GREYHOUND SITE MIXED-USE PROJECT AIR QUALITY ASSESSMENT SAN JOSÉ, CALIFORNIA

August 18, 2016

Prepared for:

Shannon George Project Manager David J. Powers & Associates, Inc. 1871 The Alameda, Suite 200 San José, CA 95126

Prepared by:

Tanushree Ganguly and William Popenuck

ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality
Willowbrook Court, Suite 120
Petaluma, CA 94954
(707) 794-0400

Project: 15-263

Introduction

The purpose of this report is to address air quality impacts associated with the mixed-use development project located at the intersection of Post and San Pedro Street in San José, California. The project consists of two 23-story high-rise residential towers, containing 785 residential dwelling units and up to 20,000 square feet (sf) of commercial/retail uses, located north of W. San Fernando Street, between South Almaden Avenue and South San Pedro Street. A 5-level parking structure with four below-grade levels and 736 parking spaces is proposed.

Air pollutant emissions associated with construction and operation of the project were modeled. In addition, the potential construction health risk impact to nearby sensitive receptors and the impact of existing toxic air contaminant (TAC) sources affecting the proposed residences were evaluated. The health risk assessment included the modeling of construction emissions using the California Emissions Estimator Model Version 2013.2.2 (CalEEMod). A dispersion model was used to predict the off-site DPM concentrations resulting from project construction so that lifetime excess cancer risks could be predicted.

The effects of sources of TACs and fine particulate matter emissions on the project site were evaluated. These sources included roadways and stationary sources that were identified using available screening tools. The screening tools indicate that risk levels from stationary sources could exceed the BAAQMD significance thresholds. Therefore, refined modeling was conducted for these sources. This analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).

Setting

The project is located in the Santa Clara County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM_{10}), and fine particulate matter ($PM_{2.5}$).

Air Pollutants of Concern

High ozone levels are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NOx). These precursor pollutants react under certain meteorological conditions to form high ozone levels. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ozone levels. The highest ozone levels in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone levels aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant of the Bay Area. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM_{10}) and fine particulate matter where particles have a diameter of 2.5 micrometers or less ($PM_{2.5}$). Elevated concentrations of PM_{10} and $PM_{2.5}$ are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter

levels aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

Toxic Air Contaminants

Toxic air contaminants (TAC) are a broad class of compounds known to cause morbidity or mortality (usually because they cause cancer) and include, but are not limited to, the criteria air pollutants. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about threequarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs.

CARB has adopted and implemented a number of regulations for stationary and mobile sources to reduce emissions of DPM. Several of these regulatory programs affect medium and heavy duty diesel trucks that represent the bulk of DPM emissions from California highways. These regulations include the solid waste collection vehicle (SWCV) rule, in-use public and utility fleets, and the heavy-duty diesel truck and bus regulations. In 2008, CARB approved a new regulation to reduce emissions of DPM and nitrogen oxides from existing on-road heavy-duty diesel fueled vehicles.¹ The regulation requires affected vehicles to meet specific performance requirements between 2014 and 2023, with all affected diesel vehicles required to have 2010 model-year engines or equivalent by 2023. These requirements are phased in over the compliance period and depend on the model year of the vehicle.

The BAAQMD is the regional agency tasked with managing air quality in the region. At the State level, the CARB (a part of the California Environmental Protection Agency [EPA]) oversees regional air district activities and regulates air quality at the State level. The BAAQMD has recently published California Environmental Quality Act (CEQA) Air Quality Guidelines that are used in this assessment to evaluate air quality impacts of projects.² *Attachment 1* includes detailed community risk modeling methodology.

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, the

¹Available online: <u>http://www.arb.ca.gov/msprog/onrdiesel/onrdiesel.htm</u>. Accessed: November 21, 2014.

² Bay Area Air Quality Management District. 2011. BAAQMD CEQA Air Quality Guidelines. May.

elderly over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, elementary schools, and parks. For cancer risk assessments, children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site include the Plaza Hotel³ adjacent to the southern boundary of the project site and planned and approved residential apartments to the north of the site.

Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA. These Thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA and were posted on BAAQMD's website and included in the Air District's updated CEQA Guidelines (updated May 2011). The significance thresholds identified by BAAQMD and used in this analysis are summarized in Table 1.

The BAAQMD's adoption of significance thresholds contained in the 2011 CEQA Air Quality Guidelines was called into question by an order issued March 5, 2012, in California Building Industry Association (CBIA) v. BAAQMD (Alameda Superior Court Case No. RGI0548693). The order requires the BAAQMD to set aside its approval of the thresholds until it has conducted environmental review under CEQA. The ruling made in the case concerned the environmental impacts of adopting the thresholds and how the thresholds would indirectly affect land use development patterns. In August 2013, the Appellate Court struck down the lower court's order to set aside the thresholds (Cal. Court of Appeal, First Appellate District, Case Nos. A135335 & A136212). CBIA sought review by the California Supreme Court on three issues, including the appellate court's decision to uphold the BAAQMD's adoption of the thresholds, and the Court granted review on just one: Under what circumstances, if any, does CEQA require an analysis of how existing environmental conditions will impact future residents or users of a proposed project? In December 2015, the Supreme Court determined that an analysis of the impacts of the environment on a project - known as "CEQA-in-reverse" - is only required under two limited circumstances: (1) when a statute provides an express legislative directive to consider such impacts; and (2) when a proposed project risks exacerbating environmental hazards or conditions that already exist (Cal. Supreme Court Case No. S213478). The Supreme Court reversed the Court of Appeal's decision and remanded the matter back to the appellate court to reconsider the case in light of the Supreme Court's ruling. Accordingly, the case is currently pending back in the Court of Appeal. Because the Supreme Court's holding concerns the effects of the environment on a project (as contrasted to the effects of a proposed project on the environment), and not the science behind the thresholds, the significance thresholds contained in the 2011 CEQA Air Quality Guidelines are applied to this project.

³ Has been defunct since 2007. The hotel was acquired by the city of San Jose in 2015 and will soon be converted into a shelter for the homeless.

	Construction Thresholds	Operational Thresholds			
Pollutant	Average Daily Emissions (lbs./day)	Average Daily Emissions (lbs./day)	Annual Average Emissions (tons/year)		
Criteria Air Pollutants					
ROG	54	54	10		
NO _x	54	54	10		
PM ₁₀	82 (Exhaust)	82	15		
PM _{2.5}	54 (Exhaust)	54	10		
СО	Not Applicable		erage) or 20.0 ppm (1- werage)		
Fugitive Dust	Construction Dust Ordinance or other Best Management Practices	Not Applicable			
Health Risks and Hazards	for Single Sources	•			
Excess Cancer Risk	>10	0 per one million			
Hazard Index		>1.0			
Incremental annual PM _{2.5}		$>0.3 \ \mu g/m^3$			
Health Risks and Hazards zone of influence)	for Combined Sources (Cumul	lative from all sources	s within 1,000 foot		
Excess Cancer Risk	>10	0 per one million			
Hazard Index		>10.0			
Annual Average PM _{2.5}		$>0.8 \ \mu g/m^3$			
	gases, NOx = nitrogen oxides, PM_{10} micrometers (μ m) or less, and $PM_{2.2}$ n or less.				

Table 1. Air Quality Significance Thresho	lds
---	-----

Impact: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable State or federal ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)? *Less than significant with construction-period mitigation measures.*

The Bay Area is considered a non-attainment area for ground-level ozone and $PM_{2.5}$ under both the Federal Clean Air Act and the California Clean Air Act. The area is also considered nonattainment for PM_{10} under the California Clean Air Act, but not the federal act. The area has attained both State and federal ambient air quality standards for carbon monoxide. As part of an effort to attain and maintain ambient air quality standards for ozone and PM_{10} , the BAAQMD has established thresholds of significance for these air pollutants and their precursors. These thresholds are for ozone precursor pollutants (ROG and NOx), PM_{10} , and $PM_{2.5}$ and apply to both construction period and operational period impacts. The California Emissions Estimator Model (CalEEMod) Version 2013.2.2 was used to predict emissions from construction and operation of the site assuming full build out of the project. The project land use types and size, and anticipated construction schedule were input to CalEEMod.

Construction period emissions

CalEEMod provided annual emissions for construction. CalEEMod provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. A construction build-out scenario, including equipment list and schedule, was based on information provided by the project applicant. The proposed project land uses were input into CalEEMod, which included: 785 dwelling units entered as "Apartment High- Rise," 736 spaces entered as "Enclosed Parking with Elevator," and 20,000 sf entered as "Strip Mall" on a 1.74-acre site.

Approximately 118,831 cubic yards (cy) of soil export are anticipated and were entered into the model. Demolition of 20,800 sf of building and 47,800 sf of pavement is anticipated and was entered into the model. Additionally, 10,620 cement truck round-trips are expected during the building construction phase.

The construction schedule assumes that the project would be built out over a period of approximately 24 months beginning in April 2017, or an estimated 528 construction workdays (assuming an average of 22 construction days per month). Average daily emissions were computed by dividing the total construction emissions by the number of construction days. Table 2 shows average daily construction emissions of ROG, NO_X, PM₁₀ exhaust, and PM_{2.5} exhaust during construction of the project. As indicated in Table 2, predicted the construction period emissions would not exceed the BAAQMD significance thresholds.

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM_{10} and $PM_{2.5}$. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less than significant if best management practices are implemented to reduce these emissions. *Mitigation Measure 1 would implement BAAQMD-recommended best management practices*.

			PM_{10}	PM _{2.5}
Scenario	ROG	NOx	Exhaust	Exhaust
Total construction emissions (tons)	8.06 tons	7.16 tons	0.13 tons	0.12 tons
Average daily emissions (pounds) ¹	30.5 lbs.	27.1 lbs.	0.5 lbs.	0.5 lbs.
BAAQMD Thresholds (pounds per day)	54 lbs.	54 lbs.	82 lbs.	54 lbs.
Exceed Threshold?	No	No	No	No
Notes: ¹ Assumes 528 workdays.				

Table 2. Construction Period Emissions

Operational Period Emissions

Operational air emissions from the project would be generated primarily from autos driven by future residents and employees. Evaporative emissions from architectural coatings and maintenance products (classified as consumer products) are typical emissions from these types of uses. CalEEMod was used to predict emissions from operation of the proposed project assuming full build-out.

Land Uses

The residential component land uses were input to CalEEMod, which included 785 dwelling units entered as "Apartment High-Rise," 736 spaces entered as "Enclosed Parking with Elevator" and 20, 000 sf entered as "Strip Mall."

Model Year

Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CalEEMod. The earliest full year the buildout project could possibly be constructed and begin operating would be 2020. Emissions associated with build-out later than 2020 would be lower.

Trip Generation Rates

CalEEMod allows the user to enter specific vehicle trip generation rates, which were input to the model using the daily trip generation rate provided in the project traffic report. The default trip lengths and trip types specified by CalEEMod were used.

Energy

The 2013 Title 24 Building Standards became effective July 1, 2014 and are predicted to use 25 percent less energy for lighting, heating, cooling, ventilation, and water heating for residential uses and 30 percent less energy for non-residential uses than the 2008 standards that CalEEMod

incorporates.⁴ Therefore, the CalEEMod project run was adjusted to account for the greater energy efficiency.

Other Inputs

Default model assumptions for emissions associated with solid waste generation and water/wastewater use were applied to the project. No new wood-burning stoves or fireplaces are allowed in the Bay Area, but it was assumed that new residences could include gas-powered fireplaces.

Table 3 reports the predicted emission in terms of annual emissions in tons and average daily operational emissions, assuming 365 days of operation per year. As shown in Table 3, average daily and annual emissions of ROG, NOx, PM_{10} , or $PM_{2.5}$ emissions associated with operation would not exceed the BAAQMD significance thresholds.

Scenario	ROG	NOx	PM_{10}	PM _{2.5}
Project Operational Emissions	8.07 tons	4.71 tons	4.16 tons	1.28 tons
BAAQMD Thresholds (tons /year)	10 tons	10 tons	15 tons	10 tons
Exceed Threshold?	No	No	No	No
Average Daily Project Operational Emissions (pounds) ¹	44.2 lbs.	25.8 lbs.	22.8 lbs.	7.0 lbs.
BAAQMD Thresholds (pounds/day)	54 lbs.	54 lbs.	82 lbs.	54 lbs.
Exceed Threshold?	No	No	No	No
¹ Assumes 365-day operation.				

Table 3. Operational Emissions

Mitigation Measure 1: Include basic measures to control dust and exhaust during construction.

During any construction period ground disturbance, the applicant shall ensure that the project contractor implement measures to control dust and exhaust. Implementation of the measures recommended by BAAQMD and listed below would reduce the air quality impacts associated with grading and new construction to a less than significant level. The contractor shall implement the following best management practices that are required of all projects:

1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.

⁴ California Energy Commission, 2014. New Title 24 Standards Will Cut Residential Energy Use by 25 Percent, Save Water, and Reduce Greenhouse Gas Emissions. July. Available online: http://www.energy.ca.gov/releases/2014_releases/2014-07-01_new_title24_standards_nr.html

- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- 6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.
- 7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- 8. Post a publicly visible sign with the telephone number and person to contact at the Lead Agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number shall also be visible to ensure compliance with applicable regulations.

Impact: Expose sensitive receptors to substantial pollutant concentrations? *Less than significant with construction period mitigation.*

Project impacts related to increased community risk can occur either by introducing a new sensitive receptor, such as a residential use, in proximity to an existing source of TACs or by introducing a new source of TACs with the potential to adversely affect existing sensitive receptors in the project vicinity. The BAAQMD recommends using a 1,000-foot screening radius around a project site for purposes of identifying community health risk from siting a new sensitive receptor or a new source of TACs. Operation of the project is not expected to cause any localized emissions that could expose sensitive receptors to unhealthy air pollutant levels. No stationary sources of TACs, such as generators, are proposed as part of the project. The project would introduce new sensitive receptors to the area in the form of future residences. There are thresholds that address both the impact of single and cumulative TAC sources upon projects that include new sensitive receptors (see Table 1). Construction activity would generate dust and equipment exhaust on a temporary basis that could affect nearby sensitive receptors.

Operational Community Risk Impacts

TAC Sources Considered

Community health risk assessments typically look at all substantial sources of TACs located within 1,000 feet of project sites. These sources include freeways or highways, busy surface streets, and stationary sources identified by BAAQMD. A review of the project area indicates that traffic on W. Santa Clara Street is a substantial source of traffic TAC emissions within 1,000 feet of the project site. A review of BAAQMD's Google Earth map tool used to identify stationary sources identified several emergency back-up generators within 1,000 feet of the site.

Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's *Stationary Source Screening Analysis Tool*. This mapping tool uses Google Earth to identify the location of stationary sources and their estimated risk and hazard impacts. In cases where screening risk exceeded BAAQMD thresholds, BAAQMD was contacted to obtain emissions data and information for specific facilities. BAAQMD correspondence⁵ and stationary source emissions data and modeling results are contained in *Attachment 2*. The BAAQMD tool identified multiple sources that could affect the project site:

- Plant 13588 has been assigned a new facility number. It is Plant 20903 now and consists of six diesel generators operated by CoreSite. The plant is located about 75 feet east of the project site. However, even after using BAAQMD screening tools, screening level risk potentially exceeds BAAQMD significance thresholds. Therefore, refined modeling of this source was conducted, as described below.
- Plant 19758 operated by SMS/VEF Winthrop Management, which consists of one emergency back-up generator and one fire pump located at 60 South Market Street about 380 feet east of the project site. At BAAQMD's direction, risk and PM_{2.5} concentration were adjusted based on BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. According to BAAQMD screening data (and adjusted for distance), this facility would result in an excess cancer risk of 0.5 per million, PM_{2.5} concentration of <0.01 μ g/m³ and HI of 0.01, all of which would be below BAAQMD thresholds of significance.
- Plant 14985, which is an emergency back-up generator located at 121 Park Central Plaza about 250 feet southeast of the project site. At BAAQMD's direction, risk and PM_{2.5} concentration were adjusted based on BAAQMD's *Risk and Hazards Emissions Screening Calculator (Beta Version)* and *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. According to BAAQMD's *Risk and Hazards Emissions Screening Calculator* (and adjusted for distance), this facility would result in

⁵ Correspondence between Tanushree Ganguly, Illingworth & Rodkin, and Alison Kirk, BAAQMD, July 26 and August 1, 2016.

an excess cancer risk of 1.2 per million, $PM_{2.5}$ concentration of <0.01 µg/m³ and HI of <0.01, all of which would be below BAAQMD thresholds of significance.

- Plant 12969, which is an emergency back-up generator located at 55 South Market Street operated by Verizon Business about 100 feet east of the project site. However, even after using BAAQMD screening tools, screening level risk potentially exceeds BAAQMD significance thresholds. Therefore, refined modeling of this source was conducted, as described below.
- Plant 8556 operated by Fairmont Hotel, which consists of emergency back-up generators located at 170 South Market Street about 780 feet southeast of the project site. At BAAQMD's direction, risk and PM_{2.5} concentration was adjusted based on BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. According to BAAQMD screening data (and adjusted for distance), this facility would result in an excess cancer risk of 0.5 per million, PM_{2.5} concentration of <0.01 µg/m³ and HI of <0.01, all of which would be below BAAQMD thresholds of significance.
- Plant 16778 operated by Owl Energy Resources, which consists of two cogeneration engines located at 170 South Market Street about 780 feet southeast of the project site. At BAAQMD's direction, risk and PM_{2.5} concentration were adjusted based on BAAQMD's *Risk and Hazards Emissions Screening Calculator (Beta Version)* and *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. According to BAAQMD's *Risk and Hazards Emissions Calculator* (and adjusted for distance), this facility would result in an excess cancer risk of 1.2 per million, PM_{2.5} concentration of <0.01 µg/m³ and HI of 0.13, all of which would be below BAAQMD thresholds of significance.
- Plant 13528 operated by Pacific Bell, which consists of two emergency back-up generators and an emergency standby fire pump engine located at 95 South Almaden Avenue and located about 80 feet west of the project site. At BAAQMD's direction, risk and PM_{2.5} concentration were adjusted based on BAAQMD's *Risk and Hazards Emissions Screening Calculator (Beta Version)* and *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. However, even after using BAAQMD screening tools, screening level risk potentially exceeds BAAQMD significance thresholds. Therefore, refined modeling of this source was conducted, as described below.
- Plant 14713 operated by Verizon Business, which consists of an emergency back-up generator located at 55 South Almaden Boulevard about 270 feet northwest of the project site. At BAAQMD's direction, risk and PM_{2.5} concentration were adjusted based on BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. According to BAAQMD screening data (and adjusted for distance), this facility would result in an excess cancer risk of 1.5 per million, PM_{2.5} concentration of <0.01 µg/m³ and HI of <0.01, all of which would be below BAAQMD thresholds of significance.
- Plant 19420 has been assigned a new facility number. It is Plant 21548 now and consists of three emergency generators operated by Harvest Properties LLC. The plant is located about 560feet north west of the project site. At BAAQMD's direction, risk and PM_{2.5}

concentration were adjusted based on BAAQMD's *Distance Adjustment Multiplier Tool* for Diesel Internal Combustion (IC) Engines. According to BAAQMD screening data (and adjusted for distance), this facility would result in an excess cancer risk of 7.5 per million, $PM_{2.5}$ concentration of <0.01 µg/m³ and HI of <0.01, all of which would be below BAAQMD thresholds of significance.

- Plant 14687 operated by Qwest Communications Corporation, which consists of an emergency back-up generator located at 55 Almaden Boulevard about 630 feet west of the project site. At BAAQMD's direction, risk and $PM_{2.5}$ concentration were adjusted based on BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. According to BAAQMD screening data (and adjusted for distance), this facility would result in an excess cancer risk of 0.7 per million, $PM_{2.5}$ concentration of <0.01 µg/m³ and HI of <0.01, all of which would be below BAAQMD thresholds of significance.
- Plant 14177 operated by Pacific Gas and Electricity, which consists of emergency backup generators located at 111 Alamden Boulevard operated about 670 feet southwest of the project site. At BAAQMD's direction, risk and $PM_{2.5}$ concentration were adjusted based on BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. According to BAAQMD screening data (and adjusted for distance), this facility would result in an excess cancer risk of 1.9 per million, $PM_{2.5}$ concentration of <0.01 µg/m³ and HI of <0.01, all of which would be below BAAQMD thresholds of significance.
- Plant 15169, which are six emergency back-up generators operated by Adobe Systems, Inc. located at 151 Almaden Boulevard about 630 feet southwest of the project site. At BAAQMD's direction, risk and PM_{2.5} concentrations from a diesel generator was adjusted based on BAAQMD's *Risk and Hazards Emissions Screening Calculator (Beta Version)* and *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines.* However, even after using BAAQMD screening tools, screening level risk potentially exceeds BAAQMD significance thresholds. Therefore, refined modeling of this source was conducted, as described below.
- Plant 16706 has been assigned a new facility number. It is Plant 22398 now and consists of an emergency diesel generator and fire pump operated by Harvest Properties LLC. The plant is located about 700 feet north west of the project site. At BAAQMD's direction, risk and PM_{2.5} concentration were adjusted based on BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. According to BAAQMD screening data (and adjusted for distance), this facility would result in an excess cancer risk of 1.14 per million, PM_{2.5} concentration of <0.01 μ g/m³ and HI of <0.01, all of which would be below BAAQMD thresholds of significance.
- Plant 16647 operated by Equity Office Properties, which consists of an emergency generator and a fire pump located at 10 Almaden Boulevard about 300 feet northwest of the project site. At BAAQMD's direction, risk and PM_{2.5} concentration were adjusted

based on BAAQMD's *Risk and Hazards Emissions Screening Calculator (Beta Version)* and *Distance Adjustment Multiplier Tool for Diesel Internal Combustion (IC) Engines*. However, even after using BAAQMD screening tools, screening level risk potentially exceeds BAAQMD significance thresholds. Therefore, refined modeling of this source was conducted, as described below.

