00307324 0.05534742 0.101569939 | 0 0.019062039 0.088569484         | 0 0.22137906 0.96209         | 0 0.000853405 0.000219425          |                   | 0.002219 0.002           | 0 0.000345 0.000540097         |                   | 0.000777 0.0005          | 0 0.0003173 0.0004966                                 | 0 86.33608 22.19552                                          | 0 0.000769908 0.021709383        | 0 0.001616766 0.009562758        |
|          |      |           | 1 0.374122256 0.107049562          | 0 (           | 0.015382 0.28819731 0.406288645   | 0 0.075976897 0.311645425         | 0 0.95808537 3.917103        | 0 0.002918938 0.000759537          | 0.299             | 0.008126 0.008           | 0 0.001473 0.002298785         | 0.04499           | 0.002844 0.002           | 0 0.0013563 0.0021137                                 | 0 295.28262 76.829375                                        | 0 0.003662524 0.084258998        | 0 0.006420266 0.034917777        |
|          |      |           |                                    |               |                                   |                                   |                              |                                    |                   |                          |                                |                   |                          |                                                       |                                                              |                                  |                                  |

|        |                |          | Cal      | EEMod E  | MFAC202  | 21 Emissi | on Facto | rs Input |             |          |             |          | Year     | 2024     |
|--------|----------------|----------|----------|----------|----------|-----------|----------|----------|-------------|----------|-------------|----------|----------|----------|
| Season | EmissionType   | LDA      | LDT1     | LDT2     | MDV      | LHD1      | LHD2     | MHD      | HHD         | OBUS     | UBUS        | MCY      | SBUS     | МН       |
| Α      | CH4_IDLEX      | 0        | 0        | 0        | 0        | 0.005369  | 0.003158 | 0.013383 | 0.232934116 | 0.007458 | 0           | 0        | 0.074531 | 0        |
| Α      | CH4_RUNEX      | 0.002053 | 0.006222 | 0.002818 | 0.00375  | 0.008195  | 0.006967 | 0.009658 | 0.121678903 | 0.009275 | 0.353982676 | 0.162609 | 0.091035 | 0.012488 |
| Α      | CH4_STREX      | 0.06472  | 0.104817 | 0.081929 | 0.09875  | 0.022831  | 0.012442 | 0.008773 | 8.02769E-08 | 0.017671 | 0.00373411  | 0.181972 | 0.0048   | 0.026745 |
| Α      | CO_IDLEX       | 0        | 0        | 0        | 0        | 0.196553  | 0.142433 | 0.671381 | 5.195559849 | 0.514566 | 0           | 0        | 1.654918 | 0        |
| Α      | CO_RUNEX       | 0.649736 | 1.418728 | 0.829336 | 0.94329  | 0.900659  | 0.571321 | 0.346173 | 0.774886828 | 0.491534 | 4.169725719 | 12.6697  | 0.884386 | 1.294901 |
| Α      | CO_STREX       | 2.891746 | 5.224818 | 3.623598 | 3.897928 | 2.161459  | 1.21759  | 1.07433  | 0.000626211 | 1.960551 | 0.531545824 | 8.002987 | 0.664389 | 2.491606 |
| Α      | CO2_NBIO_IDLEX | 0        | 0        | 0        | 0        | 8.718619  | 13.77168 | 160.2598 | 832.3166934 | 85.70845 | 0           | 0        | 189.3786 | 0        |
| Α      | CO2_NBIO_RUNEX | 245.0824 | 325.3768 | 336.518  | 405.8146 | 782.6209  | 827.3106 | 1229.181 | 1617.129696 | 1388.863 | 1098.799805 | 187.743  | 1027.722 | 1686.59  |
| Α      | CO2_NBIO_STREX | 63.50921 | 85.97601 | 86.38427 | 103.3242 | 17.83745  | 9.92491  | 8.529312 | 0.019573043 | 15.49228 | 3.203569186 | 48.37697 | 3.726088 | 22.54937 |
| Α      | NOX_IDLEX      | 0        | 0        | 0        | 0        | 0.048387  | 0.092995 | 0.892859 | 4.075118036 | 0.365684 | 0           | 0        | 1.387931 | 0        |
| Α      | NOX_RUNEX      | 0.037369 | 0.127832 | 0.068032 | 0.098516 | 0.66417   | 0.895916 | 1.112922 | 1.850604526 | 1.007061 | 0.328284112 | 0.571344 | 2.57268  | 1.5351   |
| Α      | NOX_STREX      | 0.230953 | 0.379266 | 0.329632 | 0.414782 | 0.44074   | 0.241786 | 1.407896 | 2.731408381 | 0.979918 | 0.039644426 | 0.135477 | 0.480958 | 0.299202 |
| Α      | PM10_IDLEX     | 0        | 0        | 0        | 0        | 0.000681  | 0.001371 | 0.002128 | 0.002182492 | 0.000423 | 0           | 0        | 0.001309 | 0        |
| Α      | PM10 PMBW      | 0.007168 | 0.009226 | 0.008866 | 0.009    | 0.077823  | 0.090794 | 0.045399 | 0.08129752  | 0.049798 | 0.11066361  | 0.012    | 0.044858 | 0.044947 |
| Α      | PM10_PMTW      | 0.008    | 0.008    | 0.008    | 0.008    | 0.009414  | 0.010658 | 0.012    | 0.035125425 | 0.012    | 0.032683644 | 0.004    | 0.0106   | 0.013206 |
| Α      | PM10 RUNEX     | 0.001171 | 0.001927 | 0.001333 | 0.001373 | 0.014027  | 0.022761 | 0.012985 | 0.025474433 | 0.015841 | 0.006229362 | 0.001902 | 0.013303 | 0.03019  |
| Α      | PM10_STREX     | 0.00191  | 0.002898 | 0.002108 | 0.002161 | 0.000227  | 0.000101 | 0.000107 | 6.09682E-07 | 0.000134 | 1.21066E-05 | 0.003456 | 3.95E-05 | 0.000313 |
| Α      | PM25_IDLEX     | 0        | 0        | 0        | 0        | 0.000651  | 0.001311 | 0.002035 | 0.002082052 | 0.000405 | 0           | 0        | 0.001252 | 0        |
| Α      | PM25_PMBW      | 0.002509 | 0.003229 | 0.003103 | 0.00315  | 0.027238  | 0.031778 | 0.01589  | 0.028454132 | 0.017429 | 0.038732263 | 0.0042   | 0.0157   | 0.015732 |
| Α      | PM25_PMTW      | 0.002    | 0.002    | 0.002    | 0.002    | 0.002354  | 0.002664 | 0.003    | 0.008781356 | 0.003    | 0.008170911 | 0.001    | 0.00265  | 0.003301 |
| Α      | PM25_RUNEX     | 0.001078 | 0.001774 | 0.001226 | 0.001266 | 0.01338   | 0.021758 | 0.012415 | 0.0243688   | 0.015147 | 0.005956092 | 0.001779 | 0.012712 | 0.028836 |
| Α      | PM25_STREX     | 0.001756 | 0.002665 | 0.001938 | 0.001987 | 0.000209  | 9.28E-05 | 9.82E-05 | 5.6058E-07  | 0.000124 | 1.11315E-05 | 0.003248 | 3.63E-05 | 0.000288 |
| Α      | ROG DIURN      | 0.273594 | 0.595257 | 0.288173 | 0.350288 | 0.128573  | 0.066802 | 0.025795 | 0.000195977 | 0.069031 | 0.00989389  | 3.900294 | 0.027017 | 32.73442 |
| Α      | ROG_HTSK       | 0.08102  | 0.164422 | 0.0806   | 0.094021 | 0.032798  | 0.017191 | 0.00626  | 5.82846E-05 | 0.0166   | 0.00330336  | 3.559276 | 0.007301 | 8.700008 |
| Α      | ROG_IDLEX      | 0        | 0        | 0        | 0        | 0.021942  | 0.01599  | 0.026359 | 0.329789936 | 0.040067 | 0           | 0        | 0.181581 | 0        |
| Α      | ROG_RESTL      | 0        | 0        | 0        | 0        | 0         | 0        | 0        | 0           | 0        | 0           | 0        | 0        | 0        |
| Α      | ROG_RUNEX      | 0.007886 | 0.027617 | 0.0111   | 0.015872 | 0.087722  | 0.115408 | 0.038113 | 0.018605536 | 0.047576 | 0.063024567 | 1.062175 | 0.055863 | 0.083758 |
| Α      | ROG_RUNLS      | 0.204737 | 0.46982  | 0.214357 | 0.266704 | 0.182065  | 0.092651 | 0.050964 | 0.000525006 | 0.075921 | 0.007986926 | 3.75283  | 0.017605 | 0.204308 |
| Α      | ROG_STREX      | 0.295072 | 0.536464 | 0.379183 | 0.493019 | 0.113203  | 0.061169 | 0.048943 | 4.36152E-07 | 0.093584 | 0.013264046 | 1.345317 | 0.027327 | 0.113367 |
| Α      | SO2_IDLEX      | 0        | 0        | 0        | 0        | 8.49E-05  | 0.000132 | 0.00149  | 0.007280347 | 0.000811 | 0           | 0        | 0.001723 | 0        |
| Α      | SO2 RUNEX      | 0.002423 | 0.003217 | 0.003326 | 0.004009 | 0.007645  | 0.007972 | 0.011664 | 0.014635772 | 0.013275 | 0.009424712 | 0.001856 | 0.009553 | 0.01654  |
| Α      | SO2_STREX      | 0.000628 | 0.00085  | 0.000854 | 0.001021 | 0.000176  | 9.81E-05 | 8.43E-05 | 1.93499E-07 | 0.000153 | 3.16705E-05 | 0.000478 | 3.68E-05 | 0.000223 |
| Α      | TOG_DIURN      | 0.273594 | 0.595257 | 0.288173 | 0.350288 | 0.128573  | 0.066802 | 0.025795 | 0.000195977 | 0.069031 | 0.00989389  | 0.086215 | 0.027017 | 32.73442 |
| Α      | TOG_HTSK       | 0.08102  | 0.164422 | 0.0806   | 0.094021 | 0.032798  | 0.017191 | 0.00626  | 5.82846E-05 | 0.0166   | 0.00330336  | 3.559276 | 0.007301 | 8.700008 |
| Α      | TOG_IDLEX      | 0        | 0        | 0        | 0        | 0.031162  | 0.021623 | 0.043266 | 0.594148623 | 0.053137 | 0           | 0        | 0.296054 | 0        |
| Α      | TOG_RESTL      | 0        | 0        | 0        | 0        | 0         | 0        |          |             |          | 0           | 0        | 0        | 0        |
| Α      | TOG_RUNEX      | 0.011489 | 0.040276 | 0.016182 | 0.023096 | 0.108455  | 0.134423 | 0.053054 | 0.142671417 | 0.063874 | 0.424552446 | 1.276951 | 0.155502 | 0.11065  |
| Α      | TOG_RUNLS      | 0.204737 | 0.46982  |          |          |           |          |          | 0.000525006 |          |             | 3.75283  | 0.017605 | 0.204308 |
| Α      | TOG_STREX      | 0.323066 | 0.58736  | 0.415158 | 0.539792 |           | 0.066973 |          |             |          | 0.014522461 | 1.462608 | 0.029919 | 0.124122 |
| Α      | N2O_IDLEX      | 0        | 0        | 0        |          | 0.00064   | 0.00168  |          |             |          | 0           | 0        |          | 0        |
| Α      | N2O_RUNEX      | 0.004162 |          |          |          | 0.04145   | 0.08248  |          |             |          | 0.166507004 |          |          | 0.069357 |
| Α      | N2O_STREX      |          | 0.038494 | 0.03679  |          |           |          |          | 1.94763E-05 |          |             |          | 0.004225 |          |
|        |                | 0.025501 | 2.000.01 | 0.00073  | 0.0007   |           | 2.025211 | 3.000002 |             |          | 0000-/-     | 0.00002  | 00.225   | 2.00200  |

|                           | CalEEMod EMFAC2021 Fleet Mix Input |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------------|------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| FleetMixLandUseSubType LI | DA                                 | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | MH       |
| Parking Lot               | 0.53116                            | 0.041583 | 0.227794 | 0.127091 | 0.023141 | 0.005641 | 0.009358 | 0.007307 | 0.001055 | 0.000417 | 0.022105 | 0.000682 | 0.002666 |
| Research & Development    | 0.53116                            | 0.041583 | 0.227794 | 0.127091 | 0.023141 | 0.005641 | 0.009358 | 0.007307 | 0.001055 | 0.000417 | 0.022105 | 0.000682 | 0.002666 |

