NORMAN Y. MINETA

SAN JOSE INTERNATIONAL AIRPORT

MASTER PLAN UPDATE PROJECT

SAN JOSE, CALIFORNIA

TWELFTH

ADDENDUM TO THE

ENVIRONMENTAL IMPACT REPORT

City of San Jose Public Project File No. PP 18-059

CITY OF SAN JOSE

MAY 25, 2018

ADDENDUM TO THE FINAL ENVIRONMENTAL IMPACT REPORT FOR THE SAN JOSE INTERNATIONAL AIRPORT MASTER PLAN UPDATE, AS SUPPLEMENTED AND ADDENDED (SCH #1995073066)

Pursuant to Section 15164 of the CEQA Guidelines, the City of San José ("City") has prepared an Addendum to the Final Environmental Impact Report (EIR) for the San José International Airport Master Plan Update, as supplemented and addended (Final EIR), because the proposed project will not (i) result in new significant effects beyond those analyzed in the Final EIR, (ii) increase in severity of previously identified impacts in the Final EIR, or (iii) cause changes in respect to the circumstances under which the project is undertaken to indicate the project's impacts will be greater than those previously analyzed. Therefore, the City can take action on the proposed project as being within the scope of the Final EIR as supplemented and addended.

PROJECT DESCRIPTION AND LOCATION: PP18-059, A PUBLIC PROJECT located at the Norman Y. Mineta San José International Airport on an approximately 1,000-gross-acre site in the HI Heavy Industrial Zoning District for actions related to an approximately 3.72-gross-acre site that is located directly south of the existing Flight Fixed-Base Operator designated for general aviation in the approved Airport Master Plan. Project components include the following:

- 1) City Council approval of an amended lease agreement between the City and Signature Flight Support adding the project site to the existing leasehold.
- 2) Future City actions related to the approval of any Development Permit for the construction of an approximately 30,000-square-foot aircraft hangar with attached approximately 4,000-square-foot office space to accommodate up to two large business jet aircraft, approximately 1.85-gross-acres of aircraft apron, and a parking lot for approximately 26 vehicles. The project would occur on an existing paved parking area to the south of the existing Signature Flight Fixed-Base Operator (FBO) hangars.

Council District: 3.

The environmental impacts of this project were addressed by a Final EIR entitled, "San José International Airport Master Plan Update," and findings were adopted by City Council Resolution No. 67380 on June 10, 1997; and by a Final Supplemental EIR entitled, "Norman Y. Mineta San José International Airport Master Plan Update," (SCH # 1995073066) and findings were adopted by City Council Resolution No. 71451 on March 18, 2003, as addended.

The Airport Master Plan Final EIR analyzed a comprehensive and integrated package of improvements to airside and landside facilities at Norman Y. Mineta San José International Airport. Following the approval of the Airport Master Plan in 1997, many of the capital improvement projects have been constructed with subsequent environmental analysis. Specifically, this addendum is the twelfth in a series of addenda that have been prepared to address various modifications to the Airport Master Plan and/or changes in environmental setting/impacts. The following impacts were reviewed and found to be adequately considered by the EIR, as supplemented and addended:

Cultural Resources Aesthetics Noise Public Services and Utilities Air Quality Air Safety Biological Resources Hazardous Materials Land Use Geology & Seismicity Energy Supply & Natural Resources Transportation & Circulation Hydrology & Water Quality

ANALYSIS

The Final EIR, as supplemented and addended, analyzed the environmental impacts of the 1997 Airport Master Plan, which consists of a comprehensive and integrated package of improvements to airside and landside facilities at the Airport. Such improved facilities have the design capacity to fully accommodate the 2027 forecast demand for air passenger, air cargo, and general aviation services resulting in capacity for up to 17.6 million annual passengers. The approximately 70 capital improvement projects identified in the Master Plan, many subsequently completed, include the reconstruction and lengthening of the Airport's two main runways, numerous taxiway improvements, new air cargo and general aviation facilities, several multi-story parking garages, a new fuel storage facility, and new/reconstructed passenger terminals with up to 49 passenger gates.

The proposed project includes the addition of an eighth hangar at the existing general aviation FBO on the west side of the Airport. Specifically, the project includes the development of an aircraft hangar with additional office space, concrete aircraft apron, and landscaping. Consistent with the objectives of the Master Plan, the project will accommodate a portion of the existing and projected demand for general aviation air transportation services at the Norman Y. Mineta San José International Airport.

As discussed in the attached analysis, the development of this project will not result in any new significant impacts not previously disclosed in the Final EIR, nor would they result in a substantial increase in the severity of a previously identified significant impact in the Final EIR as supplemented and addended, because the project is within the scope of development anticipated in the Final EIR. For these reasons, a supplemental or subsequent EIR is not required.