Refined modeling of emergency back-up generators and emergency diesel fire pumps at five facility locations (BAAQMD Plants) was conducted to assess cancer risks and annual $PM_{2.5}$ concentrations at residential receptor locations at the proposed project site. Table 4 identifies the BAAQMD Plant numbers, locations, and the emission source types at each facility. Based on the BAAQMD emission inventory data the daily $PM_{2.5}$ and DPM emissions from the diesel engines at each facility are included in Table 4. Figure 1 shows the locations of these buildings where the sources modeled are located relative to the project site and the on-site project receptors used to represent locations of future project residents.

BAAQMD				DPM	/PM _{2.5}
Plant			Emission	Emissio	n Rates ^a
Number	Facility Name	Facility Address	Sources	(lb/day)	(lb/hr)
12969	Verizon Business	55 S Market Street	1 Generator	0.109	0.004542
13528	Pacific Bell	95 S Almaden Avenue	2 Generators 1 Fire Pump	0.105	0.004375
15169	Adobe Systems, Inc	151 Almaden Boulevard	3 Generators 3 Fire Pump	0.199	0.008292
16647	Equity Office Properties	Ten Almaden	1 Generators 1 Fire Pump	0.027	0.001121
13588	CoreSite	55 S Market Street	4 Generators	0.052	0.002170

 Table 4. Facility Information and DPM/PM2.5 Emission Rates for Sources Modeled

^a Daily emissions provided by BAAQMD. Hourly emissions used for modeling.

To obtain an estimate of potential increased cancer risks to future project residents from these sources, the AERMOD dispersion model was used. This modeling included the use of a five-year data set (2006-2010) of hourly meteorological data from the San Jose International Airport prepared for use with the AERMOD model by the BAAQMD. Since there are a number of tall buildings, including the buildings with the emission sources, in close proximity to the project building, the effects of building downwash on the diesel engine exhaust plumes were included in the modeling analysis. The buildings with the emergency diesel engine sources were evaluated for potential downwash effects and are identified in Figure 1. The AERMOD model was used to calculate DPM concentrations at locations of future residential units at the proposed project site. Because the actual locations of the emission sources are unknown, the emergency diesel engines were assumed to be located at ground level near each building where the engines are located on the side of the building closest to the project site.

Potential impacts at the proposed project were evaluated at the third through ninth floors of the twenty-three residential floor levels to identify where maximum impacts would occur from each emission source. The third floor level is the first building level with residential units in it.

Receptors for modeling were placed at intervals of 8 meters (about 26 feet) in each of the residential areas on each of the floor levels evaluated (see Figure 1). Default BAAQMD stack parameters for diesel engines (12 feet high stack, 0.6 foot diameter, 45.3 meter/sec exit velocity, and exit temperature of 872 degrees F) were used for the diesel engines in the modeling.

The maximum-modeled annual average DPM (exhaust PM_{2.5}) concentration from each facility's emergency engines at the on-site project receptors for each floor level are summarized in Table 5. The maximum modeled cumulative DPM concentrations from engine operation at all facilities at the on-site receptors on each project floor level are also shown in the table. Using these maximum DPM concentrations increased cancer risks were calculated using the methods described in Attachment 1. Table 6 summarizes the maximum increased cancer risk for each project residential floor level modeled from operation of the diesel engines at each off-site facility, as well as the maximum increased cancer risks (cumulative cancer risk) from operation of all diesel engines. The maximum on-site increased cancer risk was 18.7 in one million from BAAQMD Plant 13528, occurring on the seventh residential floor level of the proposed project This cancer risk would be greater than the BAAQMD cancer risk significance threshold of greater than 10.0 in one million and would be considered a *significant* impact.

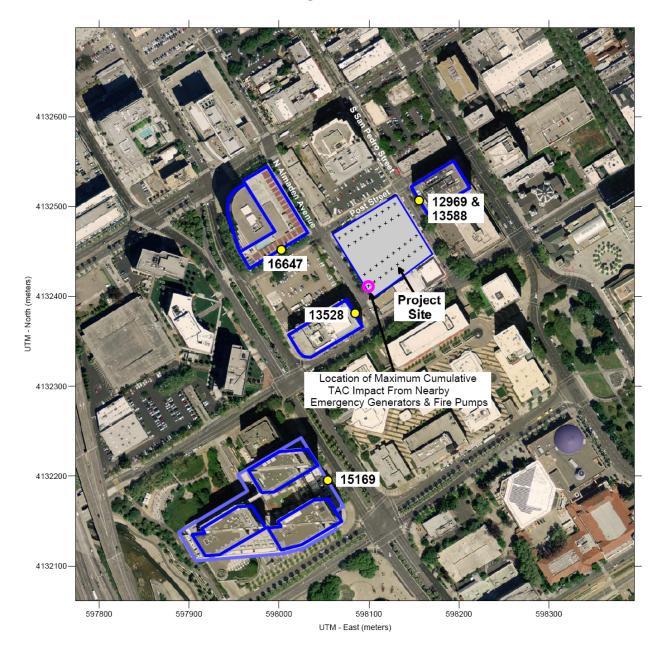

Project	On-Site Receptor		1							
Floor	Height		BAAQMD Plant Number							
Level	(m)	12969	13528	15169	16647	13588	Sources			
3rd	10.6	0.01	0.02	< 0.01	< 0.01	< 0.01	0.02			
4th	13.7	0.01	0.02	< 0.01	< 0.01	< 0.01	0.03			
5th	16.7	0.01	0.03	< 0.01	< 0.01	< 0.01	0.03			
6th	19.8	0.01	0.03	< 0.01	< 0.01	< 0.01	0.04			
7th	22.8	0.01	0.03	< 0.01	< 0.01	< 0.01	0.04			
8th	25.9	0.01	0.03	< 0.01	< 0.01	< 0.01	0.04			
9th	28.9	0.01	0.02	< 0.01	< 0.01	< 0.01	0.03			
Maxi	mum	0.01	0.03	<0.01	<0.01	<0.01	0.04			

Table 5. Maximum DPM Concentrations (µg/m³) from Nearby Emergency Diesel Engines

Table 6. Maximum Increased Cancer Risks from Nearby Emergency Diesel Engines

Project	On-Site Receptor	Maximum Cancer Risk (per million)								
Floor	Height		BAAQMD Plant Number							
Level	(m)	12969	13528	15169	16647	13588	Sources			
3rd	10.6	7.1	9.5	1.6	1.1	3.5	13.3			
4th	13.7	7.9	12.6	1.6	1.1	3.8	16.0			
5th	16.7	8.0	15.7	1.6	1.2	3.8	19.2			
6th	19.8	8.0	18.4	1.6	1.2	3.8	22.0			
7th	22.8	7.7	18.7	1.6	1.2	3.7	22.3			
8th	25.9	7.2	16.4	1.6	1.2	3.4	20.0			
9th	28.9	6.4	13.7	1.6	1.2	3.1	17.3			
Maxii	num	8.0	18.7	1.6	1.2	3.8	22.3			

The maximum modeled annual $PM_{2.5}$ concentration from an individual facility was 0.03 µg/m³ from BAAQMD Plant 13528, occurring on the seventh residential floor level of the proposed project, and the maximum Hazard Index would be less than 0.01. $PM_{2.5}$ concentrations and Hazard Indexes at other floor levels would be lower than the maximum values. The maximum $PM_{2.5}$ concentration and Hazard Index would be below BAAQMD significance thresholds of 0.3 µg/m³ for $PM_{2.5}$ and 1.0 for a Hazard Index and would be considered a *less-than-significant* impact. Details of the modeling and risk calculations are included in *Attachment 2*.

Figure 1 – Project Site, On-Site Residential Receptor Locations, and Nearby Stationary Sources Evaluated in the Refined Modeling

Local Roadway TAC Sources

For local roadways, BAAQMD has provided the *Roadway Screening Analysis Calculator* to assess whether roadways with traffic volumes of over 10,000 vehicles per day may have a potentially significant effect on a proposed project. Two adjustments were made to the cancer risk predictions made by this calculator: (1) adjustment for latest vehicle emissions rates and adjustment of cancer risk to reflect new OEHHA guidance described above.

The calculator uses EMFAC2011 emission rates for the year 2014. Overall, emission rates will decrease by the time the project is constructed and occupied. The project is not likely to be occupied prior to 2018. In addition, a new version of the emissions factor model, EMFAC2014 is available. This version predicts lower emission rates. An adjustment factor of 0.5 was developed by comparing emission rates of total organic gases (TOG) for running exhaust and running losses developed using EMFAC2011 for year 2014 and those from EMFAC2014 for year 2018.

The predicted cancer risk was then adjusted using a factor of 1.3744 to account for new OEHHA guidance. This factor was provided by BAAQMD for use with their CEQA screening tools that are used to predict cancer risk.⁶

There are several local roadways near the project site, with the busiest being West Santa Clara Street. The City of San Jose's Envision San Jose 2040 General Plan Draft Program EIR provides existing roadway segment average daily traffic (ADT). Based on data collected in May 2008, West Santa Clara Street has an average daily traffic volume of 26,700. Other nearby roadways are assumed in this analysis to have less than 10,000 average daily trips.

The average daily traffic, or ADT, volume on W. Santa Clara Street is estimated at 30,000 vehicles or less in the project area based on the Envision 2040 Draft Program EIR traffic analysis. Using the BAAQMD *Roadway Screening Analysis Calculator* for Santa Clara County for east-west directional roadways and at a distance of approximately 375 feet south of the roadway, estimated cancer risk from W. Santa Clara Street at the project site would be 2.8 per million and $PM_{2.5}$ concentration would be 0.1 µg/m³. Chronic or acute HI for the roadway would be below 0.03. Note that screening risk levels above the ground floor would be even lower.

Combined Community Risk Impacts

As discussed above, the project site is affected by multiple sources of TACs. Table 7 shows the cancer risk associated with each source affecting the project site. The sum of impacts from combined sources (i.e., sources within 1,000 feet of the project) would be below the thresholds of significance. Therefore, the combined impact from operational community risk at the project site would be considered *less-than-significant*. Similarly, the maximally exposed individual (MEI) during project construction (see Figure 2) was evaluated for combined community risk from construction and operational sources in Table 8.

⁶ Correspondence with Alison Kirk, BAAQMD, November 23, 2015.

Source	Maximum Cancer Risk (per million)	Hazard Index	PM _{2.5} concentration (µg/m ³)
Plants 12969, 13528, 15169, and 16647 combined	21.9	<0.01	0.04
Plant 19758, SMS/VEF Winthrop Management	4.7	0.01	<0.01
Plant 14985, Wells Fargo Bank	1.2	< 0.01	< 0.01
Plant 8556, Fairmont Hotel	0.5	< 0.01	< 0.01
Plant 16778, Owl Energy Resources	1.2	0.13	< 0.01
Plant 14713, Verizon Business	1.5	< 0.01	< 0.01
Plant 14687, Qwest Communication Corporation	0.7	< 0.01	< 0.01
Plant 14177, Pacific Gas & Electric	1.9	< 0.01	< 0.01
Plant 16706 (Now 22398), Harvest Properties LLC	1.2	< 0.01	< 0.01
Plant 19420 (Now 21548), ECI	7.5	< 0.01	< 0.01
Plant 13588 (Now 20903), CoreSite	3.8	< 0.01	< 0.01
W. Santa Clara Street at 375 feet	2.8	< 0.03	0.1
Combined Sources	48.9	< 0.26	< 0.24
BAAQMD Threshold – Combined Sources	100	10.0	0.8

Table 7. Impacts from Combined Sources at Project Site

Mitigation Measure 2: Mechanical Ventilation with Filtration

Maintained ventilation systems with high-efficiency air filtration of the fresh air supply could reduce overall concentrations of DPM, substantially lowering cancer risk. These systems should be installed on either an individual unit-by-unit basis, with individual air intake and exhaust ducts ventilating each unit separately, or through a centralized building ventilation system.

The U.S. EPA reports particle size removal efficiency for filters rated MERV13 of 90 percent for particles in the size range of 1 to 3 μ m and less than 75 percent for particles 0.3 to 1 μ m.^{7,8} The BAAQMD's *Planning Healthy Places* guidance indicates that MERV13 air filtration devices installed on an HVAC air intake system can remove 80-90 percent of indoor particulate matter (greater than 0.3 microns in diameter).⁹

The project shall include the following measures to minimize the long-term TAC exposure for new project occupants:

a. Install air filtration that serves all residential dwelling units in the first through third floors. Air filtration devices shall be rated MERV13 or higher. To ensure adequate

⁷ American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 2007. *Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size*. ANSI/ASHRAE Addendum b to Standard 52.2-2007

⁸ United States Environmental Protection Agency (U.S. EPA), 2009. *Residential Air Cleaners (Second Edition): A Summary of Available Information*. U.S. EPA 402-F-09-002. Revised August 2009.

⁹ Bay Area Air Quality Management District (BAAQMD), 2016. *Planning Healthy Places A Guidebook for addressing local sources of air pollutants in community planning*. May.

health protection to sensitive receptors, a ventilation system shall meet the following minimal design standards:

- A MERV13 or higher rating (as specified above);
- At least one air exchange(s) per hour of fresh outside filtered air; and
- At least four air exchange(s) per hour recirculation.

Alternately, at the approval of the City, equivalent control technology may be used if it is shown by a qualified air quality consultant or heating, ventilation, and air conditioning (HVAC) engineer that it would reduce risk below significance thresholds.

- b. As part of implementing this measure, an ongoing maintenance plan for the building's HVAC air filtration system shall be required. Recognizing that emissions from air pollution sources are decreasing, the maintenance period shall last as long as significant excess cancer risk exposures are predicted. Subsequent studies could be conducted by an air quality expert approved by the City to identify the ongoing need for the filtered ventilation systems as future information becomes available.
- c. Ensure that the lease agreement and other property documents (1) require cleaning, maintenance, and monitoring of the affected units for air flow leaks; (2) include assurance that new owners and tenants are provided information on the ventilation system; and (3) include provisions that fees associated with owning or leasing a unit(s) in the building include funds for cleaning, maintenance, monitoring, and replacements of the filters, as needed.
- d. Require that, prior to final design or occupancy, an authorized air pollutant consultant verify the all necessary measures to reduce TAC exposure.

Significance After Mitigation

A properly installed and operated ventilation system with MERV 13 air filters will reduce $PM_{2.5}$ concentrations, including from DPM, from mobile and stationary sources by approximately 80 percent indoors when compared to outdoors. The overall effectiveness calculations take into consideration time spent outside and the outdoor exposure of each affected unit. The U.S. EPA reports that people, on average, spend 90 percent of their time indoors¹⁰. The overall effectiveness calculations should take into effect time spent outdoors. Assuming two hours of outdoor exposure plus one hour of open windows (calculated as outdoor exposure) per day, the overall effectiveness of the MERV 13 filtration systems would be 70 percent. Reducing the maximum cancer risk by 70 percent to assess the effect of the mitigation yields a mitigated cancer risk of 5.6 in one million, which is below the BAAQMD significance threshold.

¹⁰ Klepeis, N.E., Nelsen, WC., Ott, WR., Robinson, JP., Tsang, AM., Switzer, P., Behar, JV., Hern, SC., and Engelmann, WH. 2001. *The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants*. J. Expo Anal Environ Epidemial. 2001 May-Jun;11(3):231-52.

Project Construction Activity

Construction activities, particularly during site preparation and grading would temporarily generate fugitive dust in the form of respirable particulate matter (PM₁₀) and PM_{2.5}. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less than significant if best management practices are employed to reduce these emissions. *Mitigation Measure 1 would implement BAAQMD-required best management practices*.

Construction equipment and associated heavy-duty truck traffic generates diesel exhaust, which is a known TAC. These exhaust air pollutant emissions would not be considered to contribute substantially to existing or projected air quality violations. Construction exhaust emissions may still pose community risks for sensitive receptors such as nearby residents. The primary community risk impact issues associated with construction emissions are cancer risk and exposure to $PM_{2.5}$. Diesel exhaust poses both a potential health and nuisance impact to nearby receptors. A community risk assessment of the project construction activities was conducted that evaluated potential health effects of sensitive receptors at these nearby residences from construction emissions of DPM and $PM_{2.5}$.¹¹ The closest sensitive receptors to the project site include the Plaza Hotel ¹² adjacent to the southern project boundary and the proposed apartments to the north of the project site. There are other residences at further distances to the east of the project site (see Figure 2). Emissions and dispersion modeling was conducted to predict the off-site DPM concentrations resulting from project construction, so that lifetime cancer risks and non-cancer health effects could be evaluated.

On-Site Construction TAC Emissions

Construction period emissions were computed using CalEEMod along with projected construction activity, as described above. The CalEEMod model provided total annual $PM_{2.5}$ exhaust emissions (assumed to be DPM) for the off road construction equipment used for construction of the project and for the exhaust emissions from on-road vehicles (haul trucks, vendor trucks, and worker vehicles) of 0.0393 tons (80 pounds) over the construction period. A trip length of one-half mile was used to represent vehicle travel while at or near the construction site. For modeling purposes, it was assumed that these emissions from on-road vehicles would occur at the construction site. Fugitive dust $PM_{2.5}$ emissions were also computed and included in this analysis. The model predicts emissions of 0.0406 tons (80 pounds) of fugitive $PM_{2.5}$ over the construction period.

¹¹ DPM is identified by California as a toxic air contaminant due to the potential to cause cancer.

¹² Has been defunct seen 2007 but has been acquired by the City of San Jose and will soon be converted into a shelter for the homeless (<u>http://www.bizjournals.com/sanjose/news/2015/06/12/city-eyes-defunct-downtown-hotel-for-homeless.html</u>)

Dispersion Modeling

The U.S. EPA AERMOD dispersion model was used to predict concentrations of DPM and PM_{2.5} concentrations at sensitive receptors (residences) in the vicinity of the project construction The AERMOD dispersion model is a BAAQMD-recommended model for use in area. modeling analysis of these types of emission activities for CEQA projects.¹³ For each phase of construction the AERMOD modeling utilized two area sources to represent the on-site construction emissions, one for exhaust emissions and one for fugitive dust emissions. То represent the construction equipment exhaust emissions, an emission release height of 6 meters (19.7 feet) was used for the area source. The elevated source height reflects the height of the equipment exhaust pipes plus an additional distance for the height of the exhaust plume above the exhaust pipes to account for plume rise of the exhaust gases. For modeling fugitive PM_{2.5} emissions, a near-ground level release height of 2 meters (6.6 feet) was used for the area source. Emissions from the construction equipment and on-road vehicle travel were distributed throughout the modeled area sources. Construction emissions were modeled as occurring daily between 7 a.m. to 4 p.m., when the majority of construction activity would occur.

The modeling used a 5-year meteorological data set (2006-2010) from the San Jose Airport prepared for use with the AERMOD model by the BAAQMD. Annual DPM and $PM_{2.5}$ concentrations from construction activities during the 2017-2019 period were calculated using the model. DPM and $PM_{2.5}$ concentrations were calculated at nearby sensitive receptor locations. Receptor heights of 1.5 meters (4.9 feet) and 4.5 meters (14.7 feet) were used to represent the breathing heights of residents in nearby single family homes and for residences on the second floor level of buildings with first floor retail use.

The maximum-modeled annual $PM_{2.5}$ concentrations which includes both the DPM and Fugitve $PM_{2.5}$ concentrations, occurred at the first floor level of the Plaza Hotel to the south of the site, as shown in Figure 2 for the maximally exposed individual (MEI). The maximum cancer risks occurred at the second floor level of the residential MEI. Using the maximum annual modeled DPM concentrations, the maximum increased cancer risks were calculated. *Attachment 3* to this report includes the emission calculations used for the construction area source modeling and the cancer risk calculations.

Cancer Risks

Results of this assessment indicate that the maximum excess residential cancer risks would be 36.5 in one million for an infant exposure and 0.7 in one million for an adult exposure, occurring at the second floor level of the residential MEI. The maximum residential excess cancer risk would be greater than the BAAQMD significance threshold of 10 in one million. *Implementation of Mitigation Measures 1 and 3 would reduce this impact to a level of less than significant.*

¹³ Bay Area Air Quality Management District (BAAQMD), 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May.

Predicted Annual PM_{2.5} Concentration

The maximum-modeled annual $PM_{2.5}$ concentration, which is based on combined exhaust and fugitive dust emissions, was $0.396\mu g/m^3$, occurring at the first floor level of the residential MEI. The maximum annual $PM_{2.5}$ concentration at the MEI receptor location would exceed the BAAQMD significance threshold of $0.3 \ \mu g/m^3$.