| Adjustment | Vehicle                                                                                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Factors    | Category                                                                                                                      | Fuel                                                                                | Population                                                                                                                                                                                                                                                                                                                                               | Pop Fract                                                                                                                                                                                                                                                                                                | VMT (miles/day)                                                                                                                                                                                                                                                                                                                                                                   | VMT Fract                                                                                                                                                                                                                                                        | Trips/day                                                                                                                                                                                                                                                                                                                                                                      | Trip Fract                                                                                                                                                                                                                     |
|            | HHDT                                                                                                                          | GAS                                                                                 | 2.58870796                                                                                                                                                                                                                                                                                                                                               | 1.95479E-05                                                                                                                                                                                                                                                                                              | 115.1525769                                                                                                                                                                                                                                                                                                                                                                       | 0.0001088                                                                                                                                                                                                                                                        | 51.79486882                                                                                                                                                                                                                                                                                                                                                                    | 0.000391                                                                                                                                                                                                                       |
|            | HHDT                                                                                                                          | DSL                                                                                 | 8486.69344                                                                                                                                                                                                                                                                                                                                               | 0.064085007                                                                                                                                                                                                                                                                                              | 1001095.457                                                                                                                                                                                                                                                                                                                                                                       | 0.9456821                                                                                                                                                                                                                                                        | 124748.3826                                                                                                                                                                                                                                                                                                                                                                    | 0.942004                                                                                                                                                                                                                       |
|            | HHDT                                                                                                                          | ELEC                                                                                | 28.3303862                                                                                                                                                                                                                                                                                                                                               | 0.000213929                                                                                                                                                                                                                                                                                              | 2794.260589                                                                                                                                                                                                                                                                                                                                                                       | 0.0026396                                                                                                                                                                                                                                                        | 378.794564                                                                                                                                                                                                                                                                                                                                                                     | 0.00286                                                                                                                                                                                                                        |
|            | HHDT                                                                                                                          | NG                                                                                  | 794.400964                                                                                                                                                                                                                                                                                                                                               | 0.005998707                                                                                                                                                                                                                                                                                              | 54591.27048                                                                                                                                                                                                                                                                                                                                                                       | 0.0515695                                                                                                                                                                                                                                                        | 7249.716942                                                                                                                                                                                                                                                                                                                                                                    | 0.054744                                                                                                                                                                                                                       |
|            |                                                                                                                               |                                                                                     | 9312.0135                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          | 1058596.14                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  | 132428.689                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |
|            | LDA                                                                                                                           | GAS                                                                                 | 600108.166                                                                                                                                                                                                                                                                                                                                               | 0.190572388                                                                                                                                                                                                                                                                                              | 22290343.74                                                                                                                                                                                                                                                                                                                                                                       | 0.8713379                                                                                                                                                                                                                                                        | 2786616.833                                                                                                                                                                                                                                                                                                                                                                    | 0.884928                                                                                                                                                                                                                       |
|            | LDA                                                                                                                           | DSL                                                                                 | 1750.02352                                                                                                                                                                                                                                                                                                                                               | 0.000555743                                                                                                                                                                                                                                                                                              | 51573.47594                                                                                                                                                                                                                                                                                                                                                                       | 0.002016                                                                                                                                                                                                                                                         | 7442.609511                                                                                                                                                                                                                                                                                                                                                                    | 0.002364                                                                                                                                                                                                                       |
|            | LDA                                                                                                                           | ELEC                                                                                | 57627.4034                                                                                                                                                                                                                                                                                                                                               | 0.018300354                                                                                                                                                                                                                                                                                              | 2472767.413                                                                                                                                                                                                                                                                                                                                                                       | 0.0966614                                                                                                                                                                                                                                                        | 282732.9828                                                                                                                                                                                                                                                                                                                                                                    | 0.089786                                                                                                                                                                                                                       |
|            | LDA                                                                                                                           | PIH                                                                                 | 17457.0988<br>676942.692                                                                                                                                                                                                                                                                                                                                 | 0.005543736                                                                                                                                                                                                                                                                                              | 767059.2064<br>25581743.84                                                                                                                                                                                                                                                                                                                                                        | 0.0299846                                                                                                                                                                                                                                                        | 72185.10346<br>3148977.529                                                                                                                                                                                                                                                                                                                                                     | 0.022923                                                                                                                                                                                                                       |
|            | LDT1                                                                                                                          | GAS                                                                                 | 52693.3661                                                                                                                                                                                                                                                                                                                                               | 0.22315027                                                                                                                                                                                                                                                                                               | 1706864.169                                                                                                                                                                                                                                                                                                                                                                       | 0.9932977                                                                                                                                                                                                                                                        | 234793.4065                                                                                                                                                                                                                                                                                                                                                                    | 0.994323                                                                                                                                                                                                                       |
|            | LDT1                                                                                                                          | DSL                                                                                 | 23.4623252                                                                                                                                                                                                                                                                                                                                               | 9.93602E-05                                                                                                                                                                                                                                                                                              | 343.9307557                                                                                                                                                                                                                                                                                                                                                                       | 0.0002001                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                | 0.000281                                                                                                                                                                                                                       |
|            | LDT1                                                                                                                          | ELEC                                                                                | 211.002813                                                                                                                                                                                                                                                                                                                                               | 0.000893572                                                                                                                                                                                                                                                                                              | 8008.645616                                                                                                                                                                                                                                                                                                                                                                       | 0.0046606                                                                                                                                                                                                                                                        | 994.4346051                                                                                                                                                                                                                                                                                                                                                                    | 0.004211                                                                                                                                                                                                                       |
|            | LDT1                                                                                                                          | PIH                                                                                 | 67.6457784                                                                                                                                                                                                                                                                                                                                               | 0.000286472                                                                                                                                                                                                                                                                                              | 3164.460326                                                                                                                                                                                                                                                                                                                                                                       | 0.0018415                                                                                                                                                                                                                                                        | 279.7152939                                                                                                                                                                                                                                                                                                                                                                    | 0.001185                                                                                                                                                                                                                       |
|            |                                                                                                                               |                                                                                     | 52995.477                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          | 1718381.206                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  | 236134.001                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |
|            | LDT2                                                                                                                          | GAS                                                                                 | 285585.435                                                                                                                                                                                                                                                                                                                                               | 0.210271162                                                                                                                                                                                                                                                                                              | 10322758.41                                                                                                                                                                                                                                                                                                                                                                       | 0.9820916                                                                                                                                                                                                                                                        | 1336438.482                                                                                                                                                                                                                                                                                                                                                                    | 0.983994                                                                                                                                                                                                                       |
|            | LDT2                                                                                                                          | DSL                                                                                 | 1015.45285                                                                                                                                                                                                                                                                                                                                               | 0.000747659                                                                                                                                                                                                                                                                                              | 37944.25501                                                                                                                                                                                                                                                                                                                                                                       | 0.00361                                                                                                                                                                                                                                                          | 4835.433637                                                                                                                                                                                                                                                                                                                                                                    | 0.00356                                                                                                                                                                                                                        |
|            | LDT2                                                                                                                          | ELEC                                                                                | 1597.56671                                                                                                                                                                                                                                                                                                                                               | 0.001176258                                                                                                                                                                                                                                                                                              | 55532.59168                                                                                                                                                                                                                                                                                                                                                                       | 0.0052833                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                | 0.006001                                                                                                                                                                                                                       |
|            | LDT2                                                                                                                          | PIH                                                                                 | 2116.57955                                                                                                                                                                                                                                                                                                                                               | 0.001558398                                                                                                                                                                                                                                                                                              | 94757.7077                                                                                                                                                                                                                                                                                                                                                                        | 0.0090151                                                                                                                                                                                                                                                        | 8752.056437                                                                                                                                                                                                                                                                                                                                                                    | 0.006444                                                                                                                                                                                                                       |
|            |                                                                                                                               |                                                                                     | 290315.034                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                          | 10510992.96                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  | 1358176.899                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                |
|            | LHDT1                                                                                                                         | GAS                                                                                 | 19314.1424                                                                                                                                                                                                                                                                                                                                               | 0.046441179                                                                                                                                                                                                                                                                                              | 722529.3133                                                                                                                                                                                                                                                                                                                                                                       | 0.6418809                                                                                                                                                                                                                                                        | 287751.9438                                                                                                                                                                                                                                                                                                                                                                    | 0.691904                                                                                                                                                                                                                       |
|            | LHDT1                                                                                                                         | DSL                                                                                 | 10107.7368                                                                                                                                                                                                                                                                                                                                               | 0.024304222                                                                                                                                                                                                                                                                                              | 398004.1011                                                                                                                                                                                                                                                                                                                                                                       | 0.353579                                                                                                                                                                                                                                                         | 127142.6136                                                                                                                                                                                                                                                                                                                                                                    | 0.305717                                                                                                                                                                                                                       |
|            | LHDT1                                                                                                                         | ELEC                                                                                | 70.8283556                                                                                                                                                                                                                                                                                                                                               | 0.000170308                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                   | 0.0045401                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                | 0.002379                                                                                                                                                                                                                       |
|            |                                                                                                                               |                                                                                     | 29492.7076                                                                                                                                                                                                                                                                                                                                               | 0.070915709                                                                                                                                                                                                                                                                                              | 1125643.959                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  | 415883.9847                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                |
|            | LHDT2                                                                                                                         | GAS                                                                                 | 2506.9057                                                                                                                                                                                                                                                                                                                                                | 0.026111                                                                                                                                                                                                                                                                                                 | 91452.57471                                                                                                                                                                                                                                                                                                                                                                       | 0.331033                                                                                                                                                                                                                                                         | 37349.15959                                                                                                                                                                                                                                                                                                                                                                    | 0.389015                                                                                                                                                                                                                       |
|            | LHDT2                                                                                                                         | DSL                                                                                 | 4663.45548                                                                                                                                                                                                                                                                                                                                               | 0.048572823                                                                                                                                                                                                                                                                                              | 183558.3761                                                                                                                                                                                                                                                                                                                                                                       | 0.6644305                                                                                                                                                                                                                                                        | 58660.40334                                                                                                                                                                                                                                                                                                                                                                    | 0.610985                                                                                                                                                                                                                       |
|            | LHDT2                                                                                                                         | ELEC                                                                                | 18.3325933                                                                                                                                                                                                                                                                                                                                               | 0.000190945                                                                                                                                                                                                                                                                                              | 1253.286273                                                                                                                                                                                                                                                                                                                                                                       | 0.0045365                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                | 0.002528                                                                                                                                                                                                                       |
|            |                                                                                                                               |                                                                                     | 7188.69377                                                                                                                                                                                                                                                                                                                                               | 0.074874768                                                                                                                                                                                                                                                                                              | 276264.2371                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  | 96009.56293                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                |
|            | MCY                                                                                                                           | GAS                                                                                 | 28171.5095                                                                                                                                                                                                                                                                                                                                               | 0.022104648                                                                                                                                                                                                                                                                                              | 166022.3441                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                | 56343.01906                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                              |
|            | MDV                                                                                                                           |                                                                                     | 456640 407                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |
|            | IVIDV                                                                                                                         | GAS                                                                                 | 156642.427                                                                                                                                                                                                                                                                                                                                               | 0.208531065                                                                                                                                                                                                                                                                                              | 5468053.925                                                                                                                                                                                                                                                                                                                                                                       | 0.9650793                                                                                                                                                                                                                                                        | 726101.0934                                                                                                                                                                                                                                                                                                                                                                    | 0.966626                                                                                                                                                                                                                       |
|            | MDV                                                                                                                           | GAS<br>DSL                                                                          | 156642.427<br>2400.61454                                                                                                                                                                                                                                                                                                                                 | 0.003195831                                                                                                                                                                                                                                                                                              | 5468053.925<br>86292.68513                                                                                                                                                                                                                                                                                                                                                        | 0.9650793<br>0.0152302                                                                                                                                                                                                                                           | 726101.0934<br>11318.82209                                                                                                                                                                                                                                                                                                                                                     | 0.966626<br>0.015068                                                                                                                                                                                                           |
|            | MDV<br>MDV                                                                                                                    | DSL<br>ELEC                                                                         | 2400.61454<br>1678.68445                                                                                                                                                                                                                                                                                                                                 | 0.003195831<br>0.002234758                                                                                                                                                                                                                                                                               | 86292.68513<br>58660.62986                                                                                                                                                                                                                                                                                                                                                        | 0.0152302<br>0.0103533                                                                                                                                                                                                                                           | 11318.82209<br>8578.49571                                                                                                                                                                                                                                                                                                                                                      | 0.015068<br>0.01142                                                                                                                                                                                                            |
|            | MDV                                                                                                                           | DSL                                                                                 | 2400.61454<br>1678.68445<br>1250.85709                                                                                                                                                                                                                                                                                                                   | 0.003195831                                                                                                                                                                                                                                                                                              | 86292.68513<br>58660.62986<br>52904.03132                                                                                                                                                                                                                                                                                                                                         | 0.0152302<br>0.0103533                                                                                                                                                                                                                                           | 11318.82209<br>8578.49571<br>5172.294058                                                                                                                                                                                                                                                                                                                                       | 0.015068                                                                                                                                                                                                                       |
|            | MDV<br>MDV<br>MDV                                                                                                             | DSL<br>ELEC<br>PIH                                                                  | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583                                                                                                                                                                                                                                                                                                     | 0.003195831<br>0.002234758<br>0.00166521                                                                                                                                                                                                                                                                 | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271                                                                                                                                                                                                                                                                                                                          | 0.0152302<br>0.0103533<br>0.0093373                                                                                                                                                                                                                              | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052                                                                                                                                                                                                                                                                                                                        | 0.015068<br>0.01142<br>0.006886                                                                                                                                                                                                |
|            | MDV<br>MDV<br>MDV                                                                                                             | DSL<br>ELEC<br>PIH                                                                  | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984                                                                                                                                                                                                                                                                                       | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885                                                                                                                                                                                                                                                  | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271                                                                                                                                                                                                                                                                                                           | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681                                                                                                                                                                                                                 | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069                                                                                                                                                                                                                                                                                                         | 0.015068<br>0.01142<br>0.006886<br>0.712448                                                                                                                                                                                    |
|            | MDV<br>MDV<br>MDV                                                                                                             | DSL<br>ELEC<br>PIH                                                                  | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583                                                                                                                                                                                                                                                                                                     | 0.003195831<br>0.002234758<br>0.00166521                                                                                                                                                                                                                                                                 | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271                                                                                                                                                                                                                                                                                                           | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681                                                                                                                                                                                                                 | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052                                                                                                                                                                                                                                                                                                                        | 0.015068<br>0.01142<br>0.006886                                                                                                                                                                                                |
|            | MDV<br>MDV<br>MDV                                                                                                             | DSL<br>ELEC<br>PIH<br>GAS<br>DSL                                                    | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045                                                                                                                                                                                                                                                            | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464                                                                                                                                                                                                                                   | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519                                                                                                                                                                                                                                                                             | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319                                                                                                                                                                                                    | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679                                                                                                                                                                                                                                                                           | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552                                                                                                                                                                        |
|            | MDV<br>MDV<br>MDV                                                                                                             | DSL<br>ELEC<br>PIH                                                                  | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045                                                                                                                                                                                                                                                            | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738                                                                                                                                                                                                                    | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148                                                                                                                                                                                                                                                              | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516                                                                                                                                                                                       | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104                                                                                                                                                                                                                                                                                          | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552                                                                                                                                                                        |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH                                                                                                 | DSL<br>ELEC<br>PIH<br>GAS<br>DSL                                                    | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168                                                                                                                                                                                                                                              | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153                                                                                                                                                                                                     | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933                                                                                                                                                                                                                                               | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911                                                                                                                                                                          | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992                                                                                                                                                                                                                                                            | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544                                                                                                                                                |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT                                                                                 | DSL<br>ELEC<br>PIH<br>GAS<br>DSL                                                    | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854                                                                                                                                                                                                     | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438                                                                                                                                                                                      | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812                                                                                                                                                                                                                   | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454                                                                                                                                                             | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005                                                                                                                                                                                                               | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655                                                                                                                                    |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT                                                                         | DSL<br>ELEC<br>PIH<br>GAS<br>DSL<br>GAS<br>DSL<br>ELEC                              | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141                                                                                                                                                                                                                   | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438                                                                                                                                                                                      | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407                                                                                                                                                                                                                                | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454                                                                                                                                                             | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626                                                                                                                                                                                                                              | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655                                                                                                                                    |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT                                                                         | DSL<br>ELEC<br>PIH<br>GAS<br>DSL<br>GAS<br>DSL<br>ELEC                              | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854                                                                                                                                                                                                     | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.007701153<br>0.000201438<br>0.000590283                                                                                                                                                                       | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812                                                                                                                                                                                                                   | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119                                                                                                                                                | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829                                                                                                                                                                                                | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393                                                                                                                        |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS                                                 | DSL<br>ELEC<br>PIH<br>GAS<br>DSL<br>GAS<br>DSL<br>ELEC<br>NG                        | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556                                                                                                                                                           | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.0067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596                                                                                                                                        | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075                                                                                                                                                                      | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609                                                                                                                      | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389                                                                                                                                                                   | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267                                                                                                |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS                                         | DSL<br>ELEC<br>PIH<br>GAS<br>DSL<br>GAS<br>DSL<br>ELEC<br>NG                        | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138                                                                                                                                             | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.0067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05                                                                                                                         | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822                                                                                                                                                       | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225                                                                                                         | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274                                                                                                                                                     | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203                                                                                    |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS                                                 | DSL<br>ELEC<br>PIH<br>GAS<br>DSL<br>GAS<br>DSL<br>ELEC<br>NG                        | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556                                                                                                                                                           | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.0067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05                                                                                                                         | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822                                                                                                                                                       | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225                                                                                                         | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389                                                                                                                                                                   | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203                                                                                    |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS                                         | DSL<br>ELEC<br>PIH<br>GAS<br>DSL<br>GAS<br>DSL<br>ELEC<br>NG                        | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996                                                                                                                               | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068                                                                                                           | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372                                                                                                                                        | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961                                                                                            | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268                                                                                                                                      | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472                                                                        |
|            | MDV<br>MDV<br>MDV<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS                                               | GAS DSL ELEC NG GAS DSL ELEC NG GAS DSL ELEC NG                                     | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996<br>1344.42914                                                                                                                 | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068                                                                                                           | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372<br>82405.25361                                                                                                                         | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961                                                                                            | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268<br>18092.67416                                                                                                                       | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472                                                                        |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS<br>OBUS                                         | GAS DSL ELEC PIH  GAS DSL ELEC NG  GAS DSL ELEC NG  GAS DSL ELEC NG                 | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996<br>1344.42914                                                                                                                 | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068                                                                                                           | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372<br>82405.25361<br>8584.865553<br>15345.26177                                                                                           | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961<br>0.348885<br>0.6236244                                                                   | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268<br>18092.67416                                                                                                                       | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472                                                                        |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>SBUS                         | GAS DSL ELEC NG GAS DSL ELEC NG GAS DSL ELEC NG GAS DSL ELEC NG                     | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996<br>1344.42914<br>172.694787<br>670.595844<br>2.06466629<br>24.3995047                                                         | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068<br>0.016022959<br>0.062219191<br>0.000191564                                                              | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372<br>82405.25361<br>8584.865553<br>15345.26177<br>64.35501341<br>612.0940704                                                             | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961<br>0.348885<br>0.6236244<br>0.0026154                                                      | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268<br>18092.67416<br>690.7791473<br>9710.227827<br>23.64639413<br>353.3048277                                                           | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472                                                                        |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>SBUS<br>SBUS<br>SBUS         | GAS DSL ELEC NG GAS DSL ELEC NG GAS DSL ELEC NG GAS DSL ELEC NG                     | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996<br>1344.42914<br>172.694787<br>670.595844<br>2.06466629                                                                       | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068<br>0.016022959<br>0.062219191<br>0.000191564                                                              | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372<br>82405.25361<br>8584.865553<br>15345.26177<br>64.35501341                                                                            | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961<br>0.348885<br>0.6236244<br>0.0026154                                                      | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268<br>18092.67416<br>690.7791473<br>9710.227827<br>23.64639413                                                                          | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472<br>0.064092<br>0.900934<br>0.002194                                    |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>SBUS<br>SBUS<br>SBUS         | GAS DSL ELEC NG GAS DSL ELEC NG GAS DSL ELEC NG GAS DSL ELEC NG                     | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996<br>1344.42914<br>172.694787<br>670.595844<br>2.06466629<br>24.3995047<br>869.754802                                           | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068<br>0.016022959<br>0.062219191<br>0.000191564<br>0.002263834                                               | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372<br>82405.25361<br>8584.865553<br>15345.26177<br>64.35501341<br>612.0940704<br>24606.57641                                              | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961<br>0.348885<br>0.6236244<br>0.0026154<br>0.00248752                                        | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268<br>18092.67416<br>690.7791473<br>9710.227827<br>23.64639413<br>353.3048277                                                           | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472<br>0.064092<br>0.900934<br>0.002194<br>0.03278                         |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS | GAS DSL ELEC NG     | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996<br>1344.42914<br>172.694787<br>670.595844<br>2.06466629<br>24.3995047<br>869.754802                                           | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068<br>0.016022959<br>0.062219191<br>0.000191564<br>0.002263834<br>0.021676301<br>0.205776552                 | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372<br>82405.25361<br>8584.865553<br>15345.26177<br>64.35501341<br>612.0940704<br>24606.57641<br>4812.450683<br>48917.60551                | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961<br>0.348885<br>0.6236244<br>0.0026154<br>0.00248752<br>0.0818022<br>0.8315035              | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268<br>18092.67416<br>690.7791473<br>9710.227827<br>23.64639413<br>353.3048277<br>10777.9582<br>184.3325287<br>1749.897872               | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472<br>0.900934<br>0.002194<br>0.03278                                     |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS | GAS DSL ELEC NG  GAS DSL ELEC NG  GAS DSL ELEC NG  GAS DSL ELEC NG  GAS DSL ELEC NG | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996<br>1344.42914<br>172.694787<br>670.595844<br>2.06466629<br>24.3995047<br>869.754802<br>46.0831322<br>437.474468<br>5.34756545 | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.0067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068<br>0.016022959<br>0.062219191<br>0.000191564<br>0.002263834<br>0.021676301<br>0.205776552<br>0.031392036 | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372<br>82405.25361<br>8584.865553<br>15345.26177<br>64.35501341<br>612.0940704<br>24606.57641<br>4812.450683<br>48917.60551<br>235.0625504 | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961<br>0.348885<br>0.6236244<br>0.0026154<br>0.00248752<br>0.0818022<br>0.8315035<br>0.0483152 | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268<br>18092.67416<br>690.7791473<br>9710.227827<br>23.64639413<br>353.3048277<br>10777.9582<br>184.3325287<br>1749.897872<br>21.3902618 | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472<br>0.900934<br>0.002194<br>0.03278<br>0.086705<br>0.823106<br>0.125568 |
|            | MDV<br>MDV<br>MDV<br>MH<br>MH<br>MHDT<br>MHDT<br>MHDT<br>MHDT<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS<br>OBUS | GAS DSL ELEC NG     | 2400.61454<br>1678.68445<br>1250.85709<br>161972.583<br>2420.56984<br>977.36061<br>3397.93045<br>1414.55168<br>10390.528<br>30.9160141<br>90.5944854<br>11926.5902<br>443.146734<br>893.137556<br>1.08748138<br>7.05736996<br>1344.42914<br>172.694787<br>670.595844<br>2.06466629<br>24.3995047<br>869.754802                                           | 0.003195831<br>0.002234758<br>0.00166521<br>7.121629885<br>2.875521464<br>0.009216738<br>0.0067701153<br>0.000201438<br>0.000590283<br>0.024493158<br>0.049364596<br>6.01062E-05<br>0.000390068<br>0.016022959<br>0.062219191<br>0.000191564<br>0.002263834<br>0.021676301<br>0.205776552<br>0.031392036 | 86292.68513<br>58660.62986<br>52904.03132<br>5665911.271<br>22012.30271<br>9498.302477<br>31510.60519<br>71600.35148<br>434043.5933<br>1660.353407<br>4303.5812<br>511607.8794<br>19894.31417<br>61949.05075<br>92.50104822<br>469.3876372<br>82405.25361<br>8584.865553<br>15345.26177<br>64.35501341<br>612.0940704<br>24606.57641<br>4812.450683<br>48917.60551                | 0.0152302<br>0.0103533<br>0.0093373<br>0.6985681<br>0.3014319<br>0.1399516<br>0.8483911<br>0.0032454<br>0.0084119<br>0.2414205<br>0.7517609<br>0.0011225<br>0.0056961<br>0.348885<br>0.6236244<br>0.0026154<br>0.00248752<br>0.0818022<br>0.8315035<br>0.0483152 | 11318.82209<br>8578.49571<br>5172.294058<br>751170.7052<br>242.1538069<br>97.73606104<br>339.8898679<br>28302.34992<br>123938.9566<br>407.4535626<br>827.6228005<br>153476.3829<br>8866.47985<br>9141.625389<br>21.7583274<br>62.81059268<br>18092.67416<br>690.7791473<br>9710.227827<br>23.64639413<br>353.3048277<br>10777.9582<br>184.3325287<br>1749.897872               | 0.015068<br>0.01142<br>0.006886<br>0.712448<br>0.287552<br>0.184409<br>0.807544<br>0.002655<br>0.005393<br>0.490059<br>0.505267<br>0.001203<br>0.003472<br>0.900934<br>0.002194<br>0.03278<br>0.086705<br>0.823106<br>0.125568 |