This Addendum will not be circulated for public review, but will be attached to the 1997 San Jose International Airport Master Plan Update Final EIR, as supplemented and addended, pursuant to CEQA Guidelines section 15164(c).

David Keyon Planner IV

Rosalynn Hughey, Director Planning, Building and Code Enforcement

ny Musbaum

c: Cary Greene, Airport Krinjal Mathur, PBCE Environmental Review Team

Attachment: Analysis supporting the Twelfth Addendum to the 1997 San Jose International Airport Master Plan Update Final EIR, dated May 25, 2018

TABLE OF CONTENTS

SECT	ION 1	INTRODUCTION	1
1.1	Overvi	ew	1
1.2	CEQA	Requirements	1
SECT	ION 2	OVERVIEW OF THE SJC MASTER PLAN	3
2.1	Develo	opment and Approval of the Airport Master Plan	3
	2.1.1	Approved Airport Master Plan	
2.2	Implen	nentation of the Airport Master Plan: 1997 – 2013	8
	2.2.1	Updates to Forecasts and Airport Master Plan Amendments	8
SECT	ION 3	DESCRIPTION OF PROPOSED PROJECT	12
SECT	ION 4	ENVIRONMENTAL IMPACTS OF THE PROJECT	17
4.1	Introdu	action	17
4.2	Land U	Jse	18
	4.2.1	Background	
	4.2.2	Project Impacts in Relation to Master Plan EIR	20
	4.2.3	Conclusion	22
4.3	Cultura	al Resources	22
	4.3.1	Background	22
	4.3.2	Project Impacts in Relation to Master Plan EIR	22
	4.3.3	Conclusion	23
4.4	Transp	ortation and Circulation	23
	4.4.1	Ground Transportation	23
	4.4.2	Air Transportation	26
	4.4.3	Conclusion	30
4.5	Air Qu	ality	31
	4.5.1	Background	31
	4.5.2	Project Impacts in Relation to Master Plan EIR	37
	4.5.3	Conclusion	38
4.6	Noise.		38
	4.6.1	Background	38
	4.6.2	Project Impacts in Relation to Master Plan EIR	41
	4.6.3	Conclusion	44
4.7	Hydrol	logy and Water Quality	44
	4.7.1	Background	44
	4.7.2	Project Impacts in Relation to Master Plan EIR	
	4.7.3	Conclusion	
4.8	Geolog	gy and Seismicity	47
	4.8.1	Background	47
	4.8.2	Project Impacts in Relation to Master Plan EIR	
	4.8.3	Conclusion	47

4.9 Biologi		ical Resources	47
	4.9.1	Background	47
	4.9.2	Project Impacts in Relation to Master Plan EIR	48
	4.9.3	Conclusion	
4.10	Energy	7	49
	4.10.1	Background	49
	4.10.2	Project Impacts in Relation to Master Plan EIR	49
	4.10.3	Conclusion	50
4.11	Aesthe	tics	50
	4.11.1	Background	50
	4.11.2	Project Impacts in Relation to Master Plan EIR	50
	4.11.3	Conclusion	52
4.12	Public	Services and Utilities	53
	4.12.1	Background	53
	4.12.2	Project Impacts in Relation to Master Plan EIR	53
	4.12.3	Conclusion	53
4.13	Hazard	lous Materials	54
	4.13.1	Background	54
		Project Impacts in Relation to Master Plan EIR	
	4.13.3	Conclusion	54
4.14	Air Sat	fety	54
	4.14.1	Background	56
	4.14.2	Project Impacts in Relation to Master Plan EIR	56
	4.14.3	Conclusion	57
4.15	Greenh	nouse Gases	57
	4.15.1	Background	57
	4.15.2	Project Impacts in Relation to Master Plan EIR	58
	4.15.3	Conclusion	59
SECT	ION 5	CONCLUSION	60
SECT	ION 6	REFERENCES	61
SECT	ION 7	REPORT AUTHORS	63

<u>Appendices</u>

Appendix A No Hazard Determinations (Federal Aviation Administration)

Appendix B Soil Characterization Report (Woodard & Curran)

<u>Figures</u>

Figure 1	Vicinity Map	.4
Figure 2	Comparison of Annual Air Passenger Activity Levels at SJC	9
Figure 3	Aerial Photo of Project Area	14
Figure 4	Proposed Site Plan	15
Figure 5	Proposed Building Elevations	16
Figure 6	Estimated Based Aircraft Capacity of the Project	19
Figure 7	Project Location on Approved Airport Layout Plan	21