Non-Cancer Hazards

The maximum modeled annual residential DPM concentration (i.e., from construction exhaust) was $0.1338 \ \mu g/m^3$. The maximum computed HI based on this DPM concentration is 0.03, which is much lower than the BAAQMD significance criterion of a HI greater than 1.0.

Cumulative Impact on Construction MEI

The cumulative impacts of TAC emissions from construction of the project, the stationary sources and traffic on W. Santa Clara Street on the construction MEI have been summarized in Table 8. As shown in Table 8, the sum of impacts from combined sources at the construction MEI would be below the thresholds of significance and this impact would be considered *less-than-significant*.

Source	Maximum Cancer Risk (per million)	Hazard Index	$\begin{array}{c} PM_{2.5} \\ concentration \\ (\mu g/m^3) \end{array}$
Project Construction	36.5	0.03	0.40
Plants 12969, 13528, 15169, and 16647 combined	5.0	< 0.01	< 0.01
Plant 19758, SMS/VEF Winthrop Management	<4.7	< 0.01	< 0.01
Plant 14985, Wells Fargo Bank	<1.2	< 0.01	< 0.01
Plant 8556, Fairmont Hotel	< 0.5	< 0.01	< 0.01
Plant 16778, Owl Energy Resources	<1.2	0.13	< 0.01
Plant 14713, Verizon Business	1.5	< 0.01	< 0.01
Plant 14687, Qwest Communication Corporation	0.7	< 0.01	< 0.01
Plant 14177, Pacific Gas & Electric	1.9	< 0.01	< 0.01
Plant 16706 (Now 22398), Harvest Properties LLC	<1.2	< 0.01	< 0.01
Plant 19420 (Now 21548), ECI	<7.5	< 0.01	< 0.01
Plant 13588 (Now 20903), CoreSite	<3.8	< 0.01	< 0.01
W. Santa Clara Street at 375 feet	<2.8	< 0.03	0.1
Combined Sources	<68.5	< 0.29	< 0.61
BAAQMD Threshold – Combined Sources	100	10.0	0.8

Table 8. Impacts from Combined Sources at Construction MEI

Mitigation Measure 3: Selection of equipment during construction to minimize emissions. Such equipment selection would include the following.

The project shall develop a plan demonstrating that the off-road equipment used on-site to construct the project would achieve a fleet-wide average 75 percent reduction in $PM_{2.5}$ exhaust emissions or more. One feasible plan to achieve this reduction would include the following:

All mobile diesel-powered off-road equipment larger than 25 horsepower and operating on the site for more than two days shall meet, at a minimum, U.S. EPA particulate matter emissions standards for Tier 4 engines or equivalent. Note that the construction contractor could use other measures to minimize construction period DPM emission to reduce the predicted cancer risk below the thresholds. The use of equipment that includes CARB-certified Level 3 Diesel Particulate Filters¹⁴ would meet this requirement. Other measures may be the use of added exhaust devices, alternativelyfueled equipment (i.e., non-diesel), or a combination of measures, provided that these measures are approved by the City and demonstrated to reduce community risk impacts to less than significant.

Effectiveness of Mitigation Measures 1 and 3

Implementation of Mitigation Measure 1 is considered to reduce exhaust emissions by 5 percent. Implementation of Mitigation Measure 3 would further reduce on-site diesel exhaust emissions. This would reduce the cancer risk proportionally, such that the mitigated risk would be less than 6.0 in one million and the maximum annual $PM_{2.5}$ concentration would be reduced to 0.14 µg/m³, which is less than the BAAQMD significance threshold After implementation of these mitigation measures, the project would have a *less-than-significant* impact with respect to community risk caused by construction activities.

¹⁴ See http://www.arb.ca.gov/diesel/verdev/vt/cvt.htm

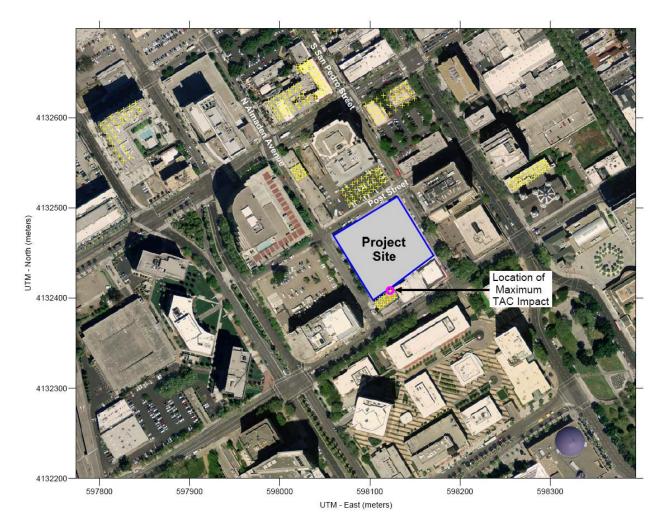


Figure 2. Project Construction Site and Locations of Off-Site Sensitive Receptors and Maximum TAC and PM_{2.5} Impacts

Attachment 1: Health Risk Calculation Methodology

A health risk assessment (HRA) for exposure to TACs requires the application of a risk characterization model to the results from the air dispersion model to estimate potential health risk at each sensitive receptor location. The State of California Office of Environmental Health Hazard Assessment (OEHHA) and CARB develop recommended methods for conducting health The most recent OEHHA risk assessment guidelines were published in risk assessments. February of 2015.¹⁵ These guidelines incorporate substantial changes designed to provide for enhanced protection of children, as required by State law, compared to previous published risk assessment guidelines. CARB has provided additional guidance on implementing OEHHA's recommended methods.¹⁶ This health risk assessment used the recent 2015 OEHHA risk assessment guidelines and CARB guidance. While the OEHHA guidelines use substantially more conservative assumptions than the current BAAQMD guidelines, BAAQMD has not formally adopted recommended procedures for applying the newest OEHHA guidelines. BAAQMD is in the process of developing new guidance and has developed proposed HRA Guidelines as part of the proposed amendments to Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants.¹⁷ Exposure parameters from the OEHHA guidelines and newly proposed BAAQMD HRA Guidelines were used in this evaluation.

Cancer Risk

Potential increased cancer risk from inhalation of TACs are calculated based on the TAC concentration over the period of exposure, inhalation dose, the TAC cancer potency factor, and an age sensitivity factor to reflect the greater sensitivity of infants and children to cancer causing TACs. The inhalation dose depends on a person's breathing rate, exposure time and frequency of exposure, and the exposure duration. These parameters vary depending on the age, or age range, of the persons being exposed and whether the exposure is considered to occur at a residential location or other sensitive receptor location.

The current OEHHA guidance recommends that cancer risk be calculated by age groups to account for different breathing rates and sensitivity to TACs. Specifically, they recommend evaluating risks for the third trimester of pregnancy to age zero, ages zero to less than two (infant exposure), ages two to less than 16 (child exposure), and ages 16 to 70 (adult exposure). Age sensitivity factors (ASFs) associated with the different types of exposure are an ASF of 10 for the third trimester and infant exposures, an ASF of 3 for a child exposure, and an ASF of 1 for an adult exposure. Also associated with each exposure type are different breathing rates, expressed as liters per kilogram of body weight per day (L/kg-day). As recommended by the BAAQMD, 95th percentile breathing rates are used for the third trimester and infant exposures, and 80th percentile breathing rates for child and adult exposures. Additionally, CARB and the BAAQMD recommend the use of residential exposure duration of 30 years for sources with long-term emissions (e.g., roadways).

¹⁵ OEHHA, 2015. . Office of Environmental Health Hazard Assessment. February.

¹⁶ CARB, 2015. Risk Management Guidance for Stationary Sources of Air Toxics. July 23.

¹⁷ BAAQMD, 2016. Workshop Report. Proposed Amendments to Air District Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants. Appendix C. Proposed Air District HRA Guidelines. January 2016.

Under previous OEHHA and BAAQMD HRA guidance, residential receptors are assumed to be at their home 24 hours a day, or 100 percent of the time. In the 2015 Risk Assessment Guidance, OEHHA includes adjustments to exposure duration to account for the fraction of time at home (FAH), which can be less than 100 percent of the time, based on updated population and activity statistics. The FAH factors are age-specific and are: 0.85 for third trimester of pregnancy to less than 2 years old, 0.72 for ages 2 to less than 16 years, and 0.73 for ages 16 to 70 years. BAAQMD recommends using these FAH factors for residential exposures.

Functionally, cancer risk is calculated using the following parameters and formulas:

Cancer Risk (per million) = *CPF x Inhalation Dose x ASF x ED/AT x FAH x 10*⁶ Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless) Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$ Where: C_{air} = concentration in air (µg/m³) DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

The health risk parameters used in this evaluation are summarized as follows

	Exposure Type	Infant		Child	Adult
Parameter	Age Range	3 rd Trimester	0<2	2 < 16	16 - 30
DPM Cancer Potency Factor (1	ng/kg-day) ⁻¹	1.10E+00	1.10E+00	1.10E+00	1.10E+00
Daily Breathing Rate (L/kg-da	y)*	361	1,090	572	261
Inhalation Absorption Factor		1	1	1	1
Averaging Time (years)		70	70	70	70
Exposure Duration (years)		0.25	2	14	14
Exposure Frequency (days/yea	r)	350	350	350	350
Age Sensitivity Factor	10	10	3	1	
Fraction of Time at Home		0.85 - 1.0	0.72 -1.0	0.72 -1.0	0.73

* 95th percentile breathing rates for 3rd trimester and infants and 80th percentile for children and adults

Non-Cancer Hazards

Potential non-cancer health hazards from TAC exposure are expressed in terms of a hazard index (HI), which is the ratio of the TAC concentration to a reference exposure level (REL). OEHHA has defined acceptable concentration levels for contaminants that pose non-cancer health hazards. TAC concentrations below the REL are not expected to cause adverse health impacts, even for sensitive individuals. The total HI is calculated as the sum of the HIs for each TAC evaluated and the total HI is compared to the BAAQMD significance thresholds to determine whether a significant non-cancer health impact from a project would occur.

Typically, for residential projects located near roadways with substantial TAC emissions, the primary TAC of concern with non-cancer health effects is DPM. For DPM, the chronic inhalation REL is 5 micrograms per cubic meter ($\mu g/m^3$).

Annual PM2.5 Concentrations

While not a TAC, $PM_{2.5}$ has been identified by the BAAQMD as a pollutant with potential noncancer health effects that should be included when evaluating potential community health impacts under CEQA. The thresholds of significance for $PM_{2.5}$ (project level and cumulative) are in terms of an increase in the annual average concentration. When considering $PM_{2.5}$ impacts, the contribution from all sources of $PM_{2.5}$ emissions should be included. For projects with potential impacts from nearby local roadways, the $PM_{2.5}$ impacts should include those from vehicle exhaust emissions, $PM_{2.5}$ generated from vehicle tire and brake wear, and fugitive emissions from re-suspended dust on the roads.

Attachment 2: Operational Stationary TAC Modeling Data

BAAQMD Stationary Source and Emission Data

Contact Name:	uestor Contact Information
	Tanushree Ganguly
Affiliation:	Illingworth & Rodkin, Inc.
Phone:	707-794-0400
Email:	tganguly@illingworthrodkin.com
Date of Request	7/26/2016
Project Name:	Post &San Predro Mixed Use
Address:	70 S Almaden Avenue
City:	San Jose
County:	Santa Clara
Type (residential,	Mixed Use Development
commercial, mixed	
use, industrial, etc.):	
Project size (# of units,	70.6 ksf
or building square	

For Air District assistance, the following steps must be completed: Complete all the contact and project information requested in Table A. Incomplete forms will not be processed. Please include a project site map. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's weblic http://www.google.com/earth/download/ge/, and then download/file. Tools-and Athendology aspu-tions and points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include diesel back-up generators, gas stations, dry cleaners, bolles, printers, auto spray booths, etc. Click on a point to view the source's information Table, including the name, location, and preliminary estimated cancer risk, hazard index, and PAUS 5 oncentration. Find the project site in Google Earth by inputting the site's address in the Google Earth search box. Using the Google Earth or project's fenceline. Verify that the location of the source on the map matches with the source's state and address and the stationary source's fenceline for all the sources that are within 1,000 feet of the project's fenceline. Verify that the location of the source on the map matches with the source's address in the Information Table, project information in Step 9j. If the stationary source's information table does <u>not</u> list cleaner risk, hazard index, and PMUS. Soncentration, and Instead says to "Contact District Staff", list the stationary source's information Table does <u>not</u> list cancer risk, hazard index, and PMUS. Soncentration, and Instead says to "Contact District Staff", list the stationary source's information table does <u>not</u> list cleaner risk, hazard index, and PMUS. Soncentration, and Instead says to "Contact District Staff", list He stationary source's information table does <u>not</u> list cleaner risk, hazard index, and PMUS. Soncentration, and Instead says to "Con

				Table B	: Stationary Source	s within 1,000 feet	of Receptor that say	"Contact District St	aff"				-
able B Section 1: Req	questor fills out the	e columns based on	Google Earth data			Table B S	ection 2: BAAQMD return	s form with additional in	formation in these colun	nns as needed			-
Distance from Receptor (feet)	Plant # or Gas Dispensary #	Facility Name	Street Address	2011 Screening Level Cancer Risk (1)	2011 Screening Level Hazard Index (1)	2011 Screening Level PM2.5 (1)	2014 Screening Level Cancer Risk (1)	2014 Screening Level Hazard Index (1)	2014 Screening Level PM2.5 (1)	Distance to Threshold Cancer Risk	Multiplier	Distance Adjusted PM2.5 Level	
75	13588	Carlyle Market Post Tower MMR	55 South Market St, STE 230	30.67	0.011	0.054	82	0.07	0.1				new no. 20903 CoreSite
350	19758	SMS/VEF Winthrop Management	60 South Mrket Street	No Data	No Data	No Data	20	0.01	0.026				generator
225	14985	Wells Fargo Bank	121 Park Central Plaza	71.25	0.025	0.016							No 2014 data. Use 2011 data.
75	12969	Verizon Business	55 South Market Street	64.95	0.023	0.115	154.9	0.08	0.2				generator
780	8556	Fairmont Hotel	170 South Market Street	62.81	0.147	0.002	6.49	0.01	0.0082			·	generator
780	16778	Owl Energy resources	170 South Market Street	0	0	1.17	17.5	1.19E-01	3.09				
238	13528	Pacific Bell	95 South Alamaden Avenue	116.89	0.089	0.250	253.54	0.019	0.330				generator
700	14713	Verizon Business	55 South Almaden	13.82	0.005	0.025	15.40	0.007	0.020				I
720	19420	Legacy Aprtners II SJ Almaden LLC	1 Almaden Boulevard	21.46	0.008	0.038	57.85	0.030	0.075				new plant no. 21548 generator
700	14687	Qwest Communications Corporation	55 Almaden Boulevard	37.14	0.013	0.009	6.07	0.008	0.008				generator
800	14177	Pacific Gas and Electric	111 Almaden Boulevard	78.34	0.028	0.029	17.16	0.009	0.026				generator
785	15169	Adobe Systems, Inc	151 Almaden Boulevard	2.04	0.038	0.004	367.20	0.190	0.478				generator
780	16706	Equity Office Properties	225 W Santa Clara Street	22.42	0.008	0.040	12.67	0.100	0.016				new no. 22398 "Harvest Properties"
435	16647	Equity Office Properties	10 Almaden	171.15	0.061	0.303	38.14	0.019	0.049				_
960	18907	Rosendin Electric	38 N Almaden Blvd	No Data	No Data	No Data	no data	no data	no data				generator, appears to be closed.
780	15556	Jeppesen	225 W Santa Clara Street	0	0.000	0.001	0.00	0.000	0.001				generator
													-
													-
													-
													-

BAY AREA AIR QUALITY MANAGEMENT DISTRICT DETAIL POLLUTANTS - ABATED MOST RECENT P/O APPROVED (2015)

Pacific Bell (P# 13528)

S# SOURCE NAME

MATERIAL SOURCE CODE

THROUGHPUT DATE POLLUTANT

CODE LBS/DAY

3 Emergency Standby Diesel Generator Set C2240098 Benzene 41 1.41E-03 Formaldehyde 124 1.17E-04 Organics (other, including 990 6.80E-02 Arsenic (all) 1030 1.23E-06 Beryllium (all) pollutant 1040 7.19E-07 Cadmium 1070 3.07E-06 Chromium (hexavalent) 1095 6.35E-08 Lead (all) pollutant 1140 2.60E-06 Manganese 1160 4.08E-06 Nickel pollutant 1180 4.96E-05 Mercury (all) pollutant 1190 8.67E-07 Diesel Engine Exhaust Part 1350 7.08E-02 PAH's (non-speciated) 1840 6.47E-06 Nitrous Oxide (N2O) 2030 3.77E-04 Nitrogen Oxides (part not 2990 9.92E-01 Sulfur Dioxide (SO2) 3990 4.60E-04 Carbon Monoxide (CO) pollu 4990 2.16E-01 Carbon Dioxide, non-biogen 6960 4.72E+01 Methane (CH4) 6970 1.89E-03 4 Emergency Standby Diesel Fire Pump Engine C24AH098 Benzene 41 1.11E-04 124 9.05E-06 Formaldehyde Organics (other, including 990 5.01E-03 Arsenic (all) 1030 9.53E-08 Beryllium (all) pollutant 1040 5.59E-08 Cadmium 1070 2.38E-07 Chromium (hexavalent) 1095 4.93E-09 Lead (all) pollutant 1140 2.02E-07 Manganese 1160 3.17E-07 Nickel pollutant 1180 3.86E-06 Mercury (all) pollutant 1190 6.74E-08 Diesel Engine Exhaust Part 1350 3.69E-03 PAH's (non-speciated) 1840 5.03E-07 Nitrous Oxide (N2O) 2030 2.93E-05

Nitrogen Oxides (part not 2990 9.56E-02 Sulfur Dioxide (SO2) 3990 3.58E-05 Carbon Monoxide (CO) pollu 4990 3.12E-02 Carbon Dioxide, non-biogen 6960 3.67E+00 Methane (CH4) 6970 1.47E-04 6 Emergency Standby Diesel Generator Set C22BG098 Benzene 41 3.68E-03 Formaldehyde 124 3.04E-04 Organics (other, including 990 5.45E-02 1030 3.20E-06 Arsenic (all) Beryllium (all) pollutant 1040 1.88E-06 Cadmium 1070 8.01E-06 Chromium (hexavalent) 1095 1.66E-07 Lead (all) pollutant 1140 6.79E-06 Manganese 1160 1.07E-05 1180 1.30E-04 Nickel pollutant Mercury (all) pollutant 1190 2.26E-06 Diesel Engine Exhaust Part 1350 3.02E-02 PAH's (non-speciated) 1840 1.69E-05 Nitrous Oxide (N2O) 2030 9.85E-04 Nitrogen Oxides (part not 2990 1.11E+00 Sulfur Dioxide (SO2) 3990 1.20E-03 Carbon Monoxide (CO) pollu 4990 3.58E-01 Carbon Dioxide, non-biogen 6960 1.23E+02 Methane (CH4) 6970 4.93E-03

PLANT TOTAL:

lbs/day Pollutant

4.53E-06 Arsenic (all) (1030)

- 5.20E-03 Benzene (41)
- 2.65E-06 Beryllium (all) pollutant (1040)
- 1.13E-05 Cadmium (1070)

1.74E+02 Carbon Dioxide, non-biogenic CO2 (6960)

- 6.05E-01 Carbon Monoxide (CO) pollutant (4990)
- 2.34E-07 Chromium (hexavalent) (1095)
- 1.05E-01 Diesel Engine Exhaust Particulate Matter (1350)
- 4.30E-04 Formaldehyde (124)
- 9.60E-06 Lead (all) pollutant (1140)
- 1.51E-05 Manganese (1160)
- 3.20E-06 Mercury (all) pollutant (1190)
- 6.96E-03 Methane (CH4) (6970)
- 1.83E-04 Nickel pollutant (1180)
- 2.20E+00 Nitrogen Oxides (part not spec elsewhere) (2990)
- 1.39E-03 Nitrous Oxide (N2O) (2030)
- 1.28E-01 Organics (other, including CH4) (990)

2.39E-05 PAH's (non-speciated) (1840) 1.70E-03 Sulfur Dioxide (SO2) (3990)

Printed: AUG 3, 2016

BAY AREA AIR QUALITY MANAGEMENT DISTRICT DETAIL POLLUTANTS - ABATED MOST RECENT P/O APPROVED (2015)

Adobe Systems, Inc (P# 15169)