Source: EMACXXXI (vl. 0.2) Emission Rates
Ragion Type County
Ragion Systa Claris
Calendar Fara 2024
Calendar Fara 2024
Sectors Admini
White Calendar Fara 2024
United Calendar

| Resion Calendar / Verhick Calmodel Visa Seared Fuel Population Total Vinit Calmodel Visa Seared Fuel Population Total Vinit Trios Nov. Runnerod. BLEATOR TRIANGO BULENOUS STREPTOR TRIANGO STREETOR HOTS FROM THE TOTAL STREPTOR TRIANGO BULEN TO STREPTOR THE TOTAL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Senta Clara 2024 HHOT Appropriate Geograph Conference Agriculture Conference Agriculture Conference |
| Santa Clara 2024 HHDT Agricostate Agricostate Disease 9486599 1001095 0 1247484 159455 6232042 2898857 0025574 000953 0031534 0 0.035982 007584 1694.1 11997.01 0 0.000777 0.23653 0 0.257453 1.890134 0 0.016732 5.094584 0 0 0 0 0.01998 5.799795 0 0 0 0 0.021598 0.002534 74.10575 0 0.015474 0.118055 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Santa Clara 2024 HHOT Agreeate Agreeate Electricity 28:33039 2794 261 378:7946 0 0 0 0 0 0.008585 0.014055 0 0 0.03441 0.040158 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Santa Cira 2024 HDT Assessed Natural Co. 2024 HDT Assessed Natural |
| Santa Cira 2024 UDA American Associate 600082 22200944 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 2220094 |
| SHIRT CAPE OF CONTROL A PRINTED REPORT OF CONTROL OF CO |
| Santa Cara Old A Agreement Registering Reg |
| Santa Citys   Oct   Agreement regular programmer re |
| Samita Clara Out Of America Science (Springer Aggregate  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sant Care 2004-1071 Agregate Aggregate Georgeate (22-84233 3433398 343980 0 64-84449 1.655992 0 0.0298737 0 0.0020 0.002784 0 0.0038737 0 0 0 0.0020 0.0039395 0 0 0.0039395 0 0 0.0039395 0 0 0.0039395 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Santa Citys 2 OFT 14 Acros 1 (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) ( |
| SHIRT GIAN OF THE PROPERTY OF  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Senta Clara 2024 LHDT2 Aggregate Agg |
| Senta Claria 2024 LHDT2 Aggregata Aggregata Paggregata  |
| Sama Can 2004-HOTT. Agregate Aggregate Expressive 5-1332-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 2132-25 21 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Santa Clara 2024 MOV Aggregate Aggre |
| Senta Clara 2024 Mith Aggregative Aggregat |
| Senta Claria 2024 MMH Aggregata Aggregata Densel 977.3666 9488.302 9488.302 0 97.73666 9488.302 0 97.73666 9488.302 0 97.73666 9488.302 0 0 0 0 0 0.355539 0.397281 0 0 0.010552 0 0 0 0 0.010557 0.009921 0 0 0.010553 0 0 0 0 0 0.010553 0 0 0 0 0 0.010553 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0 0.010553 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Senta Clara 2024 MHr0T Aggregate Agg |
| Senta Clara 2024 MHrDT Aggregate Densel 103903.3 434043.6 434043.6 0 123939 1232824 13.11952 1542732 0.014897 0.029902 0 0.003 0.015941 0.015048 0.031254 0 0.01507 0.01158 0 0.180759 0.3542.6 0 0.02455 0.249319 0 0 0 0 0.0356947 0.283831 0 0 0 0 0.0216532 0.120871 7.556027 0 0.010684 0.021292 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Santa Claria 2024 MHrDT Aggregate Excricity 30:91601 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 1660.353 0 16 |
| Santa Clara 2024 MHOT Aggregate Aggregate Natural GS 90.59449 4303.581 4303.581 0 827.6228 0.33345 6.499719 0 0.001179 0.018131 0 0.003 0.016007 0.001282 0.019719 0 0.012 0.04573 17.31409 0 0.200736 1.080664 0 0.010655 0.247384 0 0 0 0 0 1.06 2.995842 34.7393 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Santa Clara 2024 OBUS Aggregate Aggregate Gazoline 443.1467 19894.31 19894.31 0.20968 0.00556 0.006547 0.0000057 0 0.0000252 0.003 0.01568 0.00597 0 0.0000274 0.012 0.04799 1764.001 379.4143 31.61908 0.013757 0.15973 0.05966 0.024018 0.005504 0.033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.154922 2.818385 0.097877 1.088971 0.209081 0.0033873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.15492 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003873 0.003 |
| Santa Clara 2024 OBUS Aggregate Aggregate Discel 1983.1376 61949.05 6 1949.05 6 1949.05 6 1949.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Santa Clara 2024 OBUS Aggregate Excricity 1,087445 192,50105 0 92,50105 21,75833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Swita Claria 2024 OBUS Aggregate Natural Go 7.05737 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 4693876 46 |
| Santa Clara 2024 98US Aggregate Aggregate Gazoline 172:6948 8594.866 8594.866 0 690.7791 0.000884 0 0.000577 0.002 0.015721 0.000899 0 0.000616 0.008 0.04917 810.6664 2599.131 52.1347 0.011135 2.464852 0.074893 0.027101 0.008579 0.05599 0.054059 0.05595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Santa Clara 2024 98US Aggregate Aggregate Discel 670.5958 15345.26 0 9710.228 3.821388 21.87689 0.482851 0.019766 0.019703 0 0.003 0.015721 0.02066 0.020594 0 0.012 0.044802 0 0.057376 0.1725.7 0 0 0 0 0.065318 0.196101 0 0 0 0 0.048025 0.1775 4.677792 0 0.010835 0.021107 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Santa Claria 2024 SBUS Aggregate Aggregate Electricity 2.064666 6435501 0 6435501 0 6435501 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Santa Clara 2024 98US Aggregate Aggregate Natural Ga 24.9995 612.0941 0 353.3048 0.567729 5.270895 0 0.003378 0.015721 0.003674 0.01252 0 0.012 0.044917 1261.305 4066.736 0 3.436672 15.25665 0 0.257125 0.829031 0 0.049103 0.217987 0 0 0 0 0 1.06 11.64901 20.74693 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Santa Clara 2024 UBUS Aggregate Aggregate Gazoline 46.08313 4812.451 4812.451 0 194.3225 0.027483 0 0.457232 0.00143 0 0.000128 0.00 0.91 92.60836 0 36.94783 0.002034 0 0.043067 0.004288 0 0.071717 0.005634 0 0.157979 0.038099 0.092116 0.456438 0.00821 0 0.167492 0.038099 0.092116 0.456438 0.00821 0 0.457232 0.00143 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 0.000128 0 |
| Santa Clara 2024 UBUS Aggregate Aggregate Discel 437,4745 49917.61 0 1749.898 0.386257 0 0 0.007923 0 0 0.0083 0.0385 0.00734 0 0 0.0032 0.11 1101.14 0 0 0.003215 0 0 0.174485 0 0 0 0 0 0 0.078788 0 0 0 0 0 0 0.0878788 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Santa Clara 2024 UBUS Aggregate Aggregate Electricity 5.347565 235.0626 0 235.0626 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Santa Clara 2024 UBUS Aggregate Aggregate Aggregate Aggregate Natural Ga 42:58696 4865:187 4865:187 0 170:3478 0.058788 0 0 0.000282 0 0.000283 0.0385 0.000295 0 0 0.032731 0.11 1299:206 0 0 4.246059 0 0 0.06668 0 0 0 0 4.333415 0 0 0 0 0 97 49.04786 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Source: EMACXXXI (vl. 0.2) Emission Rates
Ragion Type County
Ragion Systa Claris
Calendar Near 2023
Calendar Near 2023
Calendar Near 2023
Calendar Near 2023
Vehical Countrations: EMACXXXII Calegories
United Countrations: EMACXXIII Calegories
United Countrations (EMACXXIII Calegorie