<u>Tables</u>

Table 1	Approved Amendments to SJC Master Plan
Table 2	Summary of Key Projects in the Approved SJC Master Plan
Table 3	Comparison of Airport Master Plan Activity Levels7
Table 4	Existing and Projected Composition of Based General Aviation
	Aircraft Fleet Mix11
Table 5	SJC Master Plan Weekday PM Peak-Hour Traffic Volumes24
Table 6	Weekday PM Peak-Hour General Aviation Traffic Volumes
Table 7	Comparison of SJC Master Plan Annual Aircraft Operations27
Table 8	Aircraft Operations at SJC by Aircraft Type
Table 9	Annual General Aviation Aircraft Operations
Table 10	SJC Air Pollutant & GHG Emissions Reduction Measures
Table 11	Criteria Pollutant Emissions from General Aviation Aircraft Operations35
Table 12	Toxic Air Contaminant Emissions from Aircraft Operations
Table 13	Comparison of Airport's Noise Footprints40
Table 14	Pervious and Impervious Surfaces on the Project Site

1.1 OVERVIEW

This document, drafted to comply with the California Environmental Quality Act (Pub. Res. Code § 21000 et seq.) ("CEQA"), is the Tenth Addendum to an Environmental Impact Report ("EIR") on the Master Plan Update (the "Airport Master Plan" or "Master Plan") for the Norman Y. Mineta San Jose International Airport ("SJC" or the "Airport"). The Airport Master Plan's EIR was certified in June 1997 ("SJC Master Plan EIR") and updated with a Supplemental EIR that was certified in January 2003 ("Supplemental EIR").

The purpose of this Addendum is to analyze the environmental impacts associated with a proposed expansion of an existing general aviation facility (the "Project") at SJC to meet the existing and projected demand for corporate jet aircraft services. The Project would be constructed on a 3.72-acre site located on the west side of the Airport on what is currently an unused paved surface parking lot. General aviation facilities to be constructed will include a 30,000 ft² aircraft hangar, an aircraft apron, and automobile parking.

Actions associated with the Project will include the City amending its existing long-term ground lease and operating agreement with Signature Flight Support Corporation ("Signature"), the Project applicant, Planning actions in support of the project (including approval of a Site Development Permit), and any Department of Public Works actions required to construct the Project. This Addendum, along with the previous 11 addenda, EIR, and Supplemental EIR, serve as the environmental review for these actions pursuant to CEQA.

1.2 CEQA REQUIREMENTS

CEQA requires local governments to conduct environmental review on public and private development projects. CEQA Guidelines Section 15164(a) states that the lead agency shall prepare an addendum to a previously certified EIR if some changes or additions are necessary but none of the conditions described in Section 15162 calling for preparation of a subsequent EIR have occurred. Section 15164(c) states than an addendum does not need to be circulated for public review. Section 15164(d) provides that the decision-making body shall consider the addendum in conjunction with the EIR prior to making a decision on the project. Section 15164(e) requires documentation of the decision not to prepare a subsequent EIR pursuant to Section 15162.

CEQA Guidelines Section 15162(a) provides that once an EIR has been certified, no subsequent EIR shall be prepared unless the lead agency determines, on the basis of substantial evidence, one or more of the following:

(1) Substantial changes are proposed in the project which will require major revisions of the previous EIR due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or

(2) Substantial changes occur with respect to the circumstances under which the project is undertaken, which will require major revisions of the previous EIR due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or

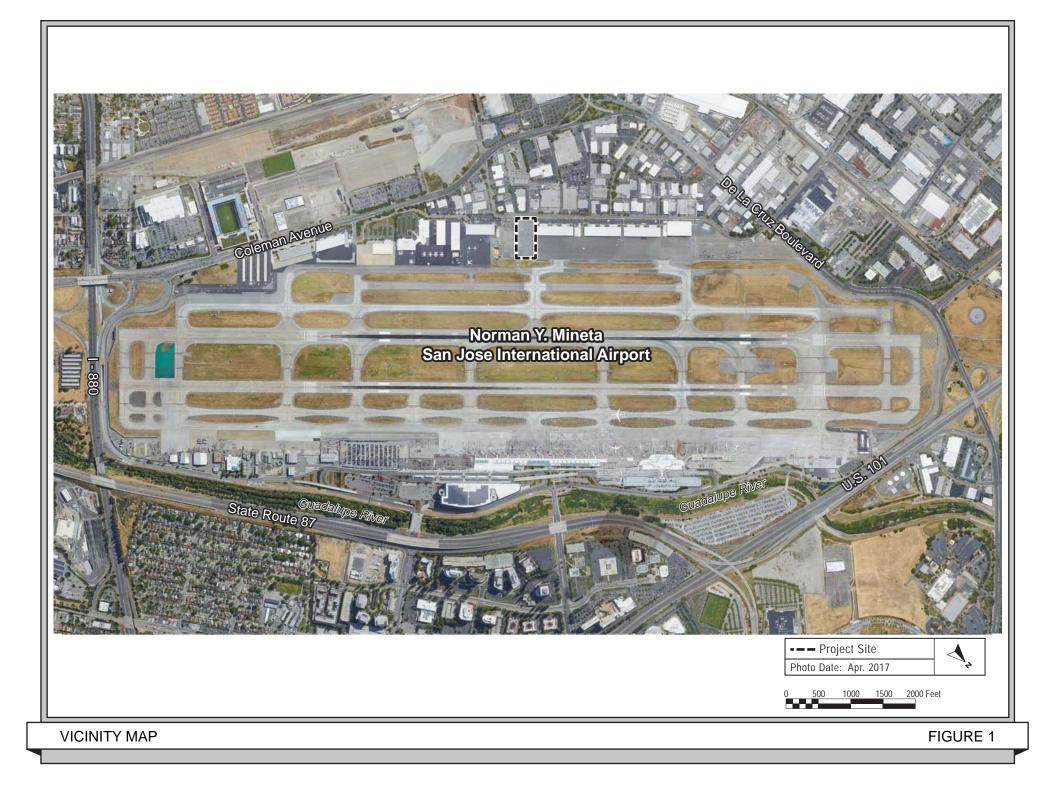
(3) New information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the previous EIR was certified as complete, shows any of the following:

- The project will have one or more significant effects not discussed in the previous EIR; or
- Significant effects previously examined will be substantially more severe than shown in the previous EIR; or
- Mitigation measures or alternatives previously found not to be feasible would in fact be feasible and would substantially reduce one or more significant effects of the project, but the project proponents decline to adopt the mitigation measure or alternative; or
- Mitigation measures or alternatives which are considerably different from those analyzed in the previous EIR would substantially reduce one or more significant effects on the environment, but the project proponents decline to adopt the mitigation measure or alternative.

This Addendum has been prepared to satisfy the requirements of CEQA Guidelines Sections 15164(a), 15164(d), and 15164(e).

This is the 12th in a series of addenda that have been prepared to address various modifications to the Airport Master Plan and/or changes in environmental setting/impacts, which are incorporated herein by reference. Section 2.2 of this Addendum summarizes the prior modifications to the Airport Master Plan that have been approved by the San Jose City Council.

2.1 DEVELOPMENT AND APPROVAL OF THE MASTER PLAN


SJC is one of the three primary airports that serve the San Francisco Bay Area. The Airport, which is owned and operated by the City of San José, is located on a site of approximately 1,050 acres in Santa Clara County at the southerly end of San Francisco Bay. As shown on Figure 1, the Airport is generally bounded by U.S. 101 on the north, the Guadalupe River and State Route 87 on the east, Interstate 880 on the south, and Coleman Avenue and De la Cruz Boulevard on the west.

In 1988, the City initiated a planning process to update its 1980 Airport Master Plan for SJC. The City's aviation consultants prepared demand forecasts for SJC and evaluated a series of alternative development scenarios which would adequately accommodate some or all of the projected growth in passenger and air cargo traffic at the Airport through a year 2010 planning horizon. Between 1988 and 1995, numerous meetings, workshops, and hearings occurred for the purpose of determining the range and scope of alternatives to be formally evaluated in an EIR. The City began the formal preparation of the Draft EIR for the Master Plan Update in 1995. The Draft EIR, which evaluated four alternatives (including the CEQA-mandated No Project Alternative), was published and circulated in October of 1996. The Final EIR was certified in June of 1997. The SJC Master Plan Update was approved by the San José City Council on June 10, 1997. A Supplemental EIR, which updated the noise analysis and addressed the effects of an Automated People Mover (APM), was certified in 2003. A number of EIR Addenda have also been prepared, as listed in Table 1, to address changes to the environmental setting and/or various amendments to the Airport Master Plan that have been approved since 1997.

2.1.1 <u>Approved Airport Master Plan</u>

The approved Airport Master Plan consists of a comprehensive and integrated package of improvements to airside and landside facilities at SJC, such improved facilities having the design capacity to fully accommodate the 2027 forecast demand for air passenger, air cargo, and general aviation services in a comfortable and efficient manner. The approximately 70 capital improvement projects identified in the Master Plan include the reconstruction and lengthening of the Airport's two main runways, numerous taxiway improvements, new and reconstructed passenger terminals with up to 49 air carrier gates, new air cargo and general aviation facilities, several multi-story parking garages, and a new fuel storage facility. Table 2 summarizes the primary improvements contained in the approved Airport Master Plan.

The 1997 Master Plan EIR analyzed the environmental impacts of the Master Plan based on aviation demand forecasts for a horizon year of 2010. As shown in Table 3, for air passengers and air cargo, the forecasted 2010 activity level was 17.6 million annual passengers and 315,300 annual cargo tonnage, respectively. For general aviation the forecasted demand was for 630 based aircraft with

	TABLE 1					
Approved