S# SOURCE NAME

MATERIAL SOURCE CODE

THROUGHPUT DATE POLLUTANT

CODE LBS/DAY

1 Emergency Standby Diesel Generator Set C22BG098 Benzene 41 1.16E-03 Formaldehyde 124 9.63E-05 Organics (other, including 990 5.62E-02 Arsenic (all) 1030 1.01E-06 Beryllium (all) pollutant 1040 5.94E-07 Cadmium 1070 2.53E-06 Chromium (hexavalent) 1095 5.24E-08 Lead (all) pollutant 1140 2.15E-06 Manganese 1160 3.37E-06 Nickel pollutant 1180 4.10E-05 Mercury (all) pollutant 1190 7.17E-07 Diesel Engine Exhaust Part 1350 5.86E-02 PAH's (non-speciated) 1840 5.35E-06 Nitrous Oxide (N2O) 2030 3.12E-04 Nitrogen Oxides (part not 2990 8.20E-01 Sulfur Dioxide (SO2) 3990 3.80E-04 Carbon Monoxide (CO) pollu 4990 1.78E-01 Carbon Dioxide, non-biogen 6960 3.90E+01 Methane (CH4) 6970 1.56E-03 2 Emergency Standby Diesel Generator Set C22BG098 Organics (other, including 990 1.20E-01 Arsenic (all) 1030 1.26E-06 Beryllium (all) pollutant 1040 7.41E-07 Cadmium 1070 3.16E-06 Chromium (hexavalent) 1095 6.54E-08 Lead (all) pollutant 1140 2.68E-06 Manganese 1160 4.21E-06 1180 5.12E-05 Nickel pollutant Mercury (all) pollutant 1190 8.94E-07 Diesel Engine Exhaust Part 1350 6.72E-02 PAH's (non-speciated) 1840 6.67E-06 Nitrous Oxide (N2O) 2030 3.89E-04 Nitrogen Oxides (part not 2990 1.50E+00 Sulfur Dioxide (SO2) 3990 4.74E-04

Carbon Monoxide (CO) pollu 4990 3.23E-01 Carbon Dioxide, non-biogen 6960 4.86E+01 Methane (CH4) 6970 1.95E-03 3 Emergency Standby Diesel Fire Pump Engine C24AG098 Organics (other, including 990 5.52E-03 Arsenic (all) 1030 8.10E-08 Beryllium (all) pollutant 1040 4.75E-08 Cadmium 1070 2.03E-07 Chromium (hexavalent) 1095 4.19E-09 Lead (all) pollutant 1140 1.72E-07 Manganese 1160 2.70E-07 Nickel pollutant 1180 3.28E-06 Mercury (all) pollutant 1190 5.73E-08 Diesel Engine Exhaust Part 1350 3.10E-03 PAH's (non-speciated) 1840 4.28E-07 Nitrous Oxide (N2O) 2030 2.49E-05 Nitrogen Oxides (part not 2990 6.93E-02 Sulfur Dioxide (SO2) 3990 3.04E-05 Carbon Monoxide (CO) pollu 4990 1.49E-02 Carbon Dioxide, non-biogen 6960 3.12E+00 Methane (CH4) 6970 1.25E-04 4 Emergency Standby Diesel Generator Set C22BG098 Organics (other, including 990 9.58E-02 Arsenic (all) 1030 1.01E-06 Beryllium (all) pollutant 1040 5.94E-07 Cadmium 1070 2.53E-06 Chromium (hexavalent) 1095 5.24E-08 Lead (all) pollutant 1140 2.15E-06 Manganese 1160 3.37E-06 Nickel pollutant 1180 4.10E-05 Mercury (all) pollutant 1190 7.17E-07 Diesel Engine Exhaust Part 1350 5.39E-02 PAH's (non-speciated) 1840 5.35E-06 Nitrous Oxide (N2O) 2030 3.12E-04 Nitrogen Oxides (part not 2990 1.20E+00 Sulfur Dioxide (SO2) 3990 3.80E-04 Carbon Monoxide (CO) pollu 4990 2.59E-01 Carbon Dioxide, non-biogen 6960 3.90E+01 Methane (CH4) 6970 1.56E-03 5 Emergency Standby Diesel Fire Pump Engine C24AG098 Organics (other, including 990 2.50E-02 Arsenic (all) 1030 2.75E-07 Beryllium (all) pollutant 1040 1.61E-07 Cadmium 1070 6.87E-07

Chromium (hexavalent) 1095 1.42E-08 Lead (all) pollutant 1140 5.83E-07 Manganese 1160 9.15E-07 Nickel pollutant 1180 1.11E-05 Mercury (all) pollutant 1190 1.94E-07 Diesel Engine Exhaust Part 1350 1.41E-02 PAH's (non-speciated) 1840 1.45E-06 Nitrous Oxide (N2O) 2030 8.46E-05 Nitrogen Oxides (part not 2990 3.14E-01 Sulfur Dioxide (SO2) 3990 1.03E-04 Carbon Monoxide (CO) pollu 4990 6.76E-02 Carbon Dioxide, non-biogen 6960 1.06E+01 Methane (CH4) 6970 4.23E-04

6 Emergency Standby Diesel Fire Pump Engine

C24AG098

Organics (other, including 990 1.26E-03 1030 1.38E-07 Arsenic (all) Beryllium (all) pollutant 1040 8.10E-08 Cadmium 1070 3.46E-07 Chromium (hexavalent) 1095 7.15E-09 Lead (all) pollutant 1140 2.93E-07 Manganese 1160 4.60E-07 Nickel pollutant 1180 5.59E-06 Mercury (all) pollutant 1190 9.77E-08 Diesel Engine Exhaust Part 1350 2.04E-03 PAH's (non-speciated) 1840 7.29E-07 Nitrous Oxide (N2O) 2030 4.25E-05 Nitrogen Oxides (part not 2990 4.55E-02 Sulfur Dioxide (SO2) 3990 5.18E-05 Carbon Monoxide (CO) pollu 4990 6.01E-03 Carbon Dioxide, non-biogen 6960 5.32E+00 6970 2.13E-04 Methane (CH4)

PLANT TOTAL:

lbs/day Pollutant

- 3.79E-06 Arsenic (all) (1030)
- 1.16E-03 Benzene (41)
- 2.22E-06 Beryllium (all) pollutant (1040)
- 9.47E-06 Cadmium (1070)
- 1.46E+02 Carbon Dioxide, non-biogenic CO2 (6960)
- 8.49E-01 Carbon Monoxide (CO) pollutant (4990)
- 1.96E-07 Chromium (hexavalent) (1095)
- 1.99E-01 Diesel Engine Exhaust Particulate Matter (1350)
- 9.63E-05 Formaldehyde (124)
- 8.03E-06 Lead (all) pollutant (1140)
- 1.26E-05 Manganese (1160)

- 2.68E-06 Mercury (all) pollutant (1190)
- 5.82E-03 Methane (CH4) (6970)
- 1.53E-04 Nickel pollutant (1180)
- 3.95E+00 Nitrogen Oxides (part not spec elsewhere) (2990)
- 1.16E-03 Nitrous Oxide (N2O) (2030)
- 3.03E-01 Organics (other, including CH4) (990)
- 2.00E-05 PAH's (non-speciated) (1840)
- 1.42E-03 Sulfur Dioxide (SO2) (3990)

BAY AREA AIR QUALITY MANAGEMENT DISTRICT DETAIL POLLUTANTS - ABATED MOST RECENT P/O APPROVED (2015)

Equity Office Properties (P# 16647)

S# SOURCE NAME

MATERIAL SOURCE CODE

THROUGHPUT DATE POLLUTANT

CODE LBS/DAY

1 10 Almaden - Emergency Generator C22AG098 Benzene 41 4.28E-04 Formaldehyde 124 3.54E-05 Organics (other, including 990 2.07E-02 Arsenic (all) 1030 3.73E-07 Beryllium (all) pollutant 1040 2.18E-07 Cadmium 1070 9.32E-07 Chromium (hexavalent) 1095 1.93E-08 Lead (all) pollutant 1140 7.90E-07 Manganese 1160 1.24E-06 Nickel pollutant 1180 1.51E-05 Mercury (all) pollutant 1190 2.63E-07 Diesel Engine Exhaust Part 1350 2.15E-02 PAH's (non-speciated) 1840 1.97E-06 Nitrous Oxide (N2O) 2030 1.15E-04 Nitrogen Oxides (part not 2990 3.01E-01 Sulfur Dioxide (SO2) 3990 1.40E-04 Carbon Monoxide (CO) pollu 4990 6.55E-02 Carbon Dioxide, non-biogen 6960 1.43E+01 Methane (CH4) 6970 5.73E-04 2 10 Almaden - Fire Pump C24AG098 Benzene 41 1.09E-04 124 8.87E-06 Formaldehyde Organics (other, including 990 5.92E-03 Arsenic (all) 1030 9.34E-08 Beryllium (all) pollutant 1040 5.48E-08 Cadmium 1070 2.34E-07 Chromium (hexavalent) 1095 4.83E-09 Lead (all) pollutant 1140 1.98E-07 Manganese 1160 3.11E-07 Nickel pollutant 1180 3.78E-06 Mercury (all) pollutant 1190 6.60E-08 Diesel Engine Exhaust Part 1350 5.40E-03 PAH's (non-speciated) 1840 4.93E-07 Nitrous Oxide (N2O) 2030 2.87E-05

Nitrogen Oxides (part not 2990 7.56E-02Sulfur Dioxide (SO2)3990 3.50E-05Carbon Monoxide (CO) pollu 4990 1.64E-02Carbon Dioxide, non-biogen 6960 3.59E+00Methane (CH4)6970 1.44E-04

PLANT TOTAL:

lbs/day Pollutant

- 4.66E-07 Arsenic (all) (1030)
- 5.37E-04 Benzene (41)
- 2.73E-07 Beryllium (all) pollutant (1040)
- 1.17E-06 Cadmium (1070)
- 1.79E+01 Carbon Dioxide, non-biogenic CO2 (6960)
- 8.20E-02 Carbon Monoxide (CO) pollutant (4990)
- 2.41E-08 Chromium (hexavalent) (1095)
- 2.69E-02 Diesel Engine Exhaust Particulate Matter (1350)
- 4.43E-05 Formaldehyde (124)
- 9.88E-07 Lead (all) pollutant (1140)
- 1.55E-06 Manganese (1160)
- 3.29E-07 Mercury (all) pollutant (1190)
- 7.17E-04 Methane (CH4) (6970)
- 1.89E-05 Nickel pollutant (1180)
- 3.77E-01 Nitrogen Oxides (part not spec elsewhere) (2990)
- 1.43E-04 Nitrous Oxide (N2O) (2030)
- 2.66E-02 Organics (other, including CH4) (990)
- 2.46E-06 PAH's (non-speciated) (1840)
- 1.75E-04 Sulfur Dioxide (SO2) (3990)

Printed: AUG 3, 2016

BAY AREA AIR QUALITY MANAGEMENT DISTRICT DETAIL POLLUTANTS - ABATED MOST RECENT P/O APPROVED (2015)

Verizon Business (P# 12969)

S# SOURCE NAME

MATERIAL SOURCE CODE

THROUGHPUT DATE POLLUTANT

CODE LBS/DAY

1 Standby Generator Set Diesel C22BG098 Benzene 41 2.17E-03 Formaldehyde 124 1.80E-04 Organics (other, including 990 1.05E-01 Arsenic (all) 1030 1.89E-06 Beryllium (all) pollutant 1040 1.11E-06 Cadmium 1070 4.73E-06 Chromium (hexavalent) 1095 9.79E-08 Lead (all) pollutant 1140 4.01E-06 Manganese 1160 6.30E-06 Nickel pollutant 1180 7.66E-05 Mercury (all) pollutant 1190 1.34E-06 Diesel Engine Exhaust Part 1350 1.09E-01 PAH's (non-speciated) 1840 9.99E-06 Nitrous Oxide (N2O) 2030 5.82E-04 Nitrogen Oxides (part not 2990 1.53E+00 Sulfur Dioxide (SO2) 3990 7.10E-04 Carbon Monoxide (CO) pollu 4990 3.33E-01 Carbon Dioxide, non-biogen 6960 7.28E+01 Methane (CH4) 6970 2.91E-03

site number: 20903

BAY AREA AIR QUALITY MANAGEMENT DISTRICT DETAIL POLLUTANTS - ABATED MOST RECENT P/O APPROVED (2015)

CoreSite (P# 20903)

S# SOURCE NAME

MATERIAL SOURCE CODE THROUGHPUT DATE POLLUTANT

CODE LBS/DAY

Printed: AUG 3, 2016

1 Emergency Standby Generator

C22BG098

41 5.29E-04 Benzene Formaldehyde 124 4.38E-05 Organics (other, including 990 3.55E-02 Arsenic (all) 1030 4.61E-07 Beryllium (all) pollutant 1040 2.70E-07 Cadmium 1070 1.15E-06 Chromium (hexavalent) 1095 2.38E-08 Lead (all) pollutant 1140 9.77E-07 Manganese 1160 1.53E-06 Nickel pollutant 1180 1.86E-05 Mercury (all) pollutant 1190 3.26E-07 Diesel Engine Exhaust Part 1350 2.88E-03 PAH's (non-speciated) 1840 2.43E-06 Nitrous Oxide (N2O) 2030 1.42E-04 Nitrogen Oxides (part not 2990 2.05E-01 Sulfur Dioxide (SO2) 3990 1.73E-04 Carbon Monoxide (CO) pollu 4990 1.44E-02 Carbon Dioxide, non-biogen 6960 1.77E+01 Methane (CH4) 6970 7.09E-04 2 Diesel Engine, Caterpillar model 3508 SR4B, emergency standb C22BG098 Benzene 41 7.12E-04 Formaldehyde 124 5.89E-05 Organics (other, including 990 3.44E-02 Arsenic (all) 1030 6.20E-07 Beryllium (all) pollutant 1040 3.63E-07 Cadmium 1070 1.55E-06 Chromium (hexavalent) 1095 3.21E-08 Lead (all) pollutant 1140 1.31E-06 Manganese 1160 2.06E-06 Nickel pollutant 1180 2.51E-05 Mercury (all) pollutant 1190 4.38E-07

Diesel Engine Exhaust Part 1350 3.58E-02

PAH's (non-speciated) 1840 3.27E-06 Nitrous Oxide (N2O) 2030 1.91E-04 Nitrogen Oxides (part not 2990 5.01E-01 Sulfur Dioxide (SO2) 3990 2.32E-04 Carbon Monoxide (CO) pollu 4990 1.09E-01 Carbon Dioxide, non-biogen 6960 2.38E+01 6970 9.53E-04 Methane (CH4) 3 Diesel Engine, Onan model 150DGFA, emergency standby C22AG098 Benzene 41 9.49E-05 Formaldehyde 124 7.85E-06 Organics (other, including 990 4.58E-03 Arsenic (all) 1030 8.26E-08 Beryllium (all) pollutant 1040 4.84E-08 Cadmium 1070 2.07E-07 Chromium (hexavalent) 1095 4.27E-09 Lead (all) pollutant 1140 1.75E-07 Manganese 1160 2.75E-07 Nickel pollutant 1180 3.34E-06 Mercury (all) pollutant 1190 5.84E-08 Diesel Engine Exhaust Part 1350 4.77E-03 PAH's (non-speciated) 1840 4.36E-07 Nitrous Oxide (N2O) 2030 2.54E-05 Nitrogen Oxides (part not 2990 6.68E-02 Sulfur Dioxide (SO2) 3990 3.10E-05 Carbon Monoxide (CO) pollu 4990 1.45E-02 Carbon Dioxide, non-biogen 6960 3.18E+00 Methane (CH4) 6970 1.27E-04 4 Diesel Engine, Caterpillar model 3412 SR4, emergency standby C22AG098 Benzene 41 3.65E-05 Formaldehyde 124 3.02E-06 Organics (other, including 990 1.27E-04 Arsenic (all) 1030 3.18E-08 Beryllium (all) pollutant 1040 1.86E-08 Cadmium 1070 7.95E-08 Chromium (hexavalent) 1095 1.64E-09 Lead (all) pollutant 1140 6.74E-08 Manganese 1160 1.06E-07 Nickel pollutant 1180 1.29E-06 Mercury (all) pollutant 1190 2.25E-08 Diesel Engine Exhaust Part 1350 1.33E-04 PAH's (non-speciated) 1840 1.68E-07 Nitrous Oxide (N2O) 2030 9.78E-06 Nitrogen Oxides (part not 2990 8.80E-03 Sulfur Dioxide (SO2) 3990 1.19E-05 Carbon Monoxide (CO) pollu 4990 1.83E-03

Carbon Dioxide, non-biogen 6960 1.22E+00 6970 4.89E-05 Methane (CH4) 5 Diesel Powered Standby Generator 2122KW C22BG098 Benzene 41 1.42E-03 Formaldehyde 124 1.18E-04 Organics (other, including 990 1.20E-02 Arsenic (all) 1030 1.24E-06 Beryllium (all) pollutant 1040 7.27E-07 Cadmium 1070 3.10E-06 Chromium (hexavalent) 1095 6.41E-08 Lead (all) pollutant 1140 2.63E-06 Manganese 1160 4.12E-06 Nickel pollutant 1180 5.01E-05 Mercury (all) pollutant 1190 8.76E-07 Diesel Engine Exhaust Part 1350 8.87E-03

 PAH's (non-speciated)
 1840 6.54E-06

 Nitrous Oxide (N2O)
 2030 3.81E-04

 Nitrogen Oxides (part not 2990 6.08E-01

 Sulfur Dioxide (SO2)
 3990 4.65E-04

 Carbon Monoxide (CO) pollu 4990 4.34E-02

 Carbon Dioxide, non-biogen 6960 4.77E+01

 Methane (CH4)
 6970 1.91E-03

6 Standby Generator #1

C22BG098

0 0.00E+00

PLANT TOTAL: lbs/day Pollutant

2.43E-06 Arsenic (all) (1030) 2.80E-03 Benzene (41)

- 1.43E-06 Beryllium (all) pollutant (1040)
- 6.09E-06 Cadmium (1070)

9.36E+01 Carbon Dioxide, non-biogenic CO2 (6960)

1.83E-01 Carbon Monoxide (CO) pollutant (4990)

1.26E-07 Chromium (hexavalent) (1095)

- 5.24E-02 Diesel Engine Exhaust Particulate Matter (1350)
- 2.31E-04 Formaldehyde (124)
- 5.16E-06 Lead (all) pollutant (1140)
- 8.10E-06 Manganese (1160)
- 1.72E-06 Mercury (all) pollutant (1190)
- 3.74E-03 Methane (CH4) (6970)
- 9.85E-05 Nickel pollutant (1180)
- 1.39E+00 Nitrogen Oxides (part not spec elsewhere) (2990)
- 7.49E-04 Nitrous Oxide (N2O) (2030)
- 8.66E-02 Organics (other, including CH4) (990)

1.28E-05 PAH's (non-speciated) (1840) 9.13E-04 Sulfur Dioxide (SO2) (3990)

Greyhound Site, San Jose, CA Summary of Point Source Emissions for Modeling and Health Risk Impacts

BAAQMD						Health Risk Mod	eling Results
Plant			Emission	Emission	n Rates ^a	Max PM2.5	Cancer Risk
Number	Facility Name	Facility Address	Sources	(lb/day)	(lb/hr)	(µg/m3)	(per million)
12969	Verizon Business	55 SO MARKET STREET	1 Gen	0.109	0.004542	0.015	8.0
13588	Carlyle Market Post Tower MM	55 SO MARKET STREET	5 Gens	0.052	0.002183	0.007	3.8
13528	Pacific Bell	95 SO ALMADEN AVENUE	2 Gens, 1 Fire Pump	0.105	0.004375	0.034	18.7
15169	Adobe Systems, Inc	151 ALMADEN BOULEVARD	3 Gens, 3 Fire Pumps	0.199	0.008292	0.003	1.6
16647	Equity Office Properties	TEN ALMADEN	1 Gen, 1 Fire Pump	0.027	0.001121	0.002	1.2
Cumulative	All Sources			-	-	0.041	22.3

^a Daily emissions provided by BAAQMD. Hourly emissions used for modeling.