| Region Calendar Y Vehic | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Santa Clara 2023 HHD1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 HHD1   | ANYONATE Direct 235.059 991289 991289 991289 0 1208908 1999388 614088 2849455 0029557 0031631 0 0 00579 0027531 002731 0031061 0 0.00579 007589 0115918 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Santa Clara 2023 HHD1   | ANYONADE PARTICIPATE PARTICIPA |  |  |  |  |  |  |  |
| Santa Clara 2023 HHD1   | ANYONATO NATURANIA PARAMETER NATURANIA STATES SARES SA |  |  |  |  |  |  |  |
| Santa Clara 2023 LDA    | ABSTRACTION SQUARE SQUARE (50)983 22370251 2270251 0 2755479 0.004782 0 0.002755 0.001247 0 0.002752 0.002757 0.004782 0.004782 0 0.000758 281-43 0 71.6678 0.000758 281-43 0 71.6678 0.000758 0 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 0.004750 |  |  |  |  |  |  |  |
| Santa Clara 2023 LDA    | Agriculta Agriculta Disch 137-125 S2203 S 800331 Q28318 0 0 003539 0 0 0 000221 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Santa Clara 2023 LDA    | Agriculture Agriculture Exercitive 1571:151:151:151:151:151:151:151:151:151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Santa Clara 2023 LDA    | Agricante Agricante Paris Pari |  |  |  |  |  |  |  |
| Santa Clara 2023 LDT1   | Agricate Agricult Scioline 57872.5 174480 0 289737 9 014259 0 000055 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 000085 0 0000 |  |  |  |  |  |  |  |
| Santa Clara 2023 LDT1   | Agricutate Agricutate District 5-00-01-01-01-01-01-01-01-01-01-01-01-01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Santa Clara 2023 LDT1   | Appropriate Processing Electricity 1948-894 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 7081384 0 708184 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 7081884 0 708 |  |  |  |  |  |  |  |
| Santa Clara 2023 LDT1   | Aggregate Register Re |  |  |  |  |  |  |  |
| Santa Clara 2023 LDT2   | Agricante Agricante Gasoline 2003004 10149957 10013175 0077307 0 0388445 0001255 0 0000279 0000881 0 0000892 9483961 0 085445 00012417 0 0410727 0008119 0 024487 1449898 0018518 0 049694 0085119 0 024487 1449898 0018518 0 0000882 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 080082 9483961 0 0800 |  |  |  |  |  |  |  |
| Santa Clara 2023 LDT2   | Agricusta Agricusto Discol 978-967 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699-877 3699 |  |  |  |  |  |  |  |
| Santa Clara 2023 LDT2   | Agriculture Agriculture Electricity 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Santa Clara 2023 LDT2   | Register Reg |  |  |  |  |  |  |  |
| Santa Clara 2023 LHDT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 LHDT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 MCY    | Aggregate Aggreg |  |  |  |  |  |  |  |
| Santa Clara 2023 MDV    | Aggregate Aggreg |  |  |  |  |  |  |  |
| Santa Clara 2023 MDV    | Aggregate Desert 3:274-938 88824-44 80 1135-755 0053096 0 0 000515 0 0 000 0005181 0005383 0 0 00088 000999 411362 0 0 0005559 0 0 0004779 0 0 0 0 0 0012975 0 0 0 0 0 0 00012975 0 0 0 0 0 0 00012975 0 0 0 0 0 0 00012975 0 0 0 0 0 0 0 00012975 0 0 0 0 0 0 0 00012975 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 MDV    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 MDV    | Aggregate Aggregate Aggregate Aggregate Aggregate Aggregate Plays in Hyll 986,0895 4 1899,14 20787.35 21111.79 4077.48 0.009255 0.02858 0.359617 0.002687 0 0.11551 0.000688 0 0.002151 0.002 0.00337 0 0.000993 138.532 0 96.88489 0.000441 0 0.042261 0.000595 0.001408 0 0.173285 0.02985 0.028058 0.359617 0.002687 0 0.185715 0.02985 0.028058 0.359617 0.002687 0 0.11551 0.000688 0 0.00137 0 0.000995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Santa Clara 2023 MH     | Aggregate Aggreg |  |  |  |  |  |  |  |
| Santa Clara 2023 MH     | Aggregate Aggregate Dissel 959.1578 9344.849 0 95.91578 9344.849 0 95.91578 9344.849 0 95.91578 9344.849 0 0 0 0 0 0 0 0.000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Santa Clara 2023 MHD    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 MHD    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 MHD    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 MHD    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 OBUS   | Aggregate Aggregate Gazeline 458874 20830.08 20830.08 0 9181.619 0.553081 0.064991 0.405616 0.0000972 0 0.000287 0.012 0.044799 1784.092 381.8461 31.89445 0.015808 0.019479 0.0781.09 0.745234 0.192301 0.034706 0.154035 2.766253 0.044918 1.749596 5.768375 4.071703 0.017638 0.003775 0.000315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Santa Clara 2023 OBUS   | Aggregate Aggregate Direct 870.4209 51645.56 51645.56 0 8910.755 1.203188 7.410097 1.544404 0.020323 0.0086932 0 0.003 0.018018 0.021242 0.009022 0 0.012 0.05148 1282.538 1552.949 0 0.001991 0.020568 0 0.042868 0 0.042868 0 0.042868 0 0 0 0 0 0.048793 0.504126 0 0 0 0 0.0215865 0.153454 7.510858 0 0.012145 0.014706 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Santa Clara 2023 OBUS   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Santa Clara 2023 SBUS   | Aggregate Aggregate Gascine 165:967 8309:308 8309:308 0 667:9468 0.519317 0.925703 0.7051 0.000862 0 0.00066 0.002 0.015711 0.000862 0 0.000669 0.002 0.015711 0.000937 0 0.000669 0.002 0.015711 0.000937 0 0.000669 0.002 0.015712 0.000699 0.0020 0.075738 0.018271 0.000689 0.025734 0.000688 0.025734 0.000689 0.025734 0.000689 0.025734 0.000689 0.025734 0.000689 0.025734 0.000689 0.000699 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0.00069 0 |  |  |  |  |  |  |  |
| Santa Clara 2023 SBUS   | Aggregate Aggregate Direct 10481 15932.68 15932.68 0 9659.876 4.028015 2233983 0.457155 0.020908 0.02125 0 0.003 0.015721 0.021853 0.022211 0 0.012 0.04917 1148.524 2237.814 0 0.002748 0.008083 0 0.18095 0.352568 0 0.059161 0.174017 0 0 0 0 0.06735 0.198106 0 0 0 0.144154 0.181489 4.581854 0 0.010876 0.021191 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Santa Clara 2023 SBUS   | Aggregate Aggregate Electricity 0.3022373 3.5310494 0 3.510494 4.378365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Santa Clara 2023 SBUS   | Aggregate Aggregate Natural Ga 23.50782 595.8705 0 340.3903 0.587321 5.282702 0 0.003378 0.011076 0 0.003 0.015721 0.003674 0.011046 0 0.012 0.044917 1271.127 4/58.811 0 3.490611 15.40242 0 0.259128 0.827415 0 0.049874 0.22007 0 0 0 3.562424 15.7193 0 0 0 0 1.06 11.90284 20.11199 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Santa Clara 2023 UBUS   | Appropries  |  |  |  |  |  |  |  |
| Santa Clara 2023 UBUS   | Agyrogate Agyrogate Discel 436,5681 48829,71 48829,71 0 1746,572 0.386,256 0 0 0.007022 0 0 0.0083 0.0385 0.00734 0 0 0.03322 0.11 1100,965 0 0 0.0173457 0 0 0.059208 0 0 0 0 0 0 0.078788 0 0 0 0 0 0.01785 0.079368 0 0 0 0.010432 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Santa Clara 2023 UBUS   | Aggregate Aggregate Electricity 5.046757 199,0027 0 199,0027 0 199,0027 0.18703 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Santa Clara 2023 UBUS   | ABSTRANCE NATURAL SECTION ASSTRANCE NATURAL GG 42.26114 4829.673 4229.673 0 199.0446 0.05878 0 0 0.000282 0 0.000882 0.0385 0.000295 0 0 0.037727 0.11 1299.127 0 0 4.245742 0 0 0.06663 0 0 0 0 0 4.333091 0 0 0 0 0 0.97 49.04231 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |

Attachment 4: Project Construction and Operation Emissions and Health Risk Calculations

## Attachment 4: Project Construction and Operation Emissions and Health Risk Calculations

## 865 Embedded Way - San Jose, CA

**DPM Emissions and Modeling Emission Rates - Uncontrolled** 

| Emissions |              |            |        |         |            |          | Modeled | DPM<br>Emission |
|-----------|--------------|------------|--------|---------|------------|----------|---------|-----------------|
| Model     |              | DPM        | Area   | DI      | PM Emissio | ns       | Area    | Rate            |
| Year      | Activity     | (ton/year) | Source | (lb/yr) | (lb/hr)    | (g/s)    | $(m^2)$ | $(g/s/m^2)$     |
| 2023      | Construction | 0.0376     | DPM    | 75.3    | 0.03217    | 4.05E-03 | 24,259  | 1.67E-07        |

Modeled Operation Hours

hr/day = 9 (8am - 5pm Mon-Fri)

days/yr = 260 hours/year = 2340

### PM2.5 Fugitive Dust Emissions for Modeling - Uncontrolled

| Construction |              | Area   |            | PM2.5 l | Emissions |          | Modeled<br>Area | PM2.5<br>Emission<br>Rate |
|--------------|--------------|--------|------------|---------|-----------|----------|-----------------|---------------------------|
| Year         | Activity     | Source | (ton/year) | (lb/yr) | (lb/hr)   | (g/s)    | $(m^2)$         | g/s/m <sup>2</sup>        |
| 2022         | Construction | FUG    | 0.0556     | 111.3   | 0.04756   | 5.99E-03 | 24,259          | 2.47E-07                  |

Modeled Operation Hours

hr/day = 9 (8am - 5pm Mon-Fri)

days/yr = 260 hours/year = 2340

## 865 Embedded Way-San Jose, CA Construction Health Impacts Summary

## **Maximum Impacts at Residential Construction MEI Location - Uncontrolled**

|           | Maximum Co          | ncentrations      |       |                              |       | Maximum                       |
|-----------|---------------------|-------------------|-------|------------------------------|-------|-------------------------------|
| Emissions | Exhaust<br>PM10/DPM | Fugitive<br>PM2.5 |       | Cancer Risk<br>(per million) |       | Annual PM2.5<br>Concentration |
| Year      | $(\mu g/m^3)$       | $(\mu g/m^3)$     | Child | Adult                        | (-)   | $(\mu g/m^3)$                 |
| 2023      | 0.0026              | 0.0042            | 0.47  | 0.01                         | 0.001 | 0.01                          |

### 865 Embedded Way-San Jose, CA - Uncontrolled Emissions Maximum DPM Cancer Risk Calculations From Construction Impacts at Off-Site Receptors-1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)<sup>-1</sup>

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose =  $C_{air}$  x DBR x A x (EF/365) x  $10^{-6}$ 

Where:  $C_{air}$  = concentration in air ( $\mu$ g/m³) DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)

10<sup>-6</sup> = Conversion factor

### Values

|                   |               | Adult    |          |          |          |
|-------------------|---------------|----------|----------|----------|----------|
| Age><br>Parameter | 3rd Trimester | 0 - 2    | 2 - 9    | 2 - 16   | 16 - 30  |
| ASF =             | 10            | 10       | 3        | 3        | 1        |
| CPF =             | 1.10E+00      | 1.10E+00 | 1.10E+00 | 1.10E+00 | 1.10E+00 |
| DBR*=             | 361           | 1090     | 631      | 572      | 261      |
| A =               | 1             | 1        | 1        | 1        | 1        |
| EF =              | 350           | 350      | 350      | 350      | 350      |
| AT =              | 70            | 70       | 70       | 70       | 70       |
| FAH =             | 1.00          | 1.00     | 1.00     | 1.00     | 0.73     |

<sup>\* 95</sup>th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

|                |              |            | Infant/Child | - Exposure | Information | Infant/Child  | Adult - Exposure Information |           |             | Adult         |
|----------------|--------------|------------|--------------|------------|-------------|---------------|------------------------------|-----------|-------------|---------------|
|                | Exposure     |            |              |            | Age         | Cancer        | Mod                          | eled      | Age         | Cancer        |
| Exposure       | Duration     |            | DPM Cor      | ic (ug/m3) | Sensitivity | Risk          | DPM Con                      | c (ug/m3) | Sensitivity | Risk          |
| Year           | (years)      | Age        | Year         | Annual     | Factor      | (per million) | Year                         | Annual    | Factor      | (per million) |
| 0              | 0.25         | -0.25 - 0* | 2023         | 0.0026     | 10          | 0.04          | 2022                         | -         | -           | -             |
| 1              | 1            | 0 - 1      | 2023         | 0.0026     | 10          | 0.43          | 2022                         | 0.0026    | 1           | 0.01          |
| 2              | 1            | 1 - 2      |              | 0.0000     | 10          | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 3              | 1            | 2 - 3      |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 4              | 1            | 3 - 4      |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 5              | 1            | 4 - 5      |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 6              | 1            | 5 - 6      |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 7              | 1            | 6 - 7      |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 8              | 1            | 7 - 8      |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 9              | 1            | 8 - 9      |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 10             | 1            | 9 - 10     |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 11             | 1            | 10 - 11    |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 12             | 1            | 11 - 12    |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 13             | 1            | 12 - 13    |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 14             | 1            | 13 - 14    |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 15             | 1            | 14 - 15    |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 16             | 1            | 15 - 16    |              | 0.0000     | 3           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 17             | 1            | 16-17      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 18             | 1            | 17-18      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 19             | 1            | 18-19      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 20             | 1            | 19-20      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 21             | 1            | 20-21      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 22             | 1            | 21-22      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 23             | 1            | 22-23      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 24             | 1            | 23-24      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 25             | 1            | 24-25      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 26             | 1            | 25-26      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 27             | 1            | 26-27      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 28             | 1            | 27-28      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 29             | 1            | 28-29      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| 30             | 1            | 29-30      |              | 0.0000     | 1           | 0.00          |                              | 0.0000    | 1           | 0.00          |
| Total Increase | d Cancer Ris | k          |              |            |             | 0.468         |                              |           |             | 0.008         |

Fugitive Total PM2.5 PM2.5 0.0042 0.007

<sup>\*</sup> Third trimester of pregnancy

### 865 Embedded Way, San Jose: Off-Site DPM & PM2.5 Emissions

### Off-Site Truck Travel Exhaust Emissions

|                           | Emission* |         | Of-Site     | DPM/PM2.5 Emissions |           |  |
|---------------------------|-----------|---------|-------------|---------------------|-----------|--|
|                           | Factor    | Trucks  | Truck Route |                     | Annual    |  |
| Emissions Source          | (g/mi)    | per Day | (feet)      | (lb/day)            | (lb/year) |  |
| North Segment Hellyer Ave | 0.01385   | 24      | 1635        | 0.0002              | 0.08      |  |
| South Segment Hellyer Ave | 0.01385   | 24      | 1170        | 0.0002              | 0.06      |  |
| Embedded Way              | 0.01021   | 24      | 1541        | 0.0002              | 0.06      |  |

\* EMFAC2021 HHDT Truck PM10 emission factor for travel at 45 mph on Hellyer and 35 mph on Embedded Way.

### Off-Site Truck Travel Fugitive PM2.5 Emissions

| On-Site Truck Traverrugitive i | WIZ.S Emission | 13      |             |                   |           |
|--------------------------------|----------------|---------|-------------|-------------------|-----------|
|                                | Emission       |         | Off-Site    | DPM/PM2.5 Emissio |           |
|                                | Factor         | Trucks  | Truck Route | Daily             | Annual    |
| Emissions Source               | (g/mi)         | per Day | (feet)      | (lb/day)          | (lb/year) |
| North Segment Hellyer Ave      | 0.03636        | 24      | 1635        | 0.0006            | 0.22      |
| South Segment Hellyer Ave      | 0.03636        | 24      | 1170        | 0.0004            | 0.16      |
| Embedded Way                   | 0.03636        | 2.4     | 1541        | 0.0006            | 0.21      |

#### Truck Information

| Truck Trips per day = | 48     |
|-----------------------|--------|
| Total Trucks per day  | = 24   |
| Operation Days =      | 365    |
| Delivery Hours per Da | ay= 24 |

### Truck Fugitive PM2.5 Dust Emission Information (2024)

| Tire Wear Emission Factor (g/veh-mi) <sup>a</sup> =          | 0.0022 |
|--------------------------------------------------------------|--------|
| Brake Wear Emission Factor (g/veh-mi) <sup>a</sup> =         | 0.0173 |
| Fugitive Road Dust Emission Factor (g/veh-mi) <sup>a</sup> = | 0.0168 |
| Total PM2.5 Fugitive PM2.5 Emission Factor (g/veh-mi) =      | 0.0364 |

<sup>&</sup>lt;sup>a</sup> Emission factors from CT-EMFAC2017

### References

EPA 2015 - Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5 and PM10 nonattainment and maintenance Areas, November 2015

### 865 Embedded Way, San Jose: On-Site DPM & PM2.5 Emissions

### On-Site Truck Travel Emissions

|                  | Emission <sup>a</sup> | On-Site     | On-Site     | DPM/PM2.5 Emissions |                     |
|------------------|-----------------------|-------------|-------------|---------------------|---------------------|
|                  | Factor                | Truck Trips | Truck Route | Daily               | Annual <sup>b</sup> |
| Emissions Source | (g/mi)                | per Day     | (feet)      | (lb/day)            | (lb/year)           |
| All Trucks       | 0.11742               | 48          | 1579        | 0.0037              | 1.36                |
|                  | _                     |             |             |                     |                     |

a EMFAC2021 HHDT Truck PM10 emission factor for travel at 5 mph.

### On-Site Truck Travel Fugitive PM2.5 Emissions - Hallyer Ave

|                  | Emission | Truck   | Off-Site    | DPM/PM2.5 Emissions |           |  |
|------------------|----------|---------|-------------|---------------------|-----------|--|
|                  | Factor   | Trips   | Truck Route |                     | Annual    |  |
| Emissions Source | (g/mi)   | per Day | (feet)      | (lb/day)            | (lb/year) |  |
| All Trucks       | 0.03636  | 48      | 1579        | 0.0012              | 0.42      |  |

### Truck Information

| Truck Trips per day =   | 48  |
|-------------------------|-----|
| Total Trucks per day =  | 24  |
| Operation Days =        | 365 |
| Delivery Hours per Day= | 24  |

### Truck Fugitive PM2.5 Dust Emission Information (2024)

| Tire Wear Emission Factor (g/veh-mi) <sup>a</sup> =          | 0.0022       |
|--------------------------------------------------------------|--------------|
| Brake Wear Emission Factor (g/veh-mi) <sup>a</sup> =         | 0.0173       |
| Fugitive Road Dust Emission Factor (g/veh-mi) <sup>a</sup> = | 0.0168       |
| Total PM2.5 Fugitive PM2.5 Emission Factor (g/veh-n          | ni) = 0.0364 |

<sup>&</sup>lt;sup>a</sup> Emission factors from CT-EMFAC2017

### Truck Idle Emissions

|                  | Idle     |         |           | DPM/PM2.5 Emission |                     |
|------------------|----------|---------|-----------|--------------------|---------------------|
|                  | Emission | On-Site | Idle Time |                    |                     |
|                  | Factor   | Trucks  | per Truck | Daily              | Annual <sup>a</sup> |
| Emissions Source | (g/hr)   | per Day | (min)     | (lb/day)           | (lb/year)           |
| All Trucks       | 0.58710  | 24      | 10        | 0.0052             | 1.56                |

a Based on 365 days per year operation.

### Truck Idle DPM (PM10) Emission Information (2024)

| Truck Idle DPM (PM10) Emission Inform | ation (2024) |
|---------------------------------------|--------------|
| EMFAC2021 Emission Factor @ 5 mph (g  | 0.11742      |
| Truck Idle Emission Rate (g/hr) =     | 0.58710      |
| Idle Time per Trip (min)              | 5            |
| Idle Time per Truck (min)             | 10           |

Idle emission factor (g/hr) = EF @5 mph (g/mi) \* 5 mph

### Reference

EPA 2015 - Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5 and PM10 nonattainment and maintenance Areas, November 2015

### 865 Embedded Way, San Jose: Off-Site Modeling Emission Rates and Source Parameters

### Off-SiteTruck Travel DPM/PM2.5 Exhaust Emissions Modeling Information

| Emissions Period          | Source<br>Type | Average Hourly <sup>a</sup><br>DPM/PM2.5<br>Emissions (g/s) | Line Source<br>Length<br>(feet) | Plume<br>Width<br>(feet) | Plume<br>Height<br>(meters) | Release<br>Height<br>(meters) |
|---------------------------|----------------|-------------------------------------------------------------|---------------------------------|--------------------------|-----------------------------|-------------------------------|
| North Segment Hellyer Ave | Line-Volume    | 1.19E-06                                                    | 1635                            | 32                       | 6.8                         | 3.4                           |
| South Segment Hellyer Ave | Line-Volume    | 8.53E-07                                                    | 1170                            | 32                       | 6.8                         | 3.4                           |
| Embedded Way              | Line-Volume    | 8.28E-07                                                    | 1541                            | 44                       | 6.8                         | 3.4                           |

a Average hourly emissions for modeling calculated based on annual emissions divided by 365 days per year, 24 hours per day.

### Off-SiteTruck Travel Fugitive PM2.5 Emissions Modeling Information

| Emissions Period          | Source<br>Type | Average Hourly <sup>a</sup><br>DPM/PM2.5<br>Emissions (g/s) | Line Source<br>Length<br>(feet) | Plume<br>Width<br>(feet) | Plume<br>Height<br>(meters) | Release<br>Height<br>(meters) |
|---------------------------|----------------|-------------------------------------------------------------|---------------------------------|--------------------------|-----------------------------|-------------------------------|
| North Segment Hellyer Ave | Line-Volume    | 3.13E-06                                                    | 1635                            | 32                       | 2.6                         | 1.3                           |
| South Segment Hellyer Ave | Line-Volume    | 2.24E-06                                                    | 1170                            | 32                       | 2.6                         | 1.3                           |
| Embedded Way              | Line-Volume    | 2.95E-06                                                    | 1541                            | 44                       | 2.6                         | 1.3                           |

a Average hourly emissions for modeling calculated based on annual emissions divided by 365 days per year, 24 hours per day.

### 865 Embedded Way, San Jose: On-Site Modeling Emission Rates and Source Parameters

### On-SiteTruck Travel DPM/PM2.5 Exhaust Emissions Modeling Information

|                  |                | Average Hourly <sup>a</sup>  | Line Source      | Plume           | Plume              | Release            |
|------------------|----------------|------------------------------|------------------|-----------------|--------------------|--------------------|
| Emissions Period | Source<br>Type | DPM/PM2.5<br>Emissions (g/s) | Length<br>(feet) | Width<br>(feet) | Height<br>(meters) | Height<br>(meters) |
| All Trucks       | Line-Volume    | 1.95E-05                     | 1579             | 12              | 6.8                | 3.4                |

a Average hourly emissions for modeling calculated based on annual emissions divided by 365 days per year, 24 hours per day.

### On-SiteTruck Travel Fugitive PM2.5 Emissions Modeling Information

|                  |             | Average Hourly <sup>a</sup> | Line Source | Plume  | Plume    | Release  |
|------------------|-------------|-----------------------------|-------------|--------|----------|----------|
|                  | Source      | DPM/PM2.5                   | Length      | Width  | Height   | Height   |
| Emissions Period | Type        | Emissions (g/s)             | (feet)      | (feet) | (meters) | (meters) |
| All Trucks       | Line-Volume | 6.04E-06                    | 1579        | 12     | 2.6      | 1.3      |

a Average hourly emissions for modeling calculated based on annual emissions divided by 365 days per year, 24 hours per day.

### Truck Idle Modeling Information<sup>a</sup>

|                  |                 | Average Hourly <sup>b</sup> | Emissions  |        |          | Exit     |      |
|------------------|-----------------|-----------------------------|------------|--------|----------|----------|------|
|                  | Number of       | DPM/PM2.5                   | per Source | Height | Diameter | Velocity | Temp |
| Emissions Source | Emission Points | Emissions (g/s)             | (g/s)      | (m)    | (m)      | (m/s)    | (K)  |
| Truck Idle       | 6               | 2.24E-05                    | 3.74E-06   | 3.84   | 0.1      | 51.71    | 366  |

a Point source parameters from SJVAPCD, Guidance for Air Dispersion Modeling, Draft 01/07 Rev 2.0.

b Average hourly emissions for modeling calculated based on annual emissions divided by 365 days per year, 24 hours per day.

b Based on 365 days per year operation.

### 865 Embedded Way, San Jose Emergency Fire Pump Diesel Engine Impacts

| DPM Emission Rates          |                         |           |  |  |  |
|-----------------------------|-------------------------|-----------|--|--|--|
|                             | Fire Pump DPM Emissions |           |  |  |  |
| Daily An                    |                         |           |  |  |  |
| Source Type                 | (lb/day)                | (lb/year) |  |  |  |
| One 472 hp diesel fire pump | 0.016                   | 5.70      |  |  |  |
| CalEEMod DPM Emissions      | 2.85E-03                | tons/year |  |  |  |

| Modeling Information                            |                 |                                               |  |  |  |  |  |
|-------------------------------------------------|-----------------|-----------------------------------------------|--|--|--|--|--|
| Model                                           | AERMOD          |                                               |  |  |  |  |  |
| Source                                          | Diesel Fire Pum | np Engine                                     |  |  |  |  |  |
| Source Type                                     | Point           |                                               |  |  |  |  |  |
| Meteorological Data                             | 2013-2017 San   | 2013-2017 San Jose Airport Meterological Data |  |  |  |  |  |
| Point Source Stack Parameters                   |                 |                                               |  |  |  |  |  |
| Generator Engine Size (hp)<br>Stack Height (ft) | 37              | estimated                                     |  |  |  |  |  |
| Stack Diameter (ft)**                           | 0.60            |                                               |  |  |  |  |  |
| Stack Exit Velocity (ft/sec)**                  | 149             |                                               |  |  |  |  |  |
| Exhaust Gas Flowrate (CFM)*                     | 2528            |                                               |  |  |  |  |  |
| Exhaust Temperature (°F)**                      | 872             |                                               |  |  |  |  |  |
| Emissions Rate (lb/hr)                          | 0.00065         |                                               |  |  |  |  |  |

<sup>\*</sup> calculated

865 Embedded Way - Project Operation - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations at Project MEI Receptor Residential Recepotrs - 1.5 Meter Receptor Heights

Emissions Year

Receptor Information

 $\begin{tabular}{lll} Number of Receptors & 1 \\ Receptor Height = & 1.5 meter \\ Receptor distances = & at project MEI \\ \end{tabular}$ 

Meteorological Conditions

BAAQMD San Jose Airport Met Data 2013-2017
Land Use Classification urban
Wind speed = variable
Wind direction = variable

### **MEI Maximum DPM Concentrations**

| Emission Source | Concentration (µg/m³) DPM |
|-----------------|---------------------------|
| Truck Travel    | 0.00020                   |
| Truck Idle      | 0.00018                   |
| Fire Pump       | 0.0004                    |
| Total           | 0.0008                    |

### **MEI Maximum PM2.5 Concentrations**

| Emission Source | Concentrations (µg/m³)<br>Total PM2.5 |
|-----------------|---------------------------------------|
| Truck Travel    | 0.00029                               |
| Truck Idle      | 0.00018                               |
| Fire Pump       | 0.0004                                |
| Total           | 0.0009                                |

<sup>\*\*</sup>BAAQMD default diesel engine parameters

### 865 Embedded Way, San Jose - Project Operation DPM Cancer Risks From Project Operation Sources Maximum DPM Cancer Risk at Project MEI Receptor 1.5 Meter Receptor Heights

### Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)<sup>-1</sup>

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose =  $C_{air}$  x DBR x A x (EF/365) x  $10^{-6}$ 

Where:  $C_{air} = concentration in air (\mu g/m^3)$ 

DBR = daily breathing rate (L/kg body weight-day)

 $A = Inhalation \ absorption \ factor$ 

EF = Exposure frequency (days/year)

 $10^{-6}$  = Conversion factor

### Values

### Cancer Potency Factors (mg/kg-day)<sup>-1</sup>

| TAC | CPF      |
|-----|----------|
| DPM | 1.10E+00 |

|           |               | Adult  |                |      |
|-----------|---------------|--------|----------------|------|
| Age>      | 3rd Trimester | 0 - <2 | 0 - <2 2 - <16 |      |
| Parameter |               |        |                |      |
| ASF       | 10            | 10     | 3              | 1    |
| DBR*=     | 361           | 1090   | 572            | 261  |
| A =       | 1             | 1      | 1              | 1    |
| EF =      | 350           | 350    | 350            | 350  |
| ED =      | 0.25          | 2      | 14             | 14   |
| AT =      | 70            | 70     | 70             | 70   |
| FAH =     | 1.00          | 1.00   | 1.00           | 0.73 |

<sup>\* 95</sup>th percentile breathing rates for infants and 80th percentile for children and adults

### MEI Cancer Risk From Project Trucks (travel & idling)

### 1.5 meter receptor height (2024-2052)

| Exposure<br>Duration<br>(years) | Age         | Age<br>Sensitivity<br>Factor | DPM<br>Annual Conc<br>(ug/m3) | DPM<br>Cancer Risk<br>(per million) |
|---------------------------------|-------------|------------------------------|-------------------------------|-------------------------------------|
| 0                               | -0.25 - 0*  | 10                           | 0.00038                       | 0.00                                |
| 1                               | 1 - 2       | 10                           | 0.00038                       | 0.06                                |
| 14                              | 3 - 16      | 3                            | 0.00038                       | 0.14                                |
| 14                              | 17 - 30     | 1                            | 0.00038                       | 0.02                                |
| Total Increased                 | Cancer Risk |                              |                               | 0.215                               |

<sup>\*</sup> Third trimester of pregnancy

### MEI Cancer Risk From Fire Pump

### 1.5 meter receptor height (2024-2052)

| Exposure<br>Duration<br>(years) | Age         | Age<br>Sensitivity<br>Factor | DPM<br>Annual Conc<br>(ug/m3) | DPM<br>Cancer Risk<br>(per million) |
|---------------------------------|-------------|------------------------------|-------------------------------|-------------------------------------|
| 0                               | -0.25 - 0*  | 10                           | 0.00040                       | 0.00                                |
| 1                               | 1 - 2       | 10                           | 0.00040                       | 0.07                                |
| 14                              | 3 - 16      | 3                            | 0.00040                       | 0.14                                |
| 14                              | 17 - 30     | 1                            | 0.00040                       | 0.02                                |
| Total Increased                 | Cancer Risk |                              |                               | 0.227                               |

<sup>\*</sup> Third trimester of pregnancy

### **Total MEI Cancer Risk From Project Operation**

### 1.5 meter receptor height (2024-2052)

| Exposure<br>Duration<br>(years) | Age         | Age<br>Sensitivity<br>Factor | DPM<br>Annual Conc<br>(ug/m3) | DPM<br>Cancer Risk<br>(per million) |
|---------------------------------|-------------|------------------------------|-------------------------------|-------------------------------------|
| 0                               | -0.25 - 0*  | 10                           | 0.00078                       | 0.00                                |
| 1                               | 1 - 2       | 10                           | 0.00078                       | 0.13                                |
| 14                              | 3 - 16      | 3                            | 0.00078                       | 0.28                                |
| 14                              | 17 - 30     | 1                            | 0.00078                       | 0.03                                |
| Total Increased                 | Cancer Risk |                              |                               | 0.442                               |

<sup>\*</sup> Third trimester of pregnancy

## **Attachment 5: Cumulative Risk Information and Calculations**

### CT-EMFAC2017 Emissions Factors for Santa Clara County 2023

File Name: Embedded Way - Santa Clara (SF) - 2023 - Annual.EF

CT-EMFAC2017 Version: 1.0.2.27401

Run Date: 7/21/2022 13:27
Area: Santa Clara (SF)

Analysis Year: 2023 Season: Annual

Non-Truck

\_\_\_\_\_

VMT Diesel VMT Gas VMT Vehicle Category Fraction Fraction Fraction Across Within Within Category Category Category Truck 1 0.015 0.487 0.513 0.938 Truck 2 0.02 0.047

0.965

\_\_\_\_\_

0.014

0.958

Road Type: Major/Collector

Silt Loading Factor: CARB 0.032 g/m2

Precipitation Correction: CARB P = 64 days N = 365 days

\_\_\_\_\_

Fleet Average Running Exhaust Emission Factors (grams/veh-mile)

Pollutant Name <= 5 mph 10 mph 15 mph 20 mph 25 mph 30 mph 35 mph 40 mph 45 mph 50 mph PM2.5 0.009229 0.005981 0.004054 0.002896 0.002194 0.001765 0.001511 0.001375 0.001329 0.001357 TOG 0.195764 0.127928 0.086105 0.061055 0.046181 0.036838 0.030861 0.027137 0.025044 0.024259 Diesel PM 0.000904 0.000732 0.000563 0.000446 0.000382 0.000353 0.00035 0.00037 0.000411 0.000473

\_\_\_\_\_

Fleet Average Running Loss Emission Factors (grams/veh-hour)

Pollutant Name Emission Factor TOG 1.35761

\_\_\_\_\_

Fleet Average Tire Wear Factors (grams/veh-mile)

Pollutant Name Emission Factor PM2.5 0.002108

\_\_\_\_\_

Fleet Average Brake Wear Factors (grams/veh-mile)

Pollutant Name Emission Factor PM2.5 0.016808

\_\_\_\_\_

Fleet Average Road Dust Factors (grams/veh-mile)

Pollutant Name Emission Factor PM2.5 0.014855

-----END------

## Hellyer Avenue Traffic Emissions and Health Risk Calculations

Analysis Year = 2023

|         | 2023 Caltrans | 2023      |
|---------|---------------|-----------|
| Vehicle | Vehicles      | Vehicles  |
| Туре    | (veh/day)     | (veh/day) |
| Total   | 12,710        | 12,710    |
|         |               |           |

Increase From 20231.00Vehicles/Direction6,355Avg Vehicles/Hour/Direction265

Traffic Data Year = 2023

| Project Traffic Data - Background Plus Project ADT |            | Total |
|----------------------------------------------------|------------|-------|
|                                                    | AADT Total | Truck |
| Hellyer Avenue and Embedded Way                    | 12,710     | 446   |
|                                                    |            |       |

Percent of Total Vehicles

3.51%

Traffic Increase per Year (%) = 1.00%

### 865 Embedded Way, San Jose, CA - Offsite Residential Roadway Modeling Cumulative Operation - Hellyer Avenue DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions

Year = 2023

| Road Link  | Description            | Direction | No. Lanes | Link<br>Length<br>(m) | Link<br>Length<br>(mi) | Link<br>Width<br>(m) | Link<br>Width<br>(ft) | Release<br>Height<br>( m) | Average<br>Speed<br>(mph) | Average<br>Vehicles<br>per Day |
|------------|------------------------|-----------|-----------|-----------------------|------------------------|----------------------|-----------------------|---------------------------|---------------------------|--------------------------------|
| DPM_NB_HEL | Hellyer Ave Northbound | NB        | 2         | 816.2                 | 0.51                   | 13.3                 | 43.7                  | 3.4                       | 45                        | 6,355                          |
| DPM_SB_HEL | Hellyer Ave Southbound | SB        | 2         | 848.5                 | 0.53                   | 13.3                 | 43.7                  | 3.4                       | 45<br>Total               | 6,355<br>12,710                |