Greyhound Site, San Jose, CA - AERMOD Modeling Parameters BAAQMD Plant # 12969

DPM Emission Rates			
	Annual	DPM E	missions
	Operation	Daily*	Annual
Source Type	(hr)	(lb/day)	(lb/yr)
Generator	-	0.1090	39.79

* From BAAQMD permit inventory

Modeling Information		
Model:	AERMOD	
Source	Diesel Engine	
Source Type	Point	
Distance to Residences (ft)	various - minim	um distance to generator $= 60$ feet
Receptor Spacing	8 meters spacing	g in residential areas
Meteorological Data	2006-2010 BAA	AQMD San Jose Airport data
Point Source Stack Parameters		
Generator engine size (hp)	unknown	
Stack Height (ft)	12	
Stack Diameter** (ft)	0.60	
Stack Exit Velocity** (ft/sec)	149	
Exhaust Temperature** (F)	872	
Annual Emission Rate (lb/year)	39.79	from BAAQMD inventory data
Hourly Emission Rate (lb/hr)	4.54E-03	

** BAAQMD default generator parameters

Refined Modeling – Calculations and Results

Greyhound Site, San Jose, CA - DPM Cancer Risks at Project Site BAAQMD Plant # 12969 1st Through 9th Floor Levels

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

Cancer Potency Factors (mg/kg-day)⁻¹

	ð	, Β	8
TAC			CPF
DPM			1.10E+00

		Adult		
Age>	3rd Trimester	0 - <2	2 - <16	16 - 30
Parameter				
ASF	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
ED =	0.25	2	14	14
AT =	70	70	70	70
FAH =	0.85	0.72	0.72	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

MEI Cancer Risk From: BAAQMD Plant # 12969 5th Floor Receptors

Exposure Duration (years)	Age	Age Sensitivity Factor	DPM Annual Conc (ug/m3)	DPM Cancer Risk (per million)
0.25	-0.25 - 0*	10	0.0146	0.17
2	1 - 2	10	0.0146	3.44
14	3 - 16	3	0.0146	3.79
14	17 - 30	1	0.0146	0.59
Total Increased Cancer Risk				8.0

* Third trimester of pregnancy

Maximum Cancer Risk by Floor Level BAAQMD Plant # 12969

			Maximum
	Receptor	DPM	DPM
	Height	Annual Conc	Cancer Risk
Floor Level	(m)	(ug/m3)	(per million)
3rd	10.6	0.01341	7.4
4th	13.7	0.01431	7.9
5th	16.7	0.01457	8.0
6th	19.8	0.01450	8.0
7th	22.8	0.01407	7.7
8th	25.9	0.01306	7.2
9th	28.9	0.01162	6.4

Greyhound Site, San Jose, CA - AERMOD Modeling Parameters BAAQMD Plant # 13528

DPM Emission Rates			
	Annual	DPM E	missions
	Operation	Daily*	Annual
Source Type	(hr)	(lb/day)	(lb/yr)
2 Generators and 1 Fire Pump	-	0.1050	38.33

* From BAAQMD permit inventory

Modeling Information		
Model:	AERMOD	
Source	Diesel Engine	;
Source Type	Point	
Distance to Residences (ft)	various - minim	um distance to generator = 100 feet
Receptor Spacing	8 meters spacing	g in residential areas
Meteorological Data	2006-2010 BAA	AQMD San Jose Airport data
Point Source Stack Parameters		
Generator engine size (hp)	unknown	
Stack Height (ft)	12	
Stack Diameter** (ft)	0.60	
Stack Exit Velocity** (ft/sec)	149	
Exhaust Temperature** (F)	872	
Annual Emission Rate (lb/year)	38.33	from BAAQMD inventory data
Hourly Emission Rate (lb/hr)	4.38E-03	

** BAAQMD default generator parameters

Greyhound Site, San Jose, CA - DPM Cancer Risks at Project Site BAAQMD Plant # 13528 1st Through 9th Floor Levels

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

Cancer Potency Factors (mg/kg-day)⁻¹

	ð	, Β	8
TAC			CPF
DPM			1.10E+00

		Adult		
Age>	3rd Trimester	0 - <2	2 - <16	16 - 30
Parameter				
ASF	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
ED =	0.25	2	14	14
AT =	70	70	70	70
FAH =	0.85	0.72	0.72	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

MEI Cancer Risk From: BAAQMD Plant # 13528

7th Floor Receptors

Exposure Duration (years)	Age	Age Sensitivity Factor	DPM Annual Conc (ug/m3)	DPM Cancer Risk (per million)
0.25	-0.25 - 0*	10	0.0340	0.39
2	1 - 2	10	0.0340	8.05
14	3 - 16	3	0.0340	8.87
14	17 - 30	1	0.0340	1.37
Total Increase	Total Increased Cancer Risk			18.7

* Third trimester of pregnancy

Maximum Cancer Risk by Floor Level BAAQMD Plant # 13528

			Maximum
	Receptor	DPM	DPM
	Height	Annual Conc	Cancer Risk
Floor Level	(m)	(ug/m3)	(per million)
3rd	10.6	0.01726	9.5
4th	13.7	0.02288	12.6
5th	16.7	0.02854	15.7
6th	19.8	0.03350	18.4
7th	22.8	0.03403	18.7
8th	25.9	0.02984	16.4
9th	28.9	0.02490	13.7

Greyhound Site, San Jose, CA - AERMOD Modeling Parameters BAAQMD Plant # 13588

DPM Emission Rates				
	Annual	DPM E	missions	
	Operation	Daily*	Annual	
Source Type	(hr)	(lb/day)	(lb/yr)	
Generator	-	0.0520	18.98	

* From BAAQMD permit inventory

Modeling Information		
Model:	AERMOD	
Source	Diesel Engine	;
Source Type	Point	
Distance to Residences (ft)	various - minim	um distance to generator $= 60$ feet
Receptor Spacing	8 meters spacing	g in residential areas
Meteorological Data	2006-2010 BAA	AQMD San Jose Airport data
Point Source Stack Parameters		
Generator engine size (hp)	unknown	
Stack Height (ft)	12	
Stack Diameter** (ft)	0.60	
Stack Exit Velocity** (ft/sec)	149	
Exhaust Temperature** (F)	872	
Annual Emission Rate (lb/year)	18.98	from BAAQMD inventory data
Hourly Emission Rate (lb/hr)	2.17E-03	

** BAAQMD default generator parameters

Greyhound Site, San Jose, CA - DPM Cancer Risks at Project Site BAAQMD Plant # 13588 1st Through 9th Floor Levels

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

- ASF = Age sensitivity factor for specified age group
- ED = Exposure duration (years)
- AT = Averaging time for lifetime cancer risk (years)
- FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

- Where: $C_{air} = concentration in air (\mu g/m^3)$
 - DBR = daily breathing rate (L/kg body weight-day)
 - A = Inhalation absorption factor
 - EF = Exposure frequency (days/year)
 - 10^{-6} = Conversion factor

Values

Cancer Potency Factors (mg/kg-day)⁻¹

•	
TAC	CPF
DPM	1.10E+00

	Infant/Child			Adult
Age>	3rd Trimester	0 - <2	2 - <16	16 - 30
Parameter				
ASF	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
ED =	0.25	2	14	14
AT =	70	70	70	70
FAH =	0.85	0.72	0.72	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

MEI Cancer Risk From: BAAQMD Plant # 13588 5th Floor Receptors

Exposure Duration (years)	Age	Age Sensitivity Factor	DPM Annual Conc (ug/m3)	DPM Cancer Risk (per million)
0.25	-0.25 - 0*	10	0.0070	0.08
2	1 - 2	10	0.0070	1.66
14	3 - 16	3	0.0070	1.82
14	17 - 30	1	0.0070	0.28
Total Increase	d Cancer Risk			3.8

* Third trimester of pregnancy

Maximum Cancer Risk by Floor Level BAAQMD Plant # 13588

			Maximum
	Receptor	DPM	DPM
	Height	Annual Conc	Cancer Risk
Floor Level	(m)	(ug/m3)	(per million)
3rd	10.6	0.00645	3.5
4th	13.7	0.00688	3.8
5th	16.7	0.00700	3.8
6th	19.8	0.00697	3.8
7th	22.8	0.00676	3.7
8th	25.9	0.00628	3.4
9th	28.9	0.00559	3.1

Greyhound Site, San Jose, CA - AERMOD Modeling Parameters BAAQMD Plant # 15169

DPM Emission Rates					
	Annual	DPM E	missions		
	Operation	Daily*	Annual		
Source Type	(hr)	(lb/day)	(lb/yr)		
3 Generators and 3 Fire Pumps	-	0.199	72.64		

* From BAAQMD permit inventory

Modeling Information		
Model:	AERMOD	
Source	Diesel Engine	,
Source Type	Point	
Distance to Residences (ft)	various - minim	um distance to generator $= 700$ feet
Receptor Spacing	8 meters spacing	g in residential areas
Meteorological Data	2006-2010 BAA	AQMD San Jose Airport data
Point Source Stack Parameters		
Generator engine size (hp)	unknown	
Stack Height (ft)	12	
Stack Diameter** (ft)	0.60	
Stack Exit Velocity** (ft/sec)	149	
Exhaust Temperature** (F)	872	
Annual Emission Rate (lb/year)	72.64	from BAAQMD inventory data
Hourly Emission Rate (lb/hr)	8.29E-03	-

** BAAQMD default generator parameters

Greyhound Site, San Jose, CA - DPM Cancer Risks at Project Site BAAQMD Plant # 15169 1st Through 9th Floor Levels

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00

	Infant/Child			Adult
Age>	3rd Trimester	0 - <2	2 - <16	16 - 30
Parameter				
ASF	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
ED =	0.25	2	14	14
AT =	70	70	70	70
FAH =	0.85	0.72	0.72	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

MEI Cancer Risk From: BAAQMD Plant # 15169 7th Floor Receptors

Exposure Duration (years)	Age	Age Sensitivity Factor	DPM Annual Conc (ug/m3)	DPM Cancer Risk (per million)
0.25	-0.25 - 0*	10	0.0030	0.03
2	1 - 2	10	0.0030	0.71
14	3 - 16	3	0.0030	0.78
14	17 - 30	1	0.0030	0.12
Total Increase	d Cancer Risk			1.6

* Third trimester of pregnancy

Maximum Cancer Risk by Floor Level BAAQMD Plant # 15169

			Maximum
	Receptor	DPM	DPM
	Height	Annual Conc	Cancer Risk
Floor Level	(m)	(ug/m3)	(per million)
3rd	10.6	0.00293	1.6
4th	13.7	0.00296	1.6
5th	16.7	0.00298	1.6
6th	19.8	0.00299	1.6
7th	22.8	0.00299	1.6
8th	25.9	0.00297	1.6
9th	28.9	0.00294	1.6

Greyhound Site, San Jose, CA - AERMOD Modeling Parameters BAAQMD Plant # 16647

DPM Emission Rates			
	Annual	DPM E	missions
	Operation	Daily*	Annual
Source Type	(hr)	(lb/day)	(lb/yr)
3 Generators and 3 Fire Pumps	-	0.027	9.82

* From BAAQMD permit inventory

Modeling Information		
Model:	AERMOD	
Source	Diesel Engine	;
Source Type	Point	
Distance to Residences (ft)	various - minim	um distance to generator $= 200$ feet
Receptor Spacing	8 meters spacing	g in residential areas
Meteorological Data	2006-2010 BAA	AQMD San Jose Airport data
Point Source Stack Parameters		
Generator engine size (hp)	unknown	
Stack Height (ft)	12	
Stack Diameter** (ft)	0.60	
Stack Exit Velocity** (ft/sec)	149	
Exhaust Temperature** (F)	872	
Annual Emission Rate (lb/year)	9.82	from BAAQMD inventory data
Hourly Emission Rate (lb/hr)	1.12E-03	-

** BAAQMD default generator parameters

Greyhound Site, San Jose, CA - DPM Cancer Risks at Project Site BAAQMD Plant # 16647 1st Through 9th Floor Levels

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00

		Infant/Child		Adult
Age>	3rd Trimester	0 - <2	2 - <16	16 - 30
Parameter				
ASF	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
ED =	0.25	2	14	14
AT =	70	70	70	70
FAH =	0.85	0.72	0.72	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

MEI Cancer Risk From: BAAQMD Plant # 16647 7th Floor Receptors

Exposure Duration (years)	Age	Age Sensitivity Factor	DPM Annual Conc (ug/m3)	DPM Cancer Risk (per million)
0.25	-0.25 - 0*	10	0.0021	0.02
2	1 - 2	10	0.0021	0.50
14	3 - 16	3	0.0021	0.55
14	17 - 30	1	0.0021	0.09
Total Increase	d Cancer Risk			1.2

* Third trimester of pregnancy

Maximum Cancer Risk by Floor Level BAAQMD Plant # 16647

			Maximum
	Receptor	DPM	DPM
	Height	Annual Conc	Cancer Risk
Floor Level	(m)	(ug/m3)	(per million)
3rd	10.6	0.00202	1.1
4th	13.7	0.00207	1.1
5th	16.7	0.00210	1.2
6th	19.8	0.00211	1.2
7th	22.8	0.00212	1.2
8th	25.9	0.00212	1.2
9th	28.9	0.00211	1.2

Greyhound Site, San Jose, CA - DPM Cancer Risks at Project Site Cumulative Nearby Diesel Engines 1st Through 9th Floor Levels

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

- ASF = Age sensitivity factor for specified age group
- ED = Exposure duration (years)
- AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

- A = Inhalation absorption factor
- EF = Exposure frequency (days/year)
- 10^{-6} = Conversion factor

Values

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00

		Infant/Child		Adult
Age>	3rd Trimester	0 - <2	2 - <16	16 - 30
Parameter				
ASF	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
ED =	0.25	2	14	14
AT =	70	70	70	70
FAH =	0.85	0.72	0.72	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

MEI Cancer Risk From: Cumulative Nearby Diesel Engines 7th Floor Receptors

Exposure Duration (years)	Age	Age Sensitivity Factor	DPM Annual Conc (ug/m3)	DPM Cancer Risk (per million)
0.25	-0.25 - 0*	10	0.0406	0.47
2	1 - 2	10	0.0406	9.59
14	3 - 16	3	0.0406	10.57
14	17 - 30	1	0.0406	1.63
Total Increase	d Cancer Risk			22.3

* Third trimester of pregnancy

Maximum Cancer Risk by Floor Level Cumulative Nearby Diesel Engines

			Maximum
	Receptor	DPM	DPM
	Height	Annual Conc	Cancer Risk
Floor Level	(m)	(ug/m3)	(per million)
3rd	10.6	0.02428	13.3
4th	13.7	0.02923	16.0
5th	16.7	0.03498	19.2
6th	19.8	0.03999	22.0
7th	22.8	0.04055	22.3
8th	25.9	0.03641	20.0
9th	28.9	0.03152	17.3

Greyhound Site, San Jose, CA - DPM Cancer Risks at Project Site Cumulative Nearby Diesel Engines Risk at location of Construstcion MEI

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00

		Infant/Child		Adult
Age>	3rd Trimester	0 - <2	2 - <16	16 - 30
Parameter				
ASF	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
ED =	0.25	2	14	14
AT =	70	70	70	70
FAH =	0.85	0.72	0.72	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

MEI Cancer Risk From: Cumulative Nearby Diesel Engines Constaruction MEI Receptor Location (4.5 meters height)

Exposure Duration (years)	Age	Age Sensitivity Factor	DPM Annual Conc (ug/m3)	DPM Cancer Risk (per million)
0.25	-0.25 - 0*	10	0.0091	0.10
2	1 - 2	10	0.0091	2.15
14	3 - 16	3	0.0091	2.37
14	17 - 30	1	0.0091	0.36
Total Increase	Total Increased Cancer Risk			5.0

* Third trimester of pregnancy

Attachment 3: CalEEMod Output and Health Risk Calculations

Construction Schedule

Project Name: Gre	yhound Residential								
Construction Phase	Equipment (See next page for example of commonly used equipment)	Quanti ty	Average Hours Used Per Day	How Many Work Days	Fuel Type - if other than Diesel				
Demolition	 Excavator 	2	8	5					
	Dump Truck	2	8	5					
	Rubber Tire Dozer	1	8	5					
Start Date: 4/1/17	Backhoe	1	8	5					
End Date: 5/1/17	•								
Site Preparation	Rubber Tire Dozer	2	8	5					
	Backhoe	1	8	5					
	Water Truck	1	8	5					
Start Date: 5/1/17	•								
End Date: 5/15/17	•								
Grading/Excavation	Excavator	3	8	5					
-	Grader/Scraper	2	8	5					
	Dump Truck	6	8	5					
Start Date: 5/15/17	Loader	2	8	5					
End Date: 12/1/17	Water Truck	1	8	5					
Trenching	Backhoe	1	8	5					
	Dump Truck	1	8	5					
	•								
Start Date: 12/1/17	•								
End Date: _2/1/17	•								
Building – Exterior	Crane	2	12	5					
-	Forklift	2	8	5	Propane				
	Grader all	1	8	5					
Start Date: 12/1/17	Generators	4	24	6	Bio				
End Date: 12/1/18	Concrete Pumps	2	8	5					
Building – Interior/	Crane	1	8	5					
Architectural	Forklift	2	8	5	Propane				
Coating	Grader all	1	8	5					
01. (D. (Generators	2	8	5	Bio				
Start Date: 6/1/17 End Date: 4/1/19	•				1				
Paving	a Compart and Martar	1	8	5	+				
ravilly	 Cement and Mortar Mixers 	'	0	5					
	Pavers	1	8	5					
	 Pavers Paving Equipment 	1	8	5					
Start Date: 3/1/19_	 Paving Equipment Rollers 	1	8	5	+				
End Date: 4/1/19	 Concrete Saw 	1	8	5	1				
	OTHER – Provide as App	licable							
Soil Hauling	Export volume = $118,331$ c		\$?						
Volume	Import volume = $\0$	cubic val	rds?						
Demolition Volume	Square footage of buildings to			I tons to be	hauled.				
	=20,800 square feet or								
	= hauling volume (tons)								
	hauling volume (tons) Pavement demolished and hauled								

Project Name: Greyhound Residential									
Construction Phase	Equipment (See next page for example of commonly used equipment)	(See next page for example of commonly used equipment)Hours Quanti tyMany Used Per Day- if WorkUsed Per DayWorkth							
	= <u>47,800</u> square feet	= _47,800_ square feet							
Power	Line Power (Y/N)N or Gene If generator use, then fuel type		· /	ne) <mark>_Diese</mark> l	/BioDiesel				
Cement	Cement Trucks = <u>10,620</u> Total Round-Trips OR Cement = cubic yards								
Asphalt	cy or round trips								

Example	of Equipment Commonly Used for Each Construction Phase
Demoliti	on
Concrete	Industrial Saws
Excavato	rs
Rubber-T	ired Dozers
Site Prep	paration
Rubber T	ired Dozers
Tractors/l	_oaders/Backhoes
Grading	/ Excavation
Excavato	rs
Graders	
Scrapers	
Rubber T	ired Dozers
Tractors/I	_oaders/Backhoes
Trenchir	ng
Excavato	r
Tractor/Lo	bader/Backhoe
Building	- Exterior
Cranes	
Forklifts	
Generato	r Sets _oaders/Backhoes
Welders	
	- Interior/ Architectural Coating
Air Comp	
Aerial Lift	
Paving	
	nd Mortar Mixers
Pavers	
Paving E	quipment
Rollers	
Tractors/I	_oaders/Backhoes

Emissions Summary

Construction		DPM	Area	DPM Emissions			Modeled Area	DPM Emission Rate
Year	Activity	(ton/year)	Source	(lb/yr)	(lb/hr)	(g/s)	(m ²)	$(g/s/m^2)$
						1.10E-		
2017	Construction	0.0144	1_DPM	28.8	0.00877	03	6,683	1.65E-07
						1.71E-		
2018	Construction	0.0223	1_DPM	44.6	0.01358	03	6,683	2.56E-07
						2.00E-		
2019	Construction	0.0026	1_DPM	5.2	0.00159	04	6,683	3.00E-08
Total		0.0393		<i>79</i>	0	0		

DPM Construction Emissions and Modeling Emission Rates - Unmitigated

PM2.5 Fugitive Dust Construction Emissions for Modeling - Unmitigated

Construction		Area		PM2.5 En	Modeled Area	PM2.5 Emission Rate		
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m ²)	g/s/m ²
						2.08E-		
2017	Construction	1_FUG	0.0271	54.2	0.01650	03	6,683	3.11E-07
						9.97E-		
2018	Construction	1_FUG	0.0130	26.0	0.00791	04	6,683	1.49E-07
						3.61E-		
2019	Construction	1_FUG	0.0005	0.9	0.00029	05	6,683	5.40E-09
Total			0.0406	81.1400	0.0247	0.0031		

Results Summary

		Unmitigated								
	Maximu Concentra				Maximum					
Construction	Exhaust PM2.5/DPM	Fugitive PM2.5	Cancer Risk (per million)		Hazard Index	Annual PM2.5 Concentration				
Year	(µg/m ³)	(µg/m ³) Child Adult		(-)	$(\mu g/m^3)$					
2017	0.0862	0.1421	14.16	0.25	0.017	0.396				
2018	0.1338	0.0681	21.97	0.38	0.027	0.248				
2019	0.0157	0.0025	0.41	0.05	0.003	0.016				
Total	-	-	36.5	0.7	-	-				
Maximum										
Annual	0.1338	0.1421	-	-	0.027	0.396				

Health Risk Calculations

Geyhound Site Mixed Use, San Jose, CA - Construction Impacts - Unmitigated Emissions Maximum DPM Cancer Risk Calculations From Construction Off-Site Residential Receptor Locations - 1.5 meters

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group And - Age variants (years) ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = C_{air} x DBR x A x (EF/365) x 10⁻⁶

Where: $C_{ab} = concentration in air (\mu g/m^3)$ DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year) 10⁻⁶ = Conversion factor

Values

	Iu	fant/Child		Adult
Age =>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A=	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73
• 05th concertile	brothing rates for inf	ents and 80th new	centile for shilds	and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	- Exposure	Information	Infant/Child	Adult -	Exposure In	formation	Adult		
	Exposure				Age	Cancer	M	odeled	Age	Cancer		
Exposure	Duration		DPM Con	ic (ug/m3)	Sensitivity	Risk	DPM Co	onc (ug/m3)	Sensitivity	Risk	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	PM2.5	PM2.5
0	0.25	-0.25 - 0*	-	0.0000	10	-	-	-	-	-		
1	1	0-1	2017	0.0549	10	9.01	2017	0.0549	1	0.16	0.3407	0.396
2	1	1 - 2	2018	0.0859	10	14.12	2018	0.0859	1	0.25	0.1619	0.248
3	1	2 - 3	2019	0.0100	3	0.26	2019	0.0100	1	0.03	0.0058	0.016
4	1	3-4		0.0000	3	0.00		0.0000	1	0.00		
5	1	4-5		0.0000	3	0.00		0.0000	1	0.00		
6	1	5-6		0.0000	3	0.00		0.0000	1	0.00		
7	1	6-7		0.0000	3	0.00		0.0000	1	0.00		
8	1	7-8		0.0000	3	0.00		0.0000	1	0.00		
9	1	8-9		0.0000	3	0.00		0.0000	1	0.00		
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00		
11	1	10-11		0.0000	3	0.00		0.0000	1	0.00		
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00		
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00		
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00		
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00		
16	1	15-16		0.0000	3	0.00		0.0000	1	0.00		
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00		
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00		
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00		
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00		
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00		
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00		
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00		
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00		
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00		
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00		
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00		
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00		
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00		
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00		
Total Increase	d Cancer Ris	k				23.4				0.43		
Third trimeste	r of pregnancy											

Off-Site Residential Receptor Locations - 4.5 meters

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: C_{uir} = concentration in air (µg/m³) DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

10⁻⁶ = Conversion factor

Values

	In	fant/Child		Adult
Age>	3rd Trimester	0-2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73
* 95th percentile	breathing rates for inf	ints and 80th perc	entile for childre	n and adults

Construction Cancer Risk by Vear - Maximum Impact Recentor Location

			Infant/Child	at/Child - Exposure Information Infant/Child Adult - Exposure Information Adult								
	Exposure				Age	Cancer		deled	Age	Cancer		
Exposure	Duration		DPM Con	c (ug/m3)	Sensitivity	Risk		one (ug/m3)		Risk	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	PM2.5	PM2.5
0	0.25	-0.25 - 0*	-	-	10	/	-	-	-	-		
1	1	0 - 1	2017	0.0862	10	14.16	2017	0.0862	1	0.25	0.1421	0.228
2	1	1-2	2018	0.1338	10	21.97	2018	0.1338	1	0.38	0.0681	0.202
3	1	2 - 3	2019	0.0157	3	0.41	2019	0.0157	1	0.05	0.0025	0.018
4	1	3-4		0.0000	3	0.00		0.0000	1	0.00		
5	1	4-5		0.0000	3	0.00		0.0000	1	0.00		
6	1	5-6		0.0000	3	0.00		0.0000	1	0.00		
7	1	6-7		0.0000	3	0.00		0.0000	1	0.00		
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00		
9	1	8-9		0.0000	3	0.00		0.0000	1	0.00		
52	1			0.0000	1	0.00		0.0000	1	0.00		
53	1			0.0000	1	0.00		0.0000	1	0.00		
54	1			0.0000	1	0.00		0.0000	1	0.00		
1.1	1.1		1.1	1.1	1.1	2 C	1.2	1.1		1.1		
1.1				1.1			1.1					
1.1			1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		
60	1			0.0000	1	0.00		0.0000	1	0.00		
61	1			0.0000	1	0.00		0.0000	1	0.00		
62	1			0.0000	1	0.00		0.0000	1	0.00		
63	1			0.0000	1	0.00		0.0000	1	0.00		
64	1			0.0000	1	0.00		0.0000	1	0.00		
65	1			0.0000	-	-		0.0000	1	0.00		
66	1			0.0000	-	-		0.0000	1	0.00		
67	1			0.0000	-	-		0.0000	1	0.00		
68	1			0.0000	-	-		0.0000	1	0.00		
69	1			0.0000	-	-		0.0000	1	0.00		
70	1			0.0000	-	-		0.0000	1	0.00		
otal Increase	ed Cancer Ris	k				36.5				0.7		

Third trimester of pregnancy

CalEEMod Output

TAC Emissions

Greyhound Residential Apartments Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	736.00	Space	0.00	294,400.00	0
Apartments High Rise	785.00	Dwelling Unit	1.74	785,000.00	2245
Strip Mall	20.00	1000sqft	0.00	20,000.00	0

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 4	Wind Speed (m/s)	2.2	Precipitation Freq (Days) Operational Year	58 2020
Utility Company	Pacific Gas & Electric Co	ompany			
CO2 Intensity (Ib/MWhr)	429.6	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Revised Carbon Dioxide Emission Intensity

Land Use - Consistent with Traffic Report

Construction Phase - From the construction schedule

Off-road Equipment - Construction Schedule and Equipment List

Trips and VMT - 10, 620 cement truck roundtrips Demolition - 20, 800 sf of building and 47,800 sf of pavement demolished

Grading - 118,331 cubic yards of soil exported

Architectural Coating -

Construction Off-road Equipment Mitigation - Best Management Practices

Table Name	Column Name	Default Value	New Value
tblConstEquipMitigation	FuelType	Diesel	CNG
tblConstEquipMitigation	FuelType	Diesel	Bio-diesel
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	5.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	4.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final

thiQanatEnviaMilipation		No Ohaana	
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstructionPhase	NumDays	10.00	217.00
tblConstructionPhase	NumDays	200.00	261.00
tblConstructionPhase	NumDays	20.00	21.00
tblConstructionPhase	NumDays	4.00	145.00
tblConstructionPhase	NumDays	10.00	22.00
tblConstructionPhase	NumDays	2.00	11.00
tblConstructionPhase	PhaseEndDate	10/1/2019	4/1/2019
tblConstructionPhase	PhaseEndDate	12/7/2018	12/1/2018
tblConstructionPhase	PhaseEndDate	12/4/2017	12/1/2017
tblConstructionPhase	PhaseEndDate	5/1/2019	4/1/2019
tblConstructionPhase	PhaseEndDate	5/16/2017	5/15/2017
tblConstructionPhase	PhaseEndDate	12/8/2017	12/7/2017
tblConstructionPhase	PhaseStartDate	12/2/2018	6/1/2018
tblConstructionPhase	PhaseStartDate	12/8/2017	12/1/2017
tblConstructionPhase	PhaseStartDate	5/16/2017	5/15/2017
tblConstructionPhase	PhaseStartDate	4/2/2019	3/1/2019
tblConstructionPhase	PhaseStartDate	5/2/2017	5/1/2017
tblConstructionPhase	PhaseStartDate	12/2/2017	12/1/2017
tblGrading	AcresOfGrading	0.00	11.00
tblGrading	MaterialExported	0.00	118,331.00
tblLandUse	LotAcreage	6.62	0.00
tblLandUse	LotAcreage	12.66	1.74
tblLandUse	LotAcreage	0.46	0.00

tblOffRoadEquipment	HorsePower	361.00	174.00
tblOffRoadEquipment	LoadFactor	0.48	0.41
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	UsageHours	6.00	1.80
tblOffRoadEquipment	UsageHours	6.00	0.30
tblOffRoadEquipment	UsageHours	6.00	0.20
tblOffRoadEquipment	UsageHours	8.00	0.60
tblOffRoadEquipment	UsageHours	6.00	1.80
tblOffRoadEquipment	UsageHours	8.00	1.80
tblOffRoadEquipment	UsageHours	7.00	1.80
tblOffRoadEquipment	UsageHours	8.00	1.90
tblOffRoadEquipment	UsageHours	7.00	3.70
tblOffRoadEquipment	UsageHours	8.00	1.90
tblOffRoadEquipment	UsageHours	8.00	1.80
tblOffRoadEquipment	UsageHours	8.00	3.70
tblProjectCharacteristics	CO2IntensityFactor	641.35	429.6
tblProjectCharacteristics	OperationalYear	2014	2020

tblTripsAndVMT	HaulingTripLength	20.00	0.50
tblTripsAndVMT	HaulingTripLength	20.00	0.50
tblTripsAndVMT	HaulingTripLength	20.00	0.50
tblTripsAndVMT	HaulingTripLength	20.00	0.50
tblTripsAndVMT	HaulingTripLength	20.00	0.50
tblTripsAndVMT	HaulingTripLength	20.00	0.50
tblTripsAndVMT	HaulingTripLength	20.00	0.50
tblTripsAndVMT	HaulingTripNumber	0.00	21,240.00
tblTripsAndVMT	VendorTripLength	7.30	0.50
tblTripsAndVMT	VendorTripLength	7.30	0.50
tblTripsAndVMT	VendorTripLength	7.30	0.50
tblTripsAndVMT	VendorTripLength	7.30	0.50
tblTripsAndVMT	VendorTripLength	7.30	0.50
tblTripsAndVMT	VendorTripLength	7.30	0.50
tblTripsAndVMT	VendorTripLength	7.30	0.50
tblTripsAndVMT	WorkerTripLength	12.40	0.50
tblTripsAndVMT	WorkerTripLength	12.40	0.50
tblTripsAndVMT	WorkerTripLength	12.40	0.50
tblTripsAndVMT	WorkerTripLength	12.40	0.50
tblTripsAndVMT	WorkerTripLength	12.40	0.50
tblTripsAndVMT	WorkerTripLength	12.40	0.50
tblTripsAndVMT	WorkerTripLength	12.40	0.50

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
--	-----	-----	----	-----	------------------	-----------------	---------------	-------------------	------------------	----------------	----------	-----------	-----------	-----	-----	------

Year		tons/yr								MT/yr						
2017	0.1320	0.5456	1.7129	6.9000e- 004	0.0935	0.0156	0.1090	0.0271	0.0144	0.0415	0.0000	59.3074	59.3074	7.7900e- 003	0.0000	59.4709
2018	5.4447	0.9877	4.0062	1.9700e- 003	0.0475	0.0232	0.0707	0.0130	0.0223	0.0353	0.0000	157.7906	157.7906	9.9100e- 003	0.0000	157.9987
2019	2.1612	0.0501	0.0744	1.0000e- 004	1.7600e- 003	2.7500e- 003	4.5000e- 003	4.7000e- 004	2.6100e- 003	3.0800e- 003	0.0000	8.0996	8.0996	1.4600e- 003	0.0000	8.1302
Total	7.7379	1.5833	5.7935	2.7600e- 003	0.1428	0.0415	0.1842	0.0406	0.0393	0.0799	0.0000	225.1976	225.1976	0.0192	0.0000	225.5999

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							M	Г/yr		
2017	0.1090	0.2791	1.6837	6.9000e- 004	0.0480	1.8400e- 003	0.0498	8.3300e- 003	1.7100e- 003	0.0100	0.3561	58.9741	59.3302	7.7900e- 003	0.0000	59.4939
2018	5.4131	0.6906	4.0764	1.9700e- 003	0.0475	4.9300e- 003	0.0524	0.0130	4.5700e- 003	0.0176	4.4991	153.7116	158.2106	0.0100	0.0000	158.4215
2019	2.1569	5.7000e- 003	0.0895	1.0000e- 004	1.7600e- 003	1.5000e- 004	1.9000e- 003	4.7000e- 004	1.4000e- 004	6.1000e- 004	0.1837	7.9844	8.1681	1.4800e- 003	0.0000	8.1992
Total	7.6790	0.9755	5.8496	2.7600e- 003	0.0973	6.9200e- 003	0.1042	0.0218	6.4200e- 003	0.0282	5.0388	220.6701	225.7089	0.0193	0.0000	226.1146
	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.76	38.39	-0.97	0.00	31.86	83.32	43.45	46.27	83.66	64.66	0.00	2.01	-0.23	-0.78	0.00	-0.23

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/1/2017	5/1/2017	5	21	
2	Site Preparation	Site Preparation	5/1/2017	5/15/2017	5	11	

3	Grading	Grading	5/15/2017	12/1/2017	5	145	
4	Trenching	Trenching	12/1/2017	12/7/2017	5	5	
5	Building Construction	Building Construction	12/1/2017	12/1/2018	5	261	
6	Architectural Coating	Architectural Coating	6/1/2018	4/1/2019	5	217	
7	Paving	Paving	3/1/2019	4/1/2019	5	22	

Acres of Grading (Site Preparation Phase): 11

Acres of Grading (Grading Phase): 10.88

Acres of Paving: 0

Residential Indoor: 1,589,625; Residential Outdoor: 529,875; Non-Residential Indoor: 471,600; Non-Residential Outdoor: 157,200

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	2	1.90	162	0.38
Demolition	Rubber Tired Dozers	1	1.90	255	0.40
Demolition	Tractors/Loaders/Backhoes	1	1.90	97	0.37
Site Preparation	Graders	0	8.00	174	0.41
Site Preparation	Rubber Tired Dozers	2	3.70	255	0.40
Site Preparation	Scrapers	0	8.00	361	0.48
Site Preparation	Tractors/Loaders/Backhoes	1	3.70	97	0.37
Grading	Excavators	3	0.30	162	0.38
Grading	Graders	0	6.00	174	0.41
Grading	Rubber Tired Dozers	0	6.00	255	0.40
Grading	Rubber Tired Loaders	2	0.30	199	0.36
Grading	Scrapers	2	0.30	174	0.41
Grading	Tractors/Loaders/Backhoes	0	7.00	97	0.37
Trenching	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Building Construction	Cranes	2	0.30	226	0.29
Building Construction	Forklifts	2	0.20	89	0.20
		=			

Building Construction	Generator Sets	4	0.60	84	0.74
Building Construction	Graders	1	0.20	174	0.41
Building Construction	Pumps	2	0.20	84	0.74
Building Construction	Tractors/Loaders/Backhoes	0	6.00	97	0.37
Building Construction	Welders	0	8.00	46	0.45
Architectural Coating	Air Compressors	0	6.00	78	0.48
Architectural Coating	Cranes	1	0.20	226	0.29
Architectural Coating	Forklifts	2	0.20	89	0.20
Architectural Coating	Generator Sets	2	0.20	84	0.74
Architectural Coating	Graders	1	0.20	174	0.41
Paving	Cement and Mortar Mixers	1	1.80	9	0.56
Paving	Concrete/Industrial Saws	1	1.80	81	0.73
Paving	Pavers	1	1.80	125	0.42
Paving	Paving Equipment	1	1.80	130	0.36
Paving	Rollers	1	1.80	80	0.38
Paving	Tractors/Loaders/Backhoes	0	1.80	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	4	10.00	0.00	312.00	0.50	0.50	0.50	LD_Mix	HDT_Mix	HHDT
Site Preparation	3	8.00	0.00	14,791.00	0.50	0.50	0.50	LD_Mix	HDT_Mix	HHDT
Grading	7	18.00	0.00	0.00	0.50	0.50	0.50	LD_Mix	HDT_Mix	HHDT
Trenching	1	3.00	0.00	0.00	0.50	0.50	0.50	LD_Mix	HDT_Mix	HHDT
Building Construction	11	695.00	135.00	21,240.00	0.50	0.50	0.50	LD_Mix	HDT_Mix	HHDT
Architectural Coating	6	139.00	0.00	0.00	0.50	0.50	0.50	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	0.50	0.50	0.50	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Use Alternative Fuel for Construction Equipment

Use Cleaner Engines for Construction Equipment

Replace Ground Cover

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

Clean Paved Roads

3.2 Demolition - 2017

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0338	0.0000	0.0338	5.1100e- 003	0.0000	5.1100e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	5.5600e- 003	0.0605	0.0478	6.0000e- 005		3.0800e- 003	3.0800e- 003		2.8400e- 003	2.8400e- 003	0.0000	5.2277	5.2277	1.6000e- 003	0.0000	5.2613
Total	5.5600e- 003	0.0605	0.0478	6.0000e- 005	0.0338	3.0800e- 003	0.0368	5.1100e- 003	2.8400e- 003	7.9500e- 003	0.0000	5.2277	5.2277	1.6000e- 003	0.0000	5.2613

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	1.3800e- 003	4.1800e- 003	0.0241	1.0000e- 005	7.0000e- 005	2.0000e- 005	9.0000e- 005	2.0000e- 005	2.0000e- 005	4.0000e- 005	0.0000	0.5008	0.5008	1.0000e- 005	0.0000	0.5010
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.6000e- 004	7.0000e- 005	9.1000e- 004	0.0000	4.0000e- 005	0.0000	4.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0526	0.0526	0.0000	0.0000	0.0527
Total	1.6400e- 003	4.2500e- 003	0.0250	1.0000e- 005	1.1000e- 004	2.0000e- 005	1.3000e- 004	3.0000e- 005	2.0000e- 005	5.0000e- 005	0.0000	0.5534	0.5534	1.0000e- 005	0.0000	0.5537

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.0152	0.0000	0.0152	1.1500e- 003	0.0000	1.1500e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	6.9000e- 004	2.9800e- 003	0.0358	6.0000e- 005		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005	0.0000	5.2277	5.2277	1.6000e- 003	0.0000	5.2613
Total	6.9000e- 004	2.9800e- 003	0.0358	6.0000e- 005	0.0152	9.0000e- 005	0.0153	1.1500e- 003	9.0000e- 005	1.2400e- 003	0.0000	5.2277	5.2277	1.6000e- 003	0.0000	5.2613

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Hauling	1.3800e- 003	4.1800e- 003	0.0241	1.0000e- 005	7.0000e- 005	2.0000e- 005	9.0000e- 005	2.0000e- 005	2.0000e- 005	4.0000e- 005	0.0000	0.5008	0.5008	1.0000e- 005	0.0000	0.5010
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.6000e- 004	7.0000e- 005	9.1000e- 004	0.0000	4.0000e- 005	0.0000	4.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0526	0.0526	0.0000	0.0000	0.0527
Total	1.6400e- 003	4.2500e- 003	0.0250	1.0000e- 005	1.1000e- 004	2.0000e- 005	1.3000e- 004	3.0000e- 005	2.0000e- 005	5.0000e- 005	0.0000	0.5534	0.5534	1.0000e- 005	0.0000	0.5537

3.3 Site Preparation - 2017

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Fugitive Dust					0.0432	0.0000	0.0432	0.0185	0.0000	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	6.8600e- 003	0.0749	0.0567	5.0000e- 005		3.7000e- 003	3.7000e- 003		3.4000e- 003	3.4000e- 003	0.0000	4.9344	4.9344	1.5100e- 003	0.0000	4.9662
Total	6.8600e- 003	0.0749	0.0567	5.0000e- 005	0.0432	3.7000e- 003	0.0469	0.0185	3.4000e- 003	0.0219	0.0000	4.9344	4.9344	1.5100e- 003	0.0000	4.9662

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0654	0.1983	1.1402	2.8000e- 004	3.2700e- 003	9.9000e- 004	4.2700e- 003	9.1000e- 004	9.1000e- 004	1.8200e- 003	0.0000	23.7397	23.7397	4.5000e- 004	0.0000	23.7491
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.1000e- 004	3.0000e- 005	3.8000e- 004	0.0000	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0221	0.0221	0.0000	0.0000	0.0221
Total	0.0655	0.1984	1.1406	2.8000e- 004	3.2900e- 003	9.9000e- 004	4.2900e- 003	9.1000e- 004	9.1000e- 004	1.8200e- 003	0.0000	23.7617	23.7617	4.5000e- 004	0.0000	23.7712

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							ΜT	/yr		
Fugitive Dust					0.0194	0.0000	0.0194	4.1600e- 003	0.0000	4.1600e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Off-Road	6.5000e- 004	2.8000e- 003	0.0261	5.0000e- 005		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005	0.0000	4.9344	4.9344	1.5100e- 003	0.0000	4.9662
Total	6.5000e- 004	2.8000e- 003	0.0261	5.0000e- 005	0.0194	9.0000e- 005	0.0195	4.1600e- 003	9.0000e- 005	4.2500e- 003	0.0000	4.9344	4.9344	1.5100e- 003	0.0000	4.9662

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⊺/yr		
Hauling	0.0654	0.1983	1.1402	2.8000e- 004	3.2700e- 003	9.9000e- 004	4.2700e- 003	9.1000e- 004	9.1000e- 004	1.8200e- 003	0.0000	23.7397	23.7397	4.5000e- 004	0.0000	23.7491
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.1000e- 004	3.0000e- 005	3.8000e- 004	0.0000	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0221	0.0221	0.0000	0.0000	0.0221
Total	0.0655	0.1984	1.1406	2.8000e- 004	3.2900e- 003	9.9000e- 004	4.2900e- 003	9.1000e- 004	9.1000e- 004	1.8200e- 003	0.0000	23.7617	23.7617	4.5000e- 004	0.0000	23.7712

3.4 Grading - 2017

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	Г/yr		
Fugitive Dust					5.7700e- 003	0.0000	5.7700e- 003	6.2000e- 004	0.0000	6.2000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	9.8200e- 003	0.1111	0.0630	1.1000e- 004		5.1800e- 003	5.1800e- 003		4.7700e- 003	4.7700e- 003	0.0000	10.2324	10.2324	3.1400e- 003	0.0000	10.2982
Total	9.8200e- 003	0.1111	0.0630	1.1000e- 004	5.7700e- 003	5.1800e- 003	0.0110	6.2000e- 004	4.7700e- 003	5.3900e- 003	0.0000	10.2324	10.2324	3.1400e- 003	0.0000	10.2982

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.1900e- 003	8.4000e- 004	0.0114	1.0000e- 005	4.9000e- 004	1.0000e- 005	5.1000e- 004	1.3000e- 004	1.0000e- 005	1.5000e- 004	0.0000	0.6541	0.6541	6.0000e- 005	0.0000	0.6553
Total	3.1900e- 003	8.4000e- 004	0.0114	1.0000e- 005	4.9000e- 004	1.0000e- 005	5.1000e- 004	1.3000e- 004	1.0000e- 005	1.5000e- 004	0.0000	0.6541	0.6541	6.0000e- 005	0.0000	0.6553