### **Emission Factors - DPM**

| Speed Category                | 1       | 2 | 3 | 4 |
|-------------------------------|---------|---|---|---|
| Travel Speed (mph)            | 45      |   |   |   |
| Emissions per Vehicle (g/VMT) | 0.00041 |   |   |   |

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and DPM Emissions - DPM\_NB\_HEL

|      | % Per |     |          |      | % Per |     |          |       | % Per |       |          |
|------|-------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour | Hour  | VPH | g/s      | Hour | Hour  | VPH | g/s      | Hour  | Hour  | VPH   | g/s      |
| 1    | 3.91% | 248 | 1.44E-05 | 9    | 6.50% | 413 | 2.39E-05 | 17    | 5.58% | 354   | 2.05E-05 |
| 2    | 2.59% | 164 | 9.52E-06 | 10   | 7.36% | 468 | 2.71E-05 | 18    | 3.28% | 208   | 1.21E-05 |
| 3    | 2.88% | 183 | 1.06E-05 | 11   | 6.33% | 402 | 2.33E-05 | 19    | 2.36% | 150   | 8.68E-06 |
| 4    | 3.34% | 212 | 1.23E-05 | 12   | 6.84% | 435 | 2.52E-05 | 20    | 0.92% | 58    | 3.39E-06 |
| 5    | 2.19% | 139 | 8.04E-06 | 13   | 6.15% | 391 | 2.26E-05 | 21    | 2.99% | 190   | 1.10E-05 |
| 6    | 3.39% | 216 | 1.25E-05 | 14   | 6.15% | 391 | 2.26E-05 | 22    | 4.14% | 263   | 1.52E-05 |
| 7    | 5.98% | 380 | 2.20E-05 | 15   | 5.23% | 333 | 1.93E-05 | 23    | 2.47% | 157   | 9.10E-06 |
| 8    | 4.66% | 296 | 1.71E-05 | 16   | 3.91% | 248 | 1.44E-05 | 24    | 0.86% | 55    | 3.17E-06 |
|      |       |     |          |      |       |     |          | Total |       | 6,355 |          |

2023 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM\_SB\_HEL

|      | % Per |     |          |      | % Per |     |          |       | % Per |       |          |
|------|-------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour | Hour  | VPH | g/mile   | Hour | Hour  | VPH | g/mile   | Hour  | Hour  | VPH   | g/mile   |
| 1    | 3.91% | 248 | 1.50E-05 | 9    | 6.50% | 413 | 2.49E-05 | 17    | 5.58% | 354   | 2.13E-05 |
| 2    | 2.59% | 164 | 9.90E-06 | 10   | 7.36% | 468 | 2.82E-05 | 18    | 3.28% | 208   | 1.25E-05 |
| 3    | 2.88% | 183 | 1.10E-05 | 11   | 6.33% | 402 | 2.42E-05 | 19    | 2.36% | 150   | 9.02E-06 |
| 4    | 3.34% | 212 | 1.28E-05 | 12   | 6.84% | 435 | 2.62E-05 | 20    | 0.92% | 58    | 3.52E-06 |
| 5    | 2.19% | 139 | 8.36E-06 | 13   | 6.15% | 391 | 2.35E-05 | 21    | 2.99% | 190   | 1.14E-05 |
| 6    | 3.39% | 216 | 1.30E-05 | 14   | 6.15% | 391 | 2.35E-05 | 22    | 4.14% | 263   | 1.58E-05 |
| 7    | 5.98% | 380 | 2.29E-05 | 15   | 5.23% | 333 | 2.00E-05 | 23    | 2.47% | 157   | 9.46E-06 |
| 8    | 4.66% | 296 | 1.78E-05 | 16   | 3.91% | 248 | 1.50E-05 | 24    | 0.86% | 55    | 3.30E-06 |
|      |       |     |          |      |       |     |          | Total |       | 6,355 |          |

**Cumulative Operation - Hellyer Avenue** 

PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions

Year = 2023

| Road Link   | Description            | Direction | No. Lanes | Link<br>Length<br>(m) | Link<br>Length<br>(mi) | Link<br>Width<br>(m) | Link<br>Width<br>(ft) | Release<br>Height<br>( m) | Average<br>Speed<br>(mph) | Average<br>Vehicles<br>per Day |
|-------------|------------------------|-----------|-----------|-----------------------|------------------------|----------------------|-----------------------|---------------------------|---------------------------|--------------------------------|
| PM25_NB_HEL | Hellyer Ave Northbound | NB        | 2         | 816.2                 | 0.51                   | 13.3                 | 44                    | 1.3                       | 45                        | 6,355                          |
| PM25 SB HEL | Hellyer Ave Southbound | SB        | 2         | 848.5                 | 0.53                   | 13.3                 | 44                    | 1.3                       | 45                        | 6,355                          |
|             |                        |           |           |                       |                        |                      |                       |                           | Total                     | 12,710                         |

### Emission Factors - PM2.5

| Speed Category                | 1        | 2 | 3 | 4 |
|-------------------------------|----------|---|---|---|
| Travel Speed (mph)            | 45       |   |   |   |
| Emissions per Vehicle (g/VMT) | 0.001329 |   |   |   |

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and PM2.5 Emissions - PM25\_NB\_HEL

| -025 HOU | iy iraine voia | mes and i | IVIE IS EIIIIIS | 310113 1 14 | <u> </u> |     |          |       |       |       |          |
|----------|----------------|-----------|-----------------|-------------|----------|-----|----------|-------|-------|-------|----------|
|          |                |           |                 |             | % Per    |     |          |       | % Per |       |          |
| Hour     | % Per Hour     | VPH       | g/s             | Hour        | Hour     | VPH | g/s      | Hour  | Hour  | VPH   | g/s      |
| 1        | 1.15%          | 73        | 1.37E-05        | 9           | 7.11%    | 452 | 8.46E-05 | 17    | 7.38% | 469   | 8.79E-05 |
| 2        | 0.42%          | 27        | 4.97E-06        | 10          | 4.39%    | 279 | 5.23E-05 | 18    | 8.17% | 519   | 9.72E-05 |
| 3        | 0.41%          | 26        | 4.85E-06        | 11          | 4.66%    | 296 | 5.55E-05 | 19    | 5.70% | 362   | 6.78E-05 |
| 4        | 0.26%          | 17        | 3.13E-06        | 12          | 5.89%    | 374 | 7.01E-05 | 20    | 4.27% | 272   | 5.09E-05 |
| 5        | 0.50%          | 32        | 5.96E-06        | 13          | 6.15%    | 391 | 7.32E-05 | 21    | 3.26% | 207   | 3.88E-05 |
| 6        | 0.90%          | 57        | 1.08E-05        | 14          | 6.04%    | 384 | 7.18E-05 | 22    | 3.30% | 210   | 3.92E-05 |
| 7        | 3.79%          | 241       | 4.51E-05        | 15          | 7.01%    | 446 | 8.34E-05 | 23    | 2.46% | 156   | 2.93E-05 |
| 8        | 7.76%          | 493       | 9.24E-05        | 16          | 7.14%    | 453 | 8.49E-05 | 24    | 1.86% | 118   | 2.22E-05 |
|          |                |           | -               |             |          |     | <u> </u> | Total |       | 6,355 |          |

2023 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM25\_SB\_HEL

|      |            |     |          |      | % Per |     |          |       | % Per |       |          |
|------|------------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour | % Per Hour | VPH | g/mile   | Hour | Hour  | VPH | g/mile   | Hour  | Hour  | VPH   | g/mile   |
| 1    | 1.15%      | 73  | 1.42E-05 | 9    | 7.11% | 452 | 8.80E-05 | 17    | 7.38% | 469   | 9.13E-05 |
| 2    | 0.42%      | 27  | 5.16E-06 | 10   | 4.39% | 279 | 5.43E-05 | 18    | 8.17% | 519   | 1.01E-04 |
| 3    | 0.41%      | 26  | 5.04E-06 | 11   | 4.66% | 296 | 5.77E-05 | 19    | 5.70% | 362   | 7.05E-05 |
| 4    | 0.26%      | 17  | 3.26E-06 | 12   | 5.89% | 374 | 7.28E-05 | 20    | 4.27% | 272   | 5.29E-05 |
| 5    | 0.50%      | 32  | 6.19E-06 | 13   | 6.15% | 391 | 7.61E-05 | 21    | 3.26% | 207   | 4.03E-05 |
| 6    | 0.90%      | 57  | 1.12E-05 | 14   | 6.04% | 384 | 7.47E-05 | 22    | 3.30% | 210   | 4.08E-05 |
| 7    | 3.79%      | 241 | 4.69E-05 | 15   | 7.01% | 446 | 8.67E-05 | 23    | 2.46% | 156   | 3.04E-05 |
| 8    | 7.76%      | 493 | 9.60E-05 | 16   | 7.14% | 453 | 8.83E-05 | 24    | 1.86% | 118   | 2.31E-05 |
|      |            |     |          |      |       |     |          | Total |       | 6,355 |          |

**Cumulative Operation - Hellyer Avenue** 

TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions

Year = 2023

| Road Link   | Description            | Direction | No.<br>Lanes | Link<br>Length<br>(m) | Link<br>Length<br>(mi) | Link<br>Width<br>(m) | Link<br>Width<br>(ft) | Release<br>Height<br>( m) | Average<br>Speed<br>(mph) | Average<br>Vehicles<br>per Day |
|-------------|------------------------|-----------|--------------|-----------------------|------------------------|----------------------|-----------------------|---------------------------|---------------------------|--------------------------------|
| TEXH_NB_HEL | Hellyer Ave Northbound | NB        | 2            | 816.2                 | 0.51                   | 13.3                 | 44                    | 1.3                       | 45                        | 6,355                          |
| TEXH_SB_HEL | Hellyer Ave Southbound | SB        | 2            | 848.5                 | 0.53                   | 13.3                 | 44                    | 1.3                       | 45                        | 6,355                          |
|             |                        |           |              |                       |                        |                      |                       |                           | Total                     | 12,710                         |

### Emission Factors - TOG Exhaust

| Speed Category                | 1       | 2 | 3 | 4 |
|-------------------------------|---------|---|---|---|
| Travel Speed (mph)            | 45      |   |   |   |
| Emissions per Vehicle (g/VMT) | 0.02504 |   |   |   |

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH\_NB\_HEL

|            | % Per |     |          |      | % Per |     |          |       | % Per |       |          |
|------------|-------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour       | Hour  | VPH | g/s      | Hour | Hour  | VPH | g/s      | Hour  | Hour  | VPH   | g/s      |
| 1          | 1.15% | 73  | 2.58E-04 | 9    | 7.11% | 452 | 1.59E-03 | 17    | 7.38% | 469   | 1.66E-03 |
| 2          | 0.42% | 27  | 9.36E-05 | 10   | 4.39% | 279 | 9.85E-04 | 18    | 8.17% | 519   | 1.83E-03 |
| 3          | 0.41% | 26  | 9.14E-05 | 11   | 4.66% | 296 | 1.05E-03 | 19    | 5.70% | 362   | 1.28E-03 |
| 4          | 0.26% | 17  | 5.90E-05 | 12   | 5.89% | 374 | 1.32E-03 | 20    | 4.27% | 272   | 9.58E-04 |
| 5          | 0.50% | 32  | 1.12E-04 | 13   | 6.15% | 391 | 1.38E-03 | 21    | 3.26% | 207   | 7.31E-04 |
| 6          | 0.90% | 57  | 2.03E-04 | 14   | 6.04% | 384 | 1.35E-03 | 22    | 3.30% | 210   | 7.40E-04 |
| 7          | 3.79% | 241 | 8.50E-04 | 15   | 7.01% | 446 | 1.57E-03 | 23    | 2.46% | 156   | 5.51E-04 |
| 8          | 7.76% | 493 | 1.74E-03 | 16   | 7.14% | 453 | 1.60E-03 | 24    | 1.86% | 118   | 4.18E-04 |
| · <u> </u> |       |     |          |      |       |     |          | Total |       | 6,355 |          |

### 2023 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH\_SB\_HEL

|      | % Per |     |          |      | % Per |     |          |       | % Per |       |          |
|------|-------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour | Hour  | VPH | g/mile   | Hour | Hour  | VPH | g/mile   | Hour  | Hour  | VPH   | g/mile   |
| 1    | 1.15% | 73  | 2.68E-04 | 9    | 7.11% | 452 | 1.66E-03 | 17    | 7.38% | 469   | 1.72E-03 |
| 2    | 0.42% | 27  | 9.73E-05 | 10   | 4.39% | 279 | 1.02E-03 | 18    | 8.17% | 519   | 1.90E-03 |
| 3    | 0.41% | 26  | 9.50E-05 | 11   | 4.66% | 296 | 1.09E-03 | 19    | 5.70% | 362   | 1.33E-03 |
| 4    | 0.26% | 17  | 6.13E-05 | 12   | 5.89% | 374 | 1.37E-03 | 20    | 4.27% | 272   | 9.96E-04 |
| 5    | 0.50% | 32  | 1.17E-04 | 13   | 6.15% | 391 | 1.43E-03 | 21    | 3.26% | 207   | 7.60E-04 |
| 6    | 0.90% | 57  | 2.11E-04 | 14   | 6.04% | 384 | 1.41E-03 | 22    | 3.30% | 210   | 7.69E-04 |
| 7    | 3.79% | 241 | 8.84E-04 | 15   | 7.01% | 446 | 1.63E-03 | 23    | 2.46% | 156   | 5.73E-04 |
| 8    | 7.76% | 493 | 1.81E-03 | 16   | 7.14% | 453 | 1.66E-03 | 24    | 1.86% | 118   | 4.34E-04 |
|      |       |     |          |      |       |     |          | Total |       | 6,355 |          |

**Cumulative Operation - Hellyer Avenue** 

TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions

Year = 2023

| Road Link    | Description            | Direction | No.<br>Lanes | Link<br>Length<br>(m) | Link<br>Length<br>(mi) | Link<br>Width<br>(m) | Link<br>Width<br>(ft) | Release<br>Height<br>( m) | Average<br>Speed<br>(mph) | Average<br>Vehicles<br>per Day |
|--------------|------------------------|-----------|--------------|-----------------------|------------------------|----------------------|-----------------------|---------------------------|---------------------------|--------------------------------|
| TEVAP_NB_HEL | Hellyer Ave Northbound | NB        | 2            | 816.2                 | 0.51                   | 13.3                 | 44                    | 1.3                       | 45                        | 6,355                          |
| TEVAP_SB_HEL | Hellyer Ave Southbound | SB        | 2            | 848.5                 | 0.53                   | 13.3                 | 44                    | 1.3                       | 45                        | 6,355                          |
|              |                        |           |              |                       |                        |                      |                       |                           | Total                     | 12,710                         |

Emission Factors - PM2.5 - Evaporative TOG

| Speed Category                          | 1       | 2 | 3 | 4 |
|-----------------------------------------|---------|---|---|---|
| Travel Speed (mph)                      | 45      |   |   |   |
| Emissions per Vehicle per Hour (g/hour) | 1.35761 |   |   |   |
| Emissions per Vehicle per Mile (g/VMT)  | 0.03017 |   |   |   |