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	Г/yr		
Fugitive Dust					2.6000e- 003	0.0000	2.6000e- 003	1.4000e- 004	0.0000	1.4000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.3500e- 003	5.8700e- 003	0.0732	1.1000e- 004		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004	0.0000	10.2324	10.2324	3.1400e- 003	0.0000	10.2982
Total	1.3500e- 003	5.8700e- 003	0.0732	1.1000e- 004	2.6000e- 003	1.8000e- 004	2.7800e- 003	1.4000e- 004	1.8000e- 004	3.2000e- 004	0.0000	10.2324	10.2324	3.1400e- 003	0.0000	10.2982

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		

Total	3.1900e- 003	8.4000e- 004	0.0114	1.0000e- 005	4.9000e- 004	1.0000e- 005	5.1000e- 004	1.3000e- 004	1.0000e- 005	1.5000e- 004	0.0000	0.6541	0.6541	6.0000e- 005	0.0000	0.6553
Worker	3.1900e- 003	8.4000e- 004	0.0114	1.0000e- 005	4.9000e- 004	1.0000e- 005	5.1000e- 004	1.3000e- 004	1.0000e- 005	1.5000e- 004	0.0000	0.6541	0.6541	6.0000e- 005	0.0000	0.6553
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.5 Trenching - 2017

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							Π	ſ/yr		
Off-Road	7.9000e- 004	7.6100e- 003	5.9800e- 003	1.0000e- 005		5.7000e- 004	5.7000e- 004		5.3000e- 004	5.3000e- 004	0.0000	0.7218	0.7218	2.2000e- 004	0.0000	0.7265
Total	7.9000e- 004	7.6100e- 003	5.9800e- 003	1.0000e- 005		5.7000e- 004	5.7000e- 004		5.3000e- 004	5.3000e- 004	0.0000	0.7218	0.7218	2.2000e- 004	0.0000	0.7265

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0000e- 005	0.0000	7.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.7600e- 003	3.7600e- 003	0.0000	0.0000	3.7700e- 003
Total	2.0000e- 005	0.0000	7.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.7600e- 003	3.7600e- 003	0.0000	0.0000	3.7700e- 003

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							M	Г/yr		
Off-Road	9.0000e- 005	4.1000e- 004	5.8600e- 003	1.0000e- 005		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	0.7218	0.7218	2.2000e- 004	0.0000	0.7265
Total	9.0000e- 005	4.1000e- 004	5.8600e- 003	1.0000e- 005		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	0.7218	0.7218	2.2000e- 004	0.0000	0.7265

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							ΜT	⁻/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0000e- 005	0.0000	7.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.7600e- 003	3.7600e- 003	0.0000	0.0000	3.7700e- 003
Total	2.0000e- 005	0.0000	7.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.7600e- 003	3.7600e- 003	0.0000	0.0000	3.7700e- 003

3.6 Building Construction - 2017

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							M	Г/yr		
Off-Road	2.9800e- 003	0.0260	0.0180	3.0000e- 005		1.6000e- 003	1.6000e- 003		1.5600e- 003	1.5600e- 003	0.0000	2.7158	2.7158	3.7000e- 004	0.0000	2.7235
Total	2.9800e- 003	0.0260	0.0180	3.0000e- 005		1.6000e- 003	1.6000e- 003		1.5600e- 003	1.5600e- 003	0.0000	2.7158	2.7158	3.7000e- 004	0.0000	2.7235

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	7.5600e- 003	0.0229	0.1317	3.0000e- 005	3.4800e- 003	1.1000e- 004	3.5900e- 003	8.7000e- 004	1.0000e- 004	9.7000e- 004	0.0000	2.7429	2.7429	5.0000e- 005	0.0000	2.7440
Vendor	0.0102	0.0344	0.1493	5.0000e- 005	6.6000e- 004	2.0000e- 004	8.6000e- 004	1.9000e- 004	1.9000e- 004	3.8000e- 004	0.0000	4.1015	4.1015	6.0000e- 005	0.0000	4.1028
Worker	0.0179	4.7200e- 003	0.0635	5.0000e- 005	2.7500e- 003	8.0000e- 005	2.8300e- 003	7.4000e- 004	7.0000e- 005	8.1000e- 004	0.0000	3.6579	3.6579	3.2000e- 004	0.0000	3.6646
Total	0.0356	0.0620	0.3445	1.3000e- 004	6.8900e- 003	3.9000e- 004	7.2800e- 003	1.8000e- 003	3.6000e- 004	2.1600e- 003	0.0000	10.5023	10.5023	4.3000e- 004	0.0000	10.5113

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr				MT	/yr					
Off-Road	2.7000e- 004	1.5700e- 003	0.0213	3.0000e- 005		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005	0.3561	2.3826	2.7386	3.7000e- 004	0.0000	2.7465

ſ	Total	2.7000e-	1.5700e-	0.0213	3.0000e-	4.0000e-	4.0000e-	4.0000e-	4.0000e-	0.3561	2.3826	2.7386	3.7000e-	0.0000	2.7465
		004	003		005	005	005	005	005				004		

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Hauling	7.5600e- 003	0.0229	0.1317	3.0000e- 005	3.4800e- 003	1.1000e- 004	3.5900e- 003	8.7000e- 004	1.0000e- 004	9.7000e- 004	0.0000	2.7429	2.7429	5.0000e- 005	0.0000	2.7440
Vendor	0.0102	0.0344	0.1493	5.0000e- 005	6.6000e- 004	2.0000e- 004	8.6000e- 004	1.9000e- 004	1.9000e- 004	3.8000e- 004	0.0000	4.1015	4.1015	6.0000e- 005	0.0000	4.1028
Worker	0.0179	4.7200e- 003	0.0635	5.0000e- 005	2.7500e- 003	8.0000e- 005	2.8300e- 003	7.4000e- 004	7.0000e- 005	8.1000e- 004	0.0000	3.6579	3.6579	3.2000e- 004	0.0000	3.6646
Total	0.0356	0.0620	0.3445	1.3000e- 004	6.8900e- 003	3.9000e- 004	7.2800e- 003	1.8000e- 003	3.6000e- 004	2.1600e- 003	0.0000	10.5023	10.5023	4.3000e- 004	0.0000	10.5113

3.6 Building Construction - 2018

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻/yr		
Off-Road	0.0300	0.2676	0.2012	3.5000e- 004		0.0159	0.0159		0.0155	0.0155	0.0000	30.9168	30.9168	3.9600e- 003	0.0000	30.9999
Total	0.0300	0.2676	0.2012	3.5000e- 004		0.0159	0.0159		0.0155	0.0155	0.0000	30.9168	30.9168	3.9600e- 003	0.0000	30.9999

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Hauling	0.0753	0.2474	1.4291	3.7000e- 004	4.5900e- 003	1.2700e- 003	5.8600e- 003	1.2700e- 003	1.1600e- 003	2.4300e- 003	0.0000	30.7543	30.7543	6.1000e- 004	0.0000	30.7670
Vendor	0.1024	0.3683	1.6069	5.4000e- 004	7.5400e- 003	2.1300e- 003	9.6700e- 003	2.2000e- 003	1.9600e- 003	4.1600e- 003	0.0000	46.0297	46.0297	6.9000e- 004	0.0000	46.0442
Worker	0.1889	0.0483	0.6537	5.8000e- 004	0.0314	8.9000e- 004	0.0323	8.4600e- 003	8.2000e- 004	9.2800e- 003	0.0000	40.2552	40.2552	3.2800e- 003	0.0000	40.3240
Total	0.3666	0.6639	3.6897	1.4900e- 003	0.0435	4.2900e- 003	0.0478	0.0119	3.9400e- 003	0.0159	0.0000	117.0392	117.0392	4.5800e- 003	0.0000	117.1352

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	Г/yr		
Off-Road	3.1200e- 003	0.0180	0.2434	3.5000e- 004		4.5000e- 004	4.5000e- 004		4.5000e- 004	4.5000e- 004	4.0695	27.1044	31.1739	4.0400e- 003	0.0000	31.2587
Total	3.1200e- 003	0.0180	0.2434	3.5000e- 004		4.5000e- 004	4.5000e- 004		4.5000e- 004	4.5000e- 004	4.0695	27.1044	31.1739	4.0400e- 003	0.0000	31.2587

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		

Hauling	0.0753	0.2474	1.4291	3.7000e-	4.5900e-	1.2700e-	5.8600e-	1.2700e-	1.1600e-	2.4300e-	0.0000	30.7543	30.7543	6.1000e-	0.0000	30.7670
				004	003	003	003	003	003	003				004		
Vendor	0.1024	0.3683	1.6069	5.4000e-	7.5400e-	2.1300e-	9.6700e-	2.2000e-	1.9600e-	4.1600e-	0.0000	46.0297	46.0297	6.9000e-	0.0000	46.0442
				004	003	003	003	003	003	003				004		
Worker	0.1889	0.0483	0.6537	5.8000e-	0.0314	8.9000e-	0.0323	8.4600e-	8.2000e-	9.2800e-	0.0000	40.2552	40.2552	3.2800e-	0.0000	40.3240
				004		004		003	004	003				003		
Total	0.3666	0.6639	3.6897	1.4900e-	0.0435	4.2900e-	0.0478	0.0119	3.9400e-	0.0159	0.0000	117.0392	117.0392	4.5800e-	0.0000	117.1352
				003		003			003					003		

3.7 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							M	T/yr		
Archit. Coating	5.0190					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	5.2400e- 003	0.0501	0.0324	5.0000e- 005		2.9100e- 003	2.9100e- 003		2.7600e- 003	2.7600e- 003	0.0000	4.7357	4.7357	9.6000e- 004	0.0000	4.7559
Total	5.0243	0.0501	0.0324	5.0000e- 005		2.9100e- 003	2.9100e- 003		2.7600e- 003	2.7600e- 003	0.0000	4.7357	4.7357	9.6000e- 004	0.0000	4.7559

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	Г/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0239	6.1100e- 003	0.0828	7.0000e- 005	3.9800e- 003	1.1000e- 004	4.0900e- 003	1.0700e- 003	1.0000e- 004	1.1800e- 003	0.0000	5.0990	5.0990	4.1000e- 004	0.0000	5.1077
Total	0.0239	6.1100e- 003	0.0828	7.0000e- 005	3.9800e- 003	1.1000e- 004	4.0900e- 003	1.0700e- 003	1.0000e- 004	1.1800e- 003	0.0000	5.0990	5.0990	4.1000e- 004	0.0000	5.1077

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∏/yr		
Archit. Coating	5.0190					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.8000e- 004	2.6400e- 003	0.0605	5.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005	0.4296	4.4690	4.8986	1.0100e- 003	0.0000	4.9198
Total	5.0195	2.6400e- 003	0.0605	5.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005	0.4296	4.4690	4.8986	1.0100e- 003	0.0000	4.9198

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0239	6.1100e- 003	0.0828	7.0000e- 005	3.9800e- 003	1.1000e- 004	4.0900e- 003	1.0700e- 003	1.0000e- 004	1.1800e- 003	0.0000	5.0990	5.0990	4.1000e- 004	0.0000	5.1077
Total	0.0239	6.1100e- 003	0.0828	7.0000e- 005	3.9800e- 003	1.1000e- 004	4.0900e- 003	1.0700e- 003	1.0000e- 004	1.1800e- 003	0.0000	5.0990	5.0990	4.1000e- 004	0.0000	5.1077

3.7 Architectural Coating - 2019

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Archit. Coating	2.1463					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.0000e- 003	0.0194	0.0136	2.0000e- 005		1.0900e- 003	1.0900e- 003		1.0400e- 003	1.0400e- 003	0.0000	2.0070	2.0070	4.0000e- 004	0.0000	2.0155
Total	2.1483	0.0194	0.0136	2.0000e- 005		1.0900e- 003	1.0900e- 003		1.0400e- 003	1.0400e- 003	0.0000	2.0070	2.0070	4.0000e- 004	0.0000	2.0155

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	9.5700e- 003	2.3500e- 003	0.0322	3.0000e- 005	1.7000e- 003	5.0000e- 005	1.7500e- 003	4.6000e- 004	5.0000e- 005	5.0000e- 004	0.0000	2.1021	2.1021	1.6000e- 004	0.0000	2.1054
Total	9.5700e- 003	2.3500e- 003	0.0322	3.0000e- 005	1.7000e- 003	5.0000e- 005	1.7500e- 003	4.6000e- 004	5.0000e- 005	5.0000e- 004	0.0000	2.1021	2.1021	1.6000e- 004	0.0000	2.1054

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							ΜT	/yr		
Archit. Coating	2.1463					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Off-Road	I	2.0000e- 004	1.1300e- 003	0.0259	2.0000e- 005	3.0000e- 005	3.0000e- 005	3.0000e- 005	3.0000e- 005	0.1837	1.8918	2.0755	4.2000e- 004	0.0000	2.0844
Total		2.1465	1.1300e- 003	0.0259	2.0000e- 005	3.0000e- 005	3.0000e- 005	3.0000e- 005	3.0000e- 005	0.1837	1.8918	2.0755	4.2000e- 004	0.0000	2.0844

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∏/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	9.5700e- 003	2.3500e- 003	0.0322	3.0000e- 005	1.7000e- 003	5.0000e- 005	1.7500e- 003	4.6000e- 004	5.0000e- 005	5.0000e- 004	0.0000	2.1021	2.1021	1.6000e- 004	0.0000	2.1054
Total	9.5700e- 003	2.3500e- 003	0.0322	3.0000e- 005	1.7000e- 003	5.0000e- 005	1.7500e- 003	4.6000e- 004	5.0000e- 005	5.0000e- 004	0.0000	2.1021	2.1021	1.6000e- 004	0.0000	2.1054

3.8 Paving - 2019

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	/yr							MT	ſ/yr		
Off-Road	3.0500e- 003	0.0283	0.0277	4.0000e- 005		1.6100e- 003	1.6100e- 003		1.5300e- 003	1.5300e- 003	0.0000	3.9240	3.9240	8.9000e- 004	0.0000	3.9427
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	3.0500e- 003	0.0283	0.0277	4.0000e- 005		1.6100e- 003	1.6100e- 003		1.5300e- 003	1.5300e- 003	0.0000	3.9240	3.9240	8.9000e- 004	0.0000	3.9427

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							ΜT	ſ/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.0000e- 004	7.0000e- 005	1.0200e- 003	0.0000	5.0000e- 005	0.0000	6.0000e- 005	1.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0665	0.0665	1.0000e- 005	0.0000	0.0667
Total	3.0000e- 004	7.0000e- 005	1.0200e- 003	0.0000	5.0000e- 005	0.0000	6.0000e- 005	1.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0665	0.0665	1.0000e- 005	0.0000	0.0667

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	Г/yr		
Off-Road	4.9000e- 004	2.1400e- 003	0.0305	4.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005	0.0000	3.9240	3.9240	8.9000e- 004	0.0000	3.9427
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	4.9000e- 004	2.1400e- 003	0.0305	4.0000e- 005		7.0000e- 005	7.0000e- 005		7.0000e- 005	7.0000e- 005	0.0000	3.9240	3.9240	8.9000e- 004	0.0000	3.9427

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		

Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
													0.0000		0 0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.0000e- 004	7.0000e- 005	1.0200e- 003	0.0000	5.0000e- 005	0.0000	6.0000e- 005	1.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0665	0.0665	1.0000e- 005	0.0000	0.0667
Total	3.0000e- 004	7.0000e- 005	1.0200e- 003	0.0000	5.0000e- 005	0.0000	6.0000e- 005	1.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0665	0.0665	1.0000e- 005	0.0000	0.0667

Criteria Pollutants and Operational Emissions

Greyhound Residential Apartments, Criteria Pollutants Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	736.00	Space	0.00	294,400.00	0
Apartments High Rise	785.00	Dwelling Unit	1.74	785,000.00	2245
Strip Mall	20.00	1000sqft	0.00	20,000.00	0

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 4	Wind Speed (m/s)	2.2	Precipitation Freq (Days) Operational Year	58 2020
Utility Company	Pacific Gas & Electric Co	ompany			
CO2 Intensity (Ib/MWhr)	429.6	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Revised Carbon Dioxide Emission Intensity

Land Use - From site plan and traffic analysis report

Construction Phase - From the construction schedule

Off-road Equipment - Construction Schedule and Equipment List

Trips and VMT - 10, 620 cement truck roundtrips Demolition - 20, 800 sf of building and 47,800 sf of pavement demolished

Grading - 118,331 cubic yards of soil exported

Architectural Coating -

Vehicle Trips - modified trip generation rates from traffic report

Energy Use - 25% reduction in title 24 values for residential land uses Construction Off-road Equipment Mitigation - Best Management Practices

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	10.00	217.00
tblConstructionPhase	NumDays	200.00	261.00
tblConstructionPhase	NumDays	20.00	21.00
tblConstructionPhase	NumDays	4.00	145.00
tblConstructionPhase	NumDays	10.00	22.00
tblConstructionPhase	NumDays	2.00	11.00
tblConstructionPhase	PhaseEndDate	10/1/2019	4/1/2019
tblConstructionPhase	PhaseEndDate	12/7/2018	12/1/2018
tblConstructionPhase	PhaseEndDate	12/4/2017	12/1/2017
tblConstructionPhase	PhaseEndDate	5/1/2019	4/1/2019
tblConstructionPhase	PhaseEndDate	5/16/2017	5/15/2017
tblConstructionPhase	PhaseEndDate	12/8/2017	12/7/2017
tblConstructionPhase	PhaseStartDate	12/2/2018	6/1/2018
tblConstructionPhase	PhaseStartDate	12/8/2017	12/1/2017
tblConstructionPhase	PhaseStartDate	5/16/2017	5/15/2017
tblConstructionPhase	PhaseStartDate	4/2/2019	3/1/2019
tblConstructionPhase	PhaseStartDate	5/2/2017	5/1/2017
tblConstructionPhase	PhaseStartDate	12/2/2017	12/1/2017
tblEnergyUse	LightingElect	741.44	556.08
tblEnergyUse	LightingElect	2.63	1.84
tblEnergyUse	LightingElect	5.64	3.95
tblEnergyUse	T24E	226.57	169.93
tblEnergyUse	T24E	3.92	2.74
	īī		

Interruption T24NG 6.391.64 4.793.73 IblEnergyUse T24NG 2.49 1.74 IblEnergyUse T24NG 2.49 1.74 IblEnergyUse AcresOlGrading 0.00 116.00 IblEandUse LotAcreage 6.62 0.00 IblandUse LotAcreage 6.62 0.00 IblandUse LotAcreage 0.46 0.50 IblandUse LotAcreage 0.46 0.50 IblCRRoadEquipment HorsePower 381.00 174.00 IblOffRoadEquipment LoadFactor 0.48 0.41 IblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 IblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 IblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 4.00 IblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 IblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 IblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 <th>tblEnergyUse</th> <th>T24E</th> <th>3.37</th> <th>2.36</th>	tblEnergyUse	T24E	3.37	2.36
tblEnergyUse T24NG 2.49 1.74 tblGrading AcresOlGrading 0.00 11.00 tblGrading MaterialExponed 0.00 118,331.00 tblLandUse LotAcreage 6.62 0.00 tblLandUse LotAcreage 6.62 0.00 tblLandUse LotAcreage 0.46 0.00 tblOifRoadEquipment HorsePower 361.00 174.00 tblOifRoadEquipment LoadFactor 0.48 0.41 tblOifRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOifRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOifRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 tblOifRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOifRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOifRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOifRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOifRoadEquipment		T24NG		
tblGradingAcresOlGrading0.0011.00tblGradingMaterialExported0.00118.331.00tblLandUseLotAcreage6.620.00tblLandUseLotAcreage12.661.74tblLandUseLotAcreage0.460.00tblLandUseLotAcreage0.460.00tblLandUseLotAcreage0.460.00tblCroadEquipmentHorsePower361.00174.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentU				
IbGrading MaterialExported 0.00 118,331.00 IbiLandUse LotAcreage 6.62 0.00 IbiLandUse LotAcreage 12.66 1.74 IbiLandUse LotAcreage 0.46 0.00 IbiLandUse LotAcreage 0.46 0.00 IbiOffRoadEquipment HorsePower 361.00 174.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 IbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00	tblEnergyUse		2.49	1.74
tbillandUse LotAcreage 6.62 0.00 tbillandUse LotAcreage 12.66 1.74 tbillandUse LotAcreage 0.46 0.00 tbiOffRoadEquipment HorsePower 361.00 174.00 tbiOffRoadEquipment LoadFactor 0.48 0.41 tbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 tbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 tbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tbiOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.0	tblGrading	AcresOfGrading	0.00	11.00
bllandUseLotAcreage12.661.74tblLandUseLotAcreage0.460.00tblOffRoadEquipmentHorsePower361.00174.00tblOffRoadEquipmentLoadFactor0.480.41tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAm	tblGrading	MaterialExported	0.00	118,331.00
bllandUse LotAcreage 0.46 0.00 tblOffRoadEquipment HorsePower 361.00 174.00 tblOffRoadEquipment LoadFactor 0.48 0.41 tblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 tblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 2.00 tblOffRoadEquipment OffRoadEquipmentUnitAmount 1.00 0.00 tblOffRoadEquipment OffRoadEquipmentUnitAmou	tblLandUse	LotAcreage	6.62	0.00
tblOffRoadEquipmentHorsePower361.00174.00tblOffRoadEquipmentLoadFactor0.480.41tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsag	tblLandUse	LotAcreage	12.66	1.74
tblOffRoadEquipmentLeadFactor0.480.41tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00<	tblLandUse	LotAcreage	0.46	0.00
tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.004.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount0.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount0.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount0.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount0.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount0.000.00tbiOffRoadEquipmentUsageHours6.000.30<	tblOffRoadEquipment	HorsePower	361.00	174.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.004.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentUsageHours6.001.80tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipment<	tblOffRoadEquipment	LoadFactor	0.48	0.41
tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.004.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.20tblO	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
bloffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.004.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbloffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tbloffRoadEquipmentUsageHours6.001.80tbloffRoadEquipmentUsageHours6.000.20tbloffRoadEquipmentUsageHours8.000.60tbloffRoadEquipmentUsageHours6.001.80tbloffRoadEquipmentUsageHours6.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.004.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentUsageHours6.001.80tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours6.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount3.001.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentUsageHours6.001.80tbiOffRoadEquipmentUsageHours6.000.20tbiOffRoadEquipmentUsageHours6.000.60tbiOffRoadEquipmentUsageHours6.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours6.000.60tblOffRoadEquipmentUsageHours6.000.60tblOffRoadEquipmentUsageHours6.000.60tblOffRoadEquipmentUsageHours6.000.60	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.001.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours8.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.002.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.001.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentUsageHours6.001.80tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours6.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount3.001.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tbiOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tbiOffRoadEquipmentUsageHours6.001.80tbiOffRoadEquipmentUsageHours6.000.20tbiOffRoadEquipmentUsageHours8.000.60tbiOffRoadEquipmentUsageHours8.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.001.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentUsageHours6.001.80tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours8.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentUsageHours6.001.80tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours8.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount1.000.00tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentUsageHours6.001.80tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours8.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipmentOffRoadEquipmentUnitAmount3.000.00tblOffRoadEquipmentUsageHours6.001.80tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours8.001.80			1.00	0.00
tblOffRoadEquipmentUsageHours6.001.80tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours6.001.80	tblOffRoadEquipment		1.00	0.00
tblOffRoadEquipmentUsageHours6.000.30tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours6.001.80	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipmentUsageHours6.000.20tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours6.001.80	tblOffRoadEquipment	UsageHours	6.00	1.80
tblOffRoadEquipmentUsageHours8.000.60tblOffRoadEquipmentUsageHours6.001.80	tblOffRoadEquipment	UsageHours	6.00	0.30
tblOffRoadEquipment UsageHours 6.00 1.80	tblOffRoadEquipment	UsageHours	6.00	0.20
	tblOffRoadEquipment	UsageHours	8.00	0.60
tblOffRoadEquipment UsageHours 8.00 1.80	tblOffRoadEquipment	UsageHours	6.00	1.80
	tblOffRoadEquipment	UsageHours	8.00	1.80