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP\_NB\_HEL

|      | % Per |     |          |      | % Per |     |          |       | % Per |       |          |
|------|-------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour | Hour  | VPH | g/s      | Hour | Hour  | VPH | g/s      | Hour  | Hour  | VPH   | g/s      |
| 1    | 1.15% | 73  | 3.11E-04 | 9    | 7.11% | 452 | 1.92E-03 | 17    | 7.38% | 469   | 1.99E-03 |
| 2    | 0.42% | 27  | 1.13E-04 | 10   | 4.39% | 279 | 1.19E-03 | 18    | 8.17% | 519   | 2.21E-03 |
| 3    | 0.41% | 26  | 1.10E-04 | 11   | 4.66% | 296 | 1.26E-03 | 19    | 5.70% | 362   | 1.54E-03 |
| 4    | 0.26% | 17  | 7.11E-05 | 12   | 5.89% | 374 | 1.59E-03 | 20    | 4.27% | 272   | 1.15E-03 |
| 5    | 0.50% | 32  | 1.35E-04 | 13   | 6.15% | 391 | 1.66E-03 | 21    | 3.26% | 207   | 8.80E-04 |
| 6    | 0.90% | 57  | 2.44E-04 | 14   | 6.04% | 384 | 1.63E-03 | 22    | 3.30% | 210   | 8.91E-04 |
| 7    | 3.79% | 241 | 1.02E-03 | 15   | 7.01% | 446 | 1.89E-03 | 23    | 2.46% | 156   | 6.64E-04 |
| 8    | 7.76% | 493 | 2.10E-03 | 16   | 7.14% | 453 | 1.93E-03 | 24    | 1.86% | 118   | 5.03E-04 |
|      |       |     |          |      |       |     |          | Total |       | 6,355 |          |

2023 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP\_SB\_HEL

|      | % Per |     |          |      | % Per |     |          |       | % Per |       |          |
|------|-------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour | Hour  | VPH | g/mile   | Hour | Hour  | VPH | g/mile   | Hour  | Hour  | VPH   | g/mile   |
| 1    | 1.15% | 73  | 3.23E-04 | 9    | 7.11% | 452 | 2.00E-03 | 17    | 7.38% | 469   | 2.07E-03 |
| 2    | 0.42% | 27  | 1.17E-04 | 10   | 4.39% | 279 | 1.23E-03 | 18    | 8.17% | 519   | 2.29E-03 |
| 3    | 0.41% | 26  | 1.14E-04 | 11   | 4.66% | 296 | 1.31E-03 | 19    | 5.70% | 362   | 1.60E-03 |
| 4    | 0.26% | 17  | 7.39E-05 | 12   | 5.89% | 374 | 1.65E-03 | 20    | 4.27% | 272   | 1.20E-03 |
| 5    | 0.50% | 32  | 1.41E-04 | 13   | 6.15% | 391 | 1.73E-03 | 21    | 3.26% | 207   | 9.15E-04 |
| 6    | 0.90% | 57  | 2.54E-04 | 14   | 6.04% | 384 | 1.70E-03 | 22    | 3.30% | 210   | 9.26E-04 |
| 7    | 3.79% | 241 | 1.07E-03 | 15   | 7.01% | 446 | 1.97E-03 | 23    | 2.46% | 156   | 6.91E-04 |
| 8    | 7.76% | 493 | 2.18E-03 | 16   | 7.14% | 453 | 2.00E-03 | 24    | 1.86% | 118   | 5.23E-04 |
|      |       |     |          |      |       |     |          | Total |       | 6,355 |          |

**Cumulative Operation - Hellyer Avenue** 

Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions

Year = 2023

| Road Link  | Description            | Direction | No.<br>Lanes | Link<br>Length<br>(m) | Link<br>Length<br>(mi) | Link<br>Width<br>(m) | Link<br>Width<br>(ft) | Release<br>Height<br>( m) | Average<br>Speed<br>(mph) | Average<br>Vehicles<br>per Day |
|------------|------------------------|-----------|--------------|-----------------------|------------------------|----------------------|-----------------------|---------------------------|---------------------------|--------------------------------|
| FUG_NB_HEL | Hellyer Ave Northbound | NB        | 2            | 816.2                 | 0.51                   | 13.3                 | 44                    | 1.3                       | 45                        | 6,355                          |
| FUG_SB_HEL | Hellyer Ave Southbound | SB        | 2            | 848.5                 | 0.53                   | 13.3                 | 44                    | 1.3                       | 45                        | 6,355                          |
|            |                        |           |              |                       |                        |                      |                       |                           | Total                     | 12,710                         |

Emission Factors - Fugitive PM2.5

| Speed Category                                       | 1       | 2 | 3 | 4 |
|------------------------------------------------------|---------|---|---|---|
| Travel Speed (mph)                                   | 45      |   |   |   |
| Tire Wear - Emissions per Vehicle (g/VMT)            | 0.00211 |   |   |   |
| Brake Wear - Emissions per Vehicle (g/VMT)           | 0.01681 |   |   |   |
| Road Dust - Emissions per Vehicle (g/VMT)            | 0.01486 |   |   |   |
| Total Fugitive PM2.5 - Emissions per Vehicle (g/VMT) | 0.03377 |   |   |   |

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG\_NB\_HEL

|      | % Per |     |          |      | % Per |     |          |       | % Per |       |          |
|------|-------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour | Hour  | VPH | g/s      | Hour | Hour  | VPH | g/s      | Hour  | Hour  | VPH   | g/s      |
| 1    | 1.15% | 73  | 3.48E-04 | 9    | 7.11% | 452 | 2.15E-03 | 17    | 7.38% | 469   | 2.23E-03 |
| 2    | 0.42% | 27  | 1.26E-04 | 10   | 4.39% | 279 | 1.33E-03 | 18    | 8.17% | 519   | 2.47E-03 |
| 3    | 0.41% | 26  | 1.23E-04 | 11   | 4.66% | 296 | 1.41E-03 | 19    | 5.70% | 362   | 1.72E-03 |
| 4    | 0.26% | 17  | 7.96E-05 | 12   | 5.89% | 374 | 1.78E-03 | 20    | 4.27% | 272   | 1.29E-03 |
| 5    | 0.50% | 32  | 1.51E-04 | 13   | 6.15% | 391 | 1.86E-03 | 21    | 3.26% | 207   | 9.85E-04 |
| 6    | 0.90% | 57  | 2.73E-04 | 14   | 6.04% | 384 | 1.83E-03 | 22    | 3.30% | 210   | 9.97E-04 |
| 7    | 3.79% | 241 | 1.15E-03 | 15   | 7.01% | 446 | 2.12E-03 | 23    | 2.46% | 156   | 7.44E-04 |
| 8    | 7.76% | 493 | 2.35E-03 | 16   | 7.14% | 453 | 2.16E-03 | 24    | 1.86% | 118   | 5.64E-04 |
|      |       |     |          |      |       |     | •        | Total |       | 6,355 |          |

2023 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG\_SB\_HEL

|      | % Per |     |          |      | % Per |     |          |       | % Per |       |          |
|------|-------|-----|----------|------|-------|-----|----------|-------|-------|-------|----------|
| Hour | Hour  | VPH | g/mile   | Hour | Hour  | VPH | g/mile   | Hour  | Hour  | VPH   | g/mile   |
| 1    | 1.15% | 73  | 3.62E-04 | 9    | 7.11% | 452 | 2.24E-03 | 17    | 7.38% | 469   | 2.32E-03 |
| 2    | 0.42% | 27  | 1.31E-04 | 10   | 4.39% | 279 | 1.38E-03 | 18    | 8.17% | 519   | 2.57E-03 |
| 3    | 0.41% | 26  | 1.28E-04 | 11   | 4.66% | 296 | 1.47E-03 | 19    | 5.70% | 362   | 1.79E-03 |
| 4    | 0.26% | 17  | 8.27E-05 | 12   | 5.89% | 374 | 1.85E-03 | 20    | 4.27% | 272   | 1.34E-03 |
| 5    | 0.50% | 32  | 1.57E-04 | 13   | 6.15% | 391 | 1.93E-03 | 21    | 3.26% | 207   | 1.02E-03 |
| 6    | 0.90% | 57  | 2.84E-04 | 14   | 6.04% | 384 | 1.90E-03 | 22    | 3.30% | 210   | 1.04E-03 |
| 7    | 3.79% | 241 | 1.19E-03 | 15   | 7.01% | 446 | 2.20E-03 | 23    | 2.46% | 156   | 7.73E-04 |
| 8    | 7.76% | 493 | 2.44E-03 | 16   | 7.14% | 453 | 2.24E-03 | 24    | 1.86% | 118   | 5.86E-04 |
| 1    |       |     |          |      |       |     |          | Total |       | 6,355 |          |

# 865 Embedded Way, San Jose, CA - Hellyer Ave Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations at Project MEI Receptor, 1.5m receptor height

Emission Year 2023

Receptor Information Project MEI receptor

Number of Receptors

Receptor Height 1.5 meters

Receptor Distances At Project MEI location

**Meteorological Conditions** 

BAQMD San Jose Airport Met Data 2013-2017
Land Use Classification Urban
Wind Speed Variable
Wind Direction Variable

**Project MEI Cancer Risk Maximum Concentrations** 

| Meteorological | Concentration (μg/m3) |             |                 |  |  |  |  |
|----------------|-----------------------|-------------|-----------------|--|--|--|--|
| Data Years     | DPM                   | Exhaust TOG | Evaporative TOG |  |  |  |  |
| 2013-2017      | 0.0001                | 0.0023      | 0.0027          |  |  |  |  |

**Project MEI PM2.5 Maximum Concentrations** 

| Meteorological | PM2.5 Concentration (μg/m3) |                |               |  |  |  |  |  |
|----------------|-----------------------------|----------------|---------------|--|--|--|--|--|
| Data Years     | Total PM2.5                 | Fugitive PM2.5 | Vehicle PM2.5 |  |  |  |  |  |
| 2013-2017      | 0.0032                      | 0.0030         | 0.0001        |  |  |  |  |  |

### 865 Embedded Way, San Jose, CA - Hellyer Ave Cancer Risk & PM2.5 Impacts at Project MEI - 1.5 meter receptor height 30 Year Residential Exposure

### Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 

ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose =  $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$ 

Where:  $C_{air} = concentration in air (\mu g/m^3)$ 

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor EF = Exposure frequency (days/year)

 $10^{-6}$  = Conversion factor

### Cancer Potency Factors (mg/kg-day)<sup>-1</sup>

| TAC                     | CPF      |
|-------------------------|----------|
| DPM                     | 1.10E+00 |
| Vehicle TOG Exhaust     | 6.28E-03 |
| Vehicle TOG Evaporative | 3.70E-04 |

### Values

|           | Inf           |       | Adult  |         |
|-----------|---------------|-------|--------|---------|
| Age>      | 3rd Trimester | 0 - 2 | 2 - 16 | 16 - 30 |
| Parameter |               |       |        |         |
| ASF=      | 10            | 10    | 3      | 1       |
| DBR* =    | 361           | 1090  | 572    | 261     |
| A =       | 1             | 1     | 1      | 1       |
| EF =      | 350           | 350   | 350    | 350     |
| AT =      | 70            | 70    | 70     | 70      |
| FAH=      | 1.00          | 1.00  | 1.00   | 0.73    |

<sup>\* 95</sup>th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

|               |                   | cimum - Expos ui | e Information |                    |        | entration (u   | g/m3)              | Canc  | er Risk (per | million)    |       | 1       |                   |       |
|---------------|-------------------|------------------|---------------|--------------------|--------|----------------|--------------------|-------|--------------|-------------|-------|---------|-------------------|-------|
| Exposure      | Exposure Duration |                  |               | Age<br>Sensitivity | DPM    | Exhaust<br>TOG | Evaporative<br>TOG | DPM   | Exhaust      | Evaporative | TOTAL |         |                   |       |
| Year          | (years)           | Age              | Year          | Factor             |        |                |                    |       | TOG          | TOG         |       |         | Maximum           |       |
| 0             | 0.25              | -0.25 - 0*       | 2023          | 10                 | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  | Index   | Fugitive<br>PM2.5 | PM2.5 |
| 1             | 1                 | 0 - 1            | 2023          | 10                 | 0.0001 | 0.0023         | 0.0027             | 0.008 | 0.002        | 0.0001      | 0.01  | 0.00001 | 0.003             | 0.003 |
| 2             | 1                 | 1 - 2            | 2024          | 10                 | 0.0001 | 0.0023         | 0.0027             | 0.008 | 0.002        | 0.0001      | 0.01  |         |                   |       |
| 3             | 1                 | 2 - 3            | 2025          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 4             | 1                 | 3 - 4            | 2026          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 5             | 1                 | 4 - 5            | 2027          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 6             | 1                 | 5 - 6            | 2028          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 7             | 1                 | 6 - 7            | 2029          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 8             | 1                 | 7 - 8            | 2030          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 9             | 1                 | 8 - 9            | 2031          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 10            | 1                 | 9 - 10           | 2032          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 11            | 1                 | 10 - 11          | 2033          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 12            | 1                 | 11 - 12          | 2034          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 13            | 1                 | 12 - 13          | 2035          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 14            | 1                 | 13 - 14          | 2036          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 15            | 1                 | 14 - 15          | 2037          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 16            | 1                 | 15 - 16          | 2038          | 3                  | 0.0001 | 0.0023         | 0.0027             | 0.001 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 17            | 1                 | 16-17            | 2039          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 18            | 1                 | 17-18            | 2040          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 19            | 1                 | 18-19            | 2041          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 20            | 1                 | 19-20            | 2042          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 21            | 1                 | 20-21            | 2043          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 22            | 1                 | 21-22            | 2044          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 23            | 1                 | 22-23            | 2045          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 24            | 1                 | 23-24            | 2046          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 25            | 1                 | 24-25            | 2047          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 26            | 1                 | 25-26            | 2048          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 27            | 1                 | 26-27            | 2049          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 28            | 1                 | 27-28            | 2050          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  | I       |                   |       |
| 29            | 1                 | 28-29            | 2051          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| 30            | 1                 | 29-30            | 2052          | 1                  | 0.0001 | 0.0023         | 0.0027             | 0.000 | 0.000        | 0.0000      | 0.00  |         |                   |       |
| Total Increas | ed Cancer R       | isk              | •             | •                  |        |                |                    | 0.04  | 0.010        | 0.001       | 0.05  |         |                   |       |

<sup>\*</sup> Third trimester of pregnancy



**Risk & Hazard Stationary Source Inquiry Form** 

This form is required when users request stationary source data from BAAQMD

This form is to be used with the BAAQMD's Google Earth stationary source screening tables.

Click here for guidance on coducting risk & hazard screening, including roadways & freeways, refer to the District's Risk & Hazard Analysis flow chart.

Click here for District's Recommended Methods for Screening and Modeling Local Risks and Hazards document.

| Table A: Rec | uester Contact | Information |
|--------------|----------------|-------------|
|              |                |             |

| Date of Request        | 7/21/2022                    |
|------------------------|------------------------------|
| Contact Name           | Casey Divine                 |
|                        |                              |
| Affiliation            | Illingworth & Rodkin, Inc.   |
| Phone                  | 707-794-0400 x103            |
|                        | cdivine@illingworthrodkin.co |
| Email                  | <u>m</u>                     |
| Project Name           | 865 Embedded Way             |
| Address                | 865 Embedded Way             |
| City                   | San Jose                     |
| County                 | Santa Clara                  |
| Type (residential,     |                              |
| commercial, mixed      |                              |
| use, industrial, etc.) | R&D                          |
| Project Size (# of     |                              |
| units or building      |                              |
| square feet)           | 121.85-ksf                   |

Comments:

For Air District assistance, the following steps must be completed:

- 1. Complete all the contact and project information requested in
- Table A complete forms will not be processed. Please include a project site map.
- 2. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's website, http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx. The small points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc. Click on a point to view the source's Information Table, including the name, location, and preliminary estimated cancer risk, hazard index, and PM2.5 concentration.
- 3. Find the project site in Google Earth by inputting the site's address in the Google Earth search box.
- 4. Identify stationary sources within at least a 1000ft radius of project site. Verify that the location of the source on the map matches with the source's address in the Information Table, by using the Google Earth address search box to confirm the source's address location. Please report any mapping errors to the District.
- 5. List the stationary source information in

Table B

6. Note that a small percentage of the stationary Health Risk Screening Assessment (HRSA) data INSTEAD of screening level data. These sources will be noted by an asterisk next to the Plant Name (Map B on right). If HRSA values are presented, these values have already been modeled and cannot be adjusted further.

7. Email this completed form to District staff. District staff will provide the most recent risk, hazard, and PM2.5 data that are available for the source(s). If this information or data are not available, source emissions data will be provided. Staff will respond to inquiries within three weeks.

Note that a public records request received for the same stationary source information will cancel the processing of your SSIF request.

Submit forms, maps, and questions to Matthew Hanson at 415-749-8733, or mhanson@baaqmd.gov

|                    |           |                           |                  |                                                                   |           | Project N                      | ΛEI                    |                 |            |             |          |          |
|--------------------|-----------|---------------------------|------------------|-------------------------------------------------------------------|-----------|--------------------------------|------------------------|-----------------|------------|-------------|----------|----------|
| Distance from      |           |                           |                  |                                                                   |           |                                |                        |                 | Distance   | Adjusted    | Adjusted |          |
| Receptor (feet) or |           |                           |                  |                                                                   |           |                                |                        |                 | Adjustment | Cancer Risk | Hazard   | Adjusted |
| MEI <sup>1</sup>   | Plant No. | Facility Name             | Address          | Cancer Risk <sup>2</sup> Hazard Risk <sup>2</sup> PM <sub>2</sub> | Source No | .3 Type of Source <sup>4</sup> | Fuel Code <sup>5</sup> | Status/Comments | Multiplier | Estimate    | Risk     | PM2.5    |
| 750                | 201638    | KBAY-KEZR Alpha Media LLC | 5225 HELLYER AVE | 0.15 -                                                            | -         | Generators                     |                        | 2020 Dataset    | 0.07       | 0.01        | #VALUE!  | #VALUE!  |

### Footnotes:

- Maximally exposed individual
- 2. These Cancer Risk, Hazard Index, and PM2.5 columns represent the values in the Google Earth Plant Information Table.
- 3. Each plant may have multiple permits and sources.
- 4. Permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc.
- 5. Fuel codes: 98 = diesel, 189 = Natural Gas.
- 6. If a Health Risk Screening Assessment (HRSA) was completed for the source, the application number will be listed here.
- 7. The date that the HRSA was completed.
- 8. Engineer who completed the HRSA. For District purposes only.
- 9. All HRSA completed before 1/5/2010 need to be multiplied by an age sensitivity factor of 1.7.
- 10. The HRSA "Chronic Health" number represents the Hazard Index.
- 11. Further information about common sources:
  - a. Sources that only include diesel internal combustion engines can be adjusted using the BAAQMD's Diesel Multiplier worksheet.
  - b. The risk from natural gas boilers used for space heating when <25 MM BTU/hr would have an estimated cancer risk of one in a million or less, and a chronic hazard index of 0.003 or
  - c. BAAQMD Reg 11 Rule 16 required that all co-residential (sharing a wall, floor, ceiling or is in the same building as a residential unit) dry cleaners cease use of perc on July 1, 2010.
  - Therefore, there is no cancer risk, hazard or PM2.5 concentrations from co-residential dry cleaning businesses in the BAAQMD.
  - d. Non co-residential dry cleaners must phase out use of perc by Jan. 1, 2023. Therefore, the risk from these dry cleaners does not need to be factored in over a 70-year period, but instead should reflect
  - e. Gas stations can be adjusted using BAAQMD's Gas Station Distance Mulitplier worksheet.
  - f. Unless otherwise noted, exempt sources are considered insignificant. See BAAQMD Reg 2 Rule 1 for a list of exempt sources.
- g. This spray booth is considered to be insignificant.

### Date last updated:

03/13/2018

Gasoline Dispensing Facility (GDF) Distance Multiplier Tool: This distance multiplier tool refines the screening values for cancer risk and chronic hazard index found in the District's Stationary Source Screening Analysis Tool for GDFs, to represent adjusted risk and hazard impacts that can be expected with farther distances from the source of emissions. Diesel Internal Combustion (IC) Engine Distance Multiplier Tool: This distance multiplier tool refines the screening values for cancer risk and PM2.5 concentrations found in the District's Stationary Source Screening Analysis Tool for permitted facilities which contain only diseal Cengines, to represent adjusted risk and hazard impacts that can be expected with farther distances from the source of emissions.

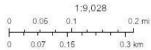
Generic Distance Multiplier Tool: This distance multiplier tool refines the screening values to represent adjusted risk and hazard impacts that can be expected with farther distances from the source of emissions.

| Gas Station |                |                     |               |               |  |  |  |
|-------------|----------------|---------------------|---------------|---------------|--|--|--|
| Distance    | Distance       | Distance            | Enter Risk or | Adjusted Risk |  |  |  |
| (meters)    | (feet)         | adjustment          | Hazard        | or Hazard     |  |  |  |
| 0           | 0.0            | multiplier<br>1.000 |               | 0.0000        |  |  |  |
| 5           | 16.4           | 1.000               |               | 0.0000        |  |  |  |
| 10          | 32.8           | 1.000               |               | 0.0000        |  |  |  |
| 15          | 49.2           | 1.000               |               | 0.0000        |  |  |  |
| 20          | 65.6           | 1.000               |               | 0.0000        |  |  |  |
| 25          | 82.0<br>98.4   | 0.728               |               | 0.0000        |  |  |  |
| 30<br>35    | 98.4<br>114.8  | 0.559<br>0.445      |               | 0.0000        |  |  |  |
| 40          | 131.2          | 0.365               |               | 0.0000        |  |  |  |
| 45          | 147.6          | 0.305               |               | 0.0000        |  |  |  |
| 50          | 164.0          | 0.260               |               | 0.0000        |  |  |  |
| 55          | 180.4          | 0.225               |               | 0.0000        |  |  |  |
| 60          | 196.9          | 0.197               |               | 0.0000        |  |  |  |
| 65          | 213.3          | 0.174               |               | 0.0000        |  |  |  |
| 70<br>75    | 229.7<br>246.1 | 0.155<br>0.139      |               | 0.0000        |  |  |  |
| 80          | 262.5          | 0.126               |               | 0.0000        |  |  |  |
| 85          | 278.9          | 0.114               |               | 0.0000        |  |  |  |
| 90          | 295.3          | 0.104               |               | 0.0000        |  |  |  |
| 95          | 311.7          | 0.096               |               | 0.0000        |  |  |  |
| 100         | 328.1          | 0.088               |               | 0.0000        |  |  |  |
| 105         | 344.5          | 0.082               |               | 0.0000        |  |  |  |
| 110         | 360.9          | 0.076               |               | 0.0000        |  |  |  |
| 115<br>120  | 377.3<br>393.7 | 0.071               |               | 0.0000        |  |  |  |
| 125         | 410.1          | 0.062               |               | 0.0000        |  |  |  |
| 130         | 426.5          | 0.058               |               | 0.0000        |  |  |  |
| 135         | 442.9          | 0.055               |               | 0.0000        |  |  |  |
| 140         | 459.3          | 0.052               |               | 0.0000        |  |  |  |
| 145         | 475.7          | 0.049               |               | 0.0000        |  |  |  |
| 150         | 492.1          | 0.046               |               | 0.0000        |  |  |  |
| 155         | 508.5<br>524.9 | 0.044               |               | 0.0000        |  |  |  |
| 160<br>165  | 541.3          | 0.042               |               | 0.0000        |  |  |  |
| 170         | 557.7          | 0.038               |               | 0.0000        |  |  |  |
| 175         | 574.1          | 0.036               |               | 0.0000        |  |  |  |
| 180         | 590.6          | 0.034               |               | 0.0000        |  |  |  |
| 185         | 607.0          | 0.033               |               | 0.0000        |  |  |  |
| 190         | 623.4          | 0.031               |               | 0.0000        |  |  |  |
| 195<br>200  | 639.8<br>656.2 | 0.030               |               | 0.0000        |  |  |  |
| 200         | 672.6          | 0.029               |               | 0.0000        |  |  |  |
| 210         | 689.0          | 0.028               |               | 0.0000        |  |  |  |
| 215         | 705.4          | 0.026               |               | 0.0000        |  |  |  |
| 220         | 721.8          | 0.025               |               | 0.0000        |  |  |  |
| 225         | 738.2          | 0.024               |               | 0.0000        |  |  |  |
| 230         | 754.6          | 0.023               |               | 0.0000        |  |  |  |
| 235         | 771.0          | 0.022               |               | 0.0000        |  |  |  |
| 240<br>245  | 787.4<br>803.8 | 0.022               |               | 0.0000        |  |  |  |
| 250         | 820.2          | 0.021               |               | 0.0000        |  |  |  |
| 255         | 836.6          | 0.020               |               | 0.0000        |  |  |  |
| 260         | 853.0          | 0.019               |               | 0.0000        |  |  |  |
| 265         | 869.4          | 0.018               |               | 0.0000        |  |  |  |
| 270         | 885.8          | 0.018               |               | 0.0000        |  |  |  |
| 275         | 902.2          | 0.017               |               | 0.0000        |  |  |  |
| 280         | 918.6          | 0.017               |               | 0.0000        |  |  |  |
| 285<br>290  | 935.0<br>951.4 | 0.016<br>0.016      |               | 0.0000        |  |  |  |
| 290         | 967.8          | 0.015               |               | 0.0000        |  |  |  |
| 300         | 984.3          | 0.015               |               | 0.0000        |  |  |  |
|             |                |                     |               |               |  |  |  |

| Diesel Backup Generator |                    |                                      |                         |                               |                              |                                 |  |  |
|-------------------------|--------------------|--------------------------------------|-------------------------|-------------------------------|------------------------------|---------------------------------|--|--|
| Distance<br>(meters)    | Distance<br>(feet) | Distance<br>adjustment<br>multiplier | Enter Risk<br>or Hazard | Adjusted<br>Risk or<br>Hazard | Enter PM2.5<br>Concentration | Adjusted PM2.5<br>Concentration |  |  |
| 0                       | 0.0                | 1.000                                |                         | 0                             |                              | 0                               |  |  |
| 5                       | 16.4               | 1.000                                |                         | 0                             |                              | 0                               |  |  |
| 10                      | 32.8               | 1.000                                |                         | 0                             |                              | 0                               |  |  |
| 15                      | 49.2               | 1.000                                |                         | 0                             |                              | 0                               |  |  |
| 20                      | 65.6               | 1.000                                |                         | 0                             |                              | 0                               |  |  |
| 25                      | 82.0               | 0.85                                 |                         | 0                             |                              | 0                               |  |  |
| 30                      | 98.4               | 0.73                                 |                         | 0                             |                              | 0                               |  |  |
| 35                      | 114.8              | 0.64                                 |                         | 0                             |                              | 0                               |  |  |
| 40                      | 131.2              | 0.58                                 |                         | 0                             |                              | 0                               |  |  |
| 50                      | 164.0              | 0.5                                  |                         | 0                             |                              | 0                               |  |  |
| 60                      | 196.9              | 0.41                                 |                         | 0                             |                              | 0                               |  |  |
| 70                      | 229.7              | 0.31                                 |                         | 0                             |                              | 0                               |  |  |
| 80                      | 262.5              | 0.28                                 |                         | 0                             |                              | 0                               |  |  |
| 90                      | 295.3              | 0.25                                 |                         | 0                             |                              | 0                               |  |  |
| 100                     | 328.1              | 0.22                                 |                         | 0                             |                              | 0                               |  |  |
| 110                     | 360.9              | 0.18                                 |                         | 0                             |                              | 0                               |  |  |
| 120                     | 393.7              | 0.16                                 |                         | 0                             |                              | 0                               |  |  |
| 130                     | 426.5              | 0.15                                 |                         | 0                             |                              | 0                               |  |  |
| 140                     | 459.3              | 0.14                                 |                         | 0                             |                              | 0                               |  |  |
| 150                     | 492.1              | 0.12                                 |                         | 0                             |                              | 0                               |  |  |
| 160                     | 524.9              | 0.1                                  |                         | 0                             |                              | 0                               |  |  |
| 180                     | 590.6              | 0.09                                 |                         | 0                             |                              | 0                               |  |  |
| 200                     | 656.2              | 0.08                                 |                         | 0                             |                              | 0                               |  |  |
| 220                     | 721.8              | 0.07                                 |                         | 0                             | ·                            | 0                               |  |  |
| 240                     | 787.4              | 0.06                                 |                         | 0                             |                              | 0                               |  |  |
| 260                     | 853.0              | 0.05                                 |                         | 0                             |                              | 0                               |  |  |
| 280                     | 918.6              | 0.04                                 |                         | 0                             |                              | 0                               |  |  |

| Gei        | าeric C        | ase            |
|------------|----------------|----------------|
| Distance   | Distance       |                |
| (meters)   | (feet)         | Multiplier     |
| 0          | 0.0            | 1.000          |
| 5          | 16.4           | 1.000          |
| 10         | 32.8           | 0.883          |
| 15         | 49.2           | 0.855          |
| 20<br>25   | 65.6<br>82.0   | 0.827          |
| 30         | 98.4           | 0.775          |
| 35         | 114.8          | 0.750          |
| 40         | 131.2          | 0.726          |
| 45         | 147.6          | 0.702          |
| 50         | 164.0          | 0.679          |
| 55<br>60   | 180.4<br>196.9 | 0.658<br>0.636 |
| 65         | 213.3          | 0.616          |
| 70         | 229.7          | 0.596          |
| 75         | 246.1          | 0.577          |
| 80         | 262.5          | 0.558          |
| 85         | 278.9          | 0.540          |
| 90         | 295.3          | 0.523          |
| 95<br>100  | 311.7<br>328.1 | 0.506<br>0.489 |
| 105        | 344.5          | 0.489          |
| 110        | 360.9          | 0.458          |
| 115        | 377.3          | 0.444          |
| 120        | 393.7          | 0.429          |
| 125        | 410.1          | 0.415          |
| 130        | 426.5          | 0.402          |
| 135        | 442.9          | 0.389          |
| 140<br>145 | 459.3<br>475.7 | 0.376          |
| 150        | 4/5./          | 0.353          |
| 155        | 492.1<br>508.5 | 0.333          |
| 160        | 524.9          | 0.330          |
| 165        | 541.3          | 0.319          |
| 170        | 557.7          | 0.309          |
| 175        | 574.1          | 0.299          |
| 180        | 590.6          | 0.290          |
| 185<br>190 | 607.0          | 0.280          |
| 190        | 623.4<br>639.8 | 0.271<br>0.262 |
| 200        | 656.2          | 0.254          |
| 205        | 672.6          | 0.246          |
| 210        | 689.0          | 0.238          |
| 215        | 705.4          | 0.230          |
| 220        | 721.8          | 0.223          |
| 225        | 738.2          | 0.216          |
| 230<br>235 | 754.6          | 0.209          |
| 235        | 771.0<br>787.4 | 0.202          |
| 240        | 803.8          | 0.195<br>0.189 |
| 250        | 820.2          | 0.183          |
| 255        | 836.6          | 0.177          |
| 260        | 853.0          | 0.171          |
| 265        | 869.4          | 0.166          |
| 270        | 885.8          | 0.160          |
| 275        | 902.2          | 0.155          |
| 280        | 918.6          | 0.150          |
| 285<br>290 | 935.0<br>951.4 | 0.145<br>0.141 |
| 290        | 951.4          | 0.141          |
| 300        | 984.3          | 0.132          |
|            |                |                |




## Area of Interest (AOI) Information

Area: 6,761,458.35 ft2

Jul 21 2022 14:37:45 Pacific Daylight Time



Permitted Stationary Sources



Map data © OpenStreetMap contributors, CC-BY-SA

## Summary

| Name                         | Count | Area(ft²) | Length(ft) |
|------------------------------|-------|-----------|------------|
| Permitted Stationary Sources | 1     | N/A       | N/A        |

## Permitted Stationary Sources

| ; | # | FacID  | FacName                      | Address          | City     | Street |
|---|---|--------|------------------------------|------------------|----------|--------|
| 1 |   | 201638 | KBAY-KEZR Alpha<br>Media LLC | 5225 HELLYER AVE | SAN JOSE | CA     |

|   | # | Zip       | County      | Latitude | Longitude | Details   |
|---|---|-----------|-------------|----------|-----------|-----------|
| - | 1 | 95,138.00 | Santa Clara | 37.27    | -121.80   | Generator |

| # | NAICS      | Sector      | Sub_Sector                     | Industry       | ChronicHI |
|---|------------|-------------|--------------------------------|----------------|-----------|
| 1 | 515,112.00 | Information | Broadcasting (except Internet) | Radio Stations | 0.0000401 |

| # | PM2_5     | Cancer Risk<br>{expression/expr0} | Chronic Hazard Index<br>{expression/expr1} | PM2.5<br>{expression/expr2} | Count |
|---|-----------|-----------------------------------|--------------------------------------------|-----------------------------|-------|
| 1 | 0.0001880 | 0.149                             | 0                                          | 0                           | 1     |

NOTE: A larger buffer than 1000 feet may be warranted depending on proximity to significant sources.