		7.00	1.00
tblOffRoadEquipment	UsageHours	7.00	1.80
tblOffRoadEquipment	UsageHours	8.00	1.90
tblOffRoadEquipment	UsageHours	7.00	3.70
tblOffRoadEquipment	UsageHours	8.00	1.90
tblOffRoadEquipment	UsageHours	8.00	1.80
tblOffRoadEquipment	UsageHours	8.00	3.70
tblProjectCharacteristics	CO2IntensityFactor	641.35	429.6
tblProjectCharacteristics	OperationalYear	2014	2020
tblTripsAndVMT	HaulingTripNumber	0.00	21,240.00
tblVehicleTrips	ST_TR	7.16	5.94
tblVehicleTrips	ST_TR	42.04	32.37
tblVehicleTrips	SU_TR	6.07	5.04
tblVehicleTrips	SU_TR	20.43	15.73
tblVehicleTrips	WD_TR	6.59	5.46
tblVehicleTrips	WD_TR	44.32	34.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr									MT/yr						
2017	0.2337	2.6959	2.5963	7.8100e- 003	0.4376	0.0454	0.4830	0.1175	0.0418	0.1593	0.0000	687.6318	687.6318	0.0146	0.0000	687.9387
2018	5.6669	4.3989	8.0071	0.0215	1.1360	0.0776	1.2135	0.3055	0.0724	0.3778	0.0000	1,718.303 3	1,718.3033	0.0462	0.0000	1,719.2731
2019	2.1641	0.0656	0.2139	5.6000e- 004	0.0424	3.0100e- 003	0.0454	0.0113	2.8400e- 003	0.0141	0.0000	39.3040	39.3040	2.8500e- 003	0.0000	39.3639
Total	8.0647	7.1604	10.8173	0.0298	1.6160	0.1260	1.7420	0.4343	0.1170	0.5513	0.0000	2,445.239 1	2,445.2391	0.0637	0.0000	2,446.5757

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Area	5.7977	0.0781	6.7259	1.0600e- 003		0.1589	0.1589		0.1589	0.1589	12.8421	30.2912	43.1333	0.0332	1.0700e- 003	44.1615
Energy	0.0278	0.2379	0.1019	1.5200e- 003		0.0192	0.0192		0.0192	0.0192	0.0000	1,086.502 6	1,086.5026	0.0600	0.0164	1,092.8402
Mobile	2.2402	4.3914	21.1700	0.0543	3.9128	0.0656	3.9785	1.0461	0.0606	1.1066	0.0000	3,769.349 3	3,769.3493	0.1399	0.0000	3,772.2862
Waste						0.0000	0.0000		0.0000	0.0000	77.5629	0.0000	77.5629	4.5838	0.0000	173.8233
Water						0.0000	0.0000		0.0000	0.0000	16.6962	78.1010	94.7973	1.7201	0.0416	143.8107
Total	8.0658	4.7074	27.9978	0.0569	3.9128	0.2438	4.1566	1.0461	0.2387	1.2848	107.1011	4,964.244 1	5,071.3452	6.5370	0.0590	5,226.9218

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/1/2017	5/1/2017	5	21	
2	Site Preparation	Site Preparation	5/1/2017	5/15/2017	5	11	
3	Grading	Grading	5/15/2017	12/1/2017	5	145	
4	Trenching	Trenching	12/1/2017	12/7/2017	5	5	
5	Building Construction	Building Construction	12/1/2017	12/1/2018	5	261	

6	Architectural Coating	Architectural Coating	6/1/2018	4/1/2019	5	217	
7	Paving	Paving	3/1/2019	4/1/2019	5	22	

Acres of Grading (Site Preparation Phase): 11

Acres of Grading (Grading Phase): 10.88

Acres of Paving: 0

Residential Indoor: 1,589,625; Residential Outdoor: 529,875; Non-Residential Indoor: 471,600; Non-Residential Outdoor: 157,200

OffRoad Equipment

aws 0 2 1 ckhoes 1	8.00 1.90 1.90	162	0.73 0.38
		_	0.38
	1.90	255	
xhoes 1		200	0.40
	1.90	97	0.37
0	8.00	174	0.41
2	3.70	255	0.40
0	8.00	361	0.48
ckhoes 1	3.70	97	0.37
3	0.30	162	0.38
0	6.00	174	0.41
0	6.00	255	0.40
S 2	0.30	199	0.36
2	0.30	174	0.41
xhoes 0	7.00	97	0.37
xhoes 1	8.00	97	0.37
2	0.30	226	0.29
2	0.20	89	0.20
4	0.60	84	0.74
1	0.20	174	0.41
<u>=</u>		174	0.41
	s 2 Ckhoes 0 Ckhoes 1 2 2 2 2 2 4	0 6.00 s 2 0.30 2 0.30 2 0.30 ckhoes 0 7.00 7.00 ckhoes 1 8.00 2 0.30 2 0.30 2 0.30 2 0.30 2 0.20 4 0.60 4 0.60 0	0 6.00 255 s 2 0.30 199 2 0.30 174 ckhoes 0 7.00 97 ckhoes 1 8.00 97 2 0.30 226 0.30 226 4 0.60 84

Building Construction	Tractors/Loaders/Backhoes	0	6.00	97	0.37
Building Construction	Welders	0	8.00	46	0.45
Architectural Coating	Air Compressors	0	6.00	78	0.48
Architectural Coating	Cranes	1	0.20	226	0.29
Architectural Coating	Forklifts	2	0.20	89	0.20
Architectural Coating	Generator Sets	2	0.20	84	0.74
Architectural Coating	Graders	1	0.20	174	0.41
Paving	Cement and Mortar Mixers	1	1.80	9	0.56
Paving	Concrete/Industrial Saws	1	1.80	81	0.73
Paving	Pavers	1	1.80	125	0.42
Paving	Paving Equipment	1	1.80	130	0.36
Paving	Rollers	1	1.80	80	0.38
Paving	Tractors/Loaders/Backhoes	0	1.80	97	0.37

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	4	10.00	0.00	312.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	3	8.00	0.00	14,791.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	7	18.00	0.00	0.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Trenching	1	3.00	0.00	0.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	11	695.00	135.00	21,240.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	6	139.00	0.00	0.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Replace Ground Cover

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2017

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MI	/yr		
Fugitive Dust					0.0338	0.0000	0.0338	5.1100e- 003	0.0000	5.1100e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	5.5600e- 003	0.0605	0.0478	6.0000e- 005		3.0800e- 003	3.0800e- 003		2.8400e- 003	2.8400e- 003	0.0000	5.2277	5.2277	1.6000e- 003	0.0000	5.2613
Total	5.5600e- 003	0.0605	0.0478	6.0000e- 005	0.0338	3.0800e- 003	0.0368	5.1100e- 003	2.8400e- 003	7.9500e- 003	0.0000	5.2277	5.2277	1.6000e- 003	0.0000	5.2613

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							Π	/yr		
Hauling	3.0400e- 003	0.0417	0.0340	1.2000e- 004	2.6400e- 003	5.3000e- 004	3.1700e- 003	7.2000e- 004	4.9000e- 004	1.2200e- 003	0.0000	10.5056	10.5056	8.0000e- 005	0.0000	10.5072
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.5000e- 004	4.9000e- 004	4.7700e- 003	1.0000e- 005	9.6000e- 004	1.0000e- 005	9.6000e- 004	2.5000e- 004	1.0000e- 005	2.6000e- 004	0.0000	0.8101	0.8101	4.0000e- 005	0.0000	0.8110
Total	3.3900e- 003	0.0422	0.0387	1.3000e- 004	3.6000e- 003	5.4000e- 004	4.1300e- 003	9.7000e- 004	5.0000e- 004	1.4800e- 003	0.0000	11.3158	11.3158	1.2000e- 004	0.0000	11.3182

3.3 Site Preparation - 2017

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Fugitive Dust					0.0432	0.0000	0.0432	0.0185	0.0000	0.0185	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	6.8600e- 003	0.0749	0.0567	5.0000e- 005		3.7000e- 003	3.7000e- 003		3.4000e- 003	3.4000e- 003	0.0000	4.9344	4.9344	1.5100e- 003	0.0000	4.9662
Total	6.8600e- 003	0.0749	0.0567	5.0000e- 005	0.0432	3.7000e- 003	0.0469	0.0185	3.4000e- 003	0.0219	0.0000	4.9344	4.9344	1.5100e- 003	0.0000	4.9662

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-			ton	s/yr							MT	/yr		
Hauling	0.1441	1.9778	1.6102	5.5400e- 003	0.1249	0.0253	0.1503	0.0343	0.0233	0.0576	0.0000	498.0403	498.0403	3.6200e- 003	0.0000	498.1163
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.5000e- 004	2.1000e- 004	2.0000e- 003	0.0000	4.0000e- 004	0.0000	4.0000e- 004	1.1000e- 004	0.0000	1.1000e- 004	0.0000	0.3395	0.3395	2.0000e- 005	0.0000	0.3399
Total	0.1443	1.9781	1.6122	5.5400e- 003	0.1253	0.0253	0.1507	0.0344	0.0233	0.0577	0.0000	498.3798	498.3798	3.6400e- 003	0.0000	498.4562

3.5 Trenching - 2017

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	7.9000e- 004	7.6100e- 003	5.9800e- 003	1.0000e- 005		5.7000e- 004	5.7000e- 004		5.3000e- 004	5.3000e- 004	0.0000	0.7218	0.7218	2.2000e- 004	0.0000	0.7265

Total	7.9000e-	7.6100e-	5.9800e-	1.0000e-	 5.7000e-	5.7000e-	5.3000e-	5.3000e-	0.0000	0.7218	0.7218	2.2000e-	0.0000	0.7265
	004	003	003	005	004	004	004	004				004		1
														1 1

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							ΜT	Г/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.0000e- 005	4.0000e- 005	3.4000e- 004	0.0000	7.0000e- 005	0.0000	7.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0579	0.0579	0.0000	0.0000	0.0579
Total	2.0000e- 005	4.0000e- 005	3.4000e- 004	0.0000	7.0000e- 005	0.0000	7.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0579	0.0579	0.0000	0.0000	0.0579

3.6 Building Construction - 2018

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Off-Road	0.0300	0.2676	0.2012	3.5000e- 004		0.0159	0.0159		0.0155	0.0155	0.0000	30.9168	30.9168	3.9600e- 003	0.0000	30.9999
Total	0.0300	0.2676	0.2012	3.5000e- 004		0.0159	0.0159		0.0155	0.0155	0.0000	30.9168	30.9168	3.9600e- 003	0.0000	30.9999

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							M	Г/yr		
Hauling	0.1789	2.3734	2.0425	7.3000e- 003	0.1758	0.0331	0.2089	0.0480	0.0305	0.0784	0.0000	646.3445	646.3445	4.8100e- 003	0.0000	646.4455
Vendor	0.1525	1.3111	1.9009	3.8400e- 003	0.1046	0.0194	0.1240	0.0300	0.0178	0.0478	0.0000	338.3061	338.3061	2.6200e- 003	0.0000	338.3612
Worker	0.2496	0.3522	3.3995	8.7900e- 003	0.7593	5.6100e- 003	0.7649	0.2019	5.1900e- 003	0.2071	0.0000	619.5268	619.5268	0.0300	0.0000	620.1574
Total	0.5810	4.0366	7.3429	0.0199	1.0398	0.0581	1.0979	0.2799	0.0535	0.3334	0.0000	1,604.177 5	1,604.1775	0.0375	0.0000	1,604.9640

3.7 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							ΜT	Г/yr		
Archit. Coating	5.0190					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	5.2400e- 003	0.0501	0.0324	5.0000e- 005		2.9100e- 003	2.9100e- 003		2.7600e- 003	2.7600e- 003	0.0000	4.7357	4.7357	9.6000e- 004	0.0000	4.7559
Total	5.0243	0.0501	0.0324	5.0000e- 005		2.9100e- 003	2.9100e- 003		2.7600e- 003	2.7600e- 003	0.0000	4.7357	4.7357	9.6000e- 004	0.0000	4.7559

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	ſ/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0316	0.0446	0.4306	1.1100e- 003	0.0962	7.1000e- 004	0.0969	0.0256	6.6000e- 004	0.0262	0.0000	78.4734	78.4734	3.8000e- 003	0.0000	78.5533
Total	0.0316	0.0446	0.4306	1.1100e- 003	0.0962	7.1000e- 004	0.0969	0.0256	6.6000e- 004	0.0262	0.0000	78.4734	78.4734	3.8000e- 003	0.0000	78.5533

3.7 Architectural Coating - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2		Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yı	'n							MT	ſ/yr		
Archit. Coating	2.1463				(0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.0000e- 003	0.0194	0.0136	2.0000e- 005	1.	.0900e- 003	1.0900e- 003		1.0400e- 003	1.0400e- 003	0.0000	2.0070	2.0070	4.0000e- 004	0.0000	2.0155
Total	2.1483	0.0194	0.0136	2.0000e- 005	1.	.0900e- 003	1.0900e- 003		1.0400e- 003	1.0400e- 003	0.0000	2.0070	2.0070	4.0000e- 004	0.0000	2.0155

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

ľ	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Worker	0.0124	0.0174	0.1674	4.8000e- 004	0.0411	3.0000e- 004	0.0414	0.0109	2.8000e- 004	0.0112	0.0000	32.3490	32.3490	1.5100e- 003	0.0000	32.3807
	Total	0.0124	0.0174	0.1674	4.8000e-	0.0411	3.0000e-	0.0414	0.0109	2.8000e-	0.0112	0.0000	32.3490	32.3490	1.5100e-	0.0000	32.3807
					004		004			004					003		

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	2.2402	4.3914	21.1700	0.0543	3.9128	0.0656	3.9785	1.0461	0.0606	1.1066	0.0000	3,769.349 3	3,769.3493	0.1399	0.0000	3,772.2862
Unmitigated	2.2402	4.3914	21.1700	0.0543	3.9128	0.0656	3.9785	1.0461	0.0606	1.1066	0.0000	3,769.349 3	3,769.3493	0.1399	0.0000	3,772.2862

4.2 Trip Summary Information

	Aver	age Daily Trip R	late	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments High Rise	4,286.10	4,662.90	3956.40	9,583,165	9,583,165
Enclosed Parking with Elevator	0.00	0.00	0.00		
Strip Mall	680.00	647.40	314.60	959,661	959,661
Total	4,966.10	5,310.30	4,271.00	10,542,825	10,542,825

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	se %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments High Rise	12.40	4.30	5.40	26.10	29.10	44.80	86	11	3
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

Strip Mall	0 5 0	7.30	7.30	16.60	64.40	19.00	45	40	45
Strip Mall	9.50	1.30	7.30	16.60	64.40	19.00	i 40	= 40	E 10

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
0.551785	0.058740	0.185183	0.122735	0.029388	0.004432	0.012603	0.023662	0.001776	0.001268	0.006159	0.000502	0.001767

5.0 Energy Detail

4.4 Fleet Mix

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	811.1121	811.1121	0.0548	0.0113	815.7737
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	811.1121	811.1121	0.0548	0.0113	815.7737
NaturalGas Mitigated	0.0278	0.2379	0.1019	1.5200e- 003		0.0192	0.0192		0.0192	0.0192	0.0000	275.3905	275.3905	5.2800e- 003	5.0500e- 003	277.0664
NaturalGas Unmitigated	0.0278	0.2379	0.1019	1.5200e- 003		0.0192	0.0192	0	0.0192	0.0192	0.0000	275.3905	275.3905	5.2800e- 003	5.0500e- 003	277.0664

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ns/yr							MT	/yr		

	5.12582e+	0.0276	0.2362	0.1005	1.5100e-	0.0191	0.0191	0.0191	0.0191	0.0000	273.5334	273.5334	5.2400e-	5.0100e-	275.1981
Rise	006				003								003	003	
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Strip Mall	34800	1.9000e- 004	1.7100e- 003	1.4300e- 003	1.0000e- 005	1.3000e- 004	1.3000e- 004	1.3000e- 004	1.3000e- 004	0.0000	1.8571	1.8571	4.0000e- 005	3.0000e- 005	1.8684
Total		0.0278	0.2379	0.1019	1.5200e- 003	0.0192	0.0192	0.0192	0.0192	0.0000	275.3905	275.3905	5.2800e- 003	5.0400e- 003	277.0664

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	ſ/yr	
Apartments High Rise	2.57838e+ 006	502.4315	0.0339	7.0200e- 003	505.3191
Enclosed Parking with Elevator	1.40429e+ 006	273.6442	0.0185	3.8200e- 003	275.2169
Strip Mall	179800	35.0364	2.3700e- 003	4.9000e- 004	35.2378
Total		811.1121	0.0548	0.0113	815.7737

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr						MT/yr									
Mitigated	5.7977	0.0781	6.7259	1.0600e- 003		0.1589	0.1589		0.1589	0.1589	12.8421	30.2912	43.1333	0.0332	1.0700e- 003	44.1615

Unmitigated 5.7977 0.07		0.1589 0.1589	0.1589 0.1589	12.8421 30.2912 43.1333	0.0332 1.0700e- 44.1615
	003				003

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	ory tons/yr						MT/yr									
Architectural Coating	0.7165					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	4.2937					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.6087	0.0103	0.8708	7.5000e- 004		0.1267	0.1267		0.1267	0.1267	12.8421	20.7566	33.5986	0.0238	1.0700e- 003	34.4311
Landscaping	0.1787	0.0677	5.8551	3.1000e- 004		0.0322	0.0322		0.0322	0.0322	0.0000	9.5346	9.5346	9.3200e- 003	0.0000	9.7303
Total	5.7977	0.0780	6.7259	1.0600e- 003		0.1589	0.1589		0.1589	0.1589	12.8421	30.2912	43.1332	0.0332	1.0700e- 003	44.1615

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT,	/yr	
Mitigated	94.7973	1.7198	0.0415	143.7840
Unmitigated	94.7973	1.7201	0.0416	143.8107

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	ſ/yr	
Apartments High Rise	51.1459 / 32.2442	92.1460	1.6717	0.0404	139.7797
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Strip Mall	1.48145 / 0.907986	2.6513	0.0484	1.1700e- 003	4.0309
Total		94.7973	1.7201	0.0416	143.8107

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e					
	MT/yr								
Mitigated	77.5629	4.5838	0.0000	173.8233					
Unmitigated	77.5629	4.5838	0.0000	173.8233					

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		Π	ī/yr	
Apartments High Rise	361.1	73.3000	4.3319	0.0000	164.2701
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Strip Mall	21	4.2628	0.2519	0.0000	9.5532
Total		77.5629	4.5838	0.0000	173.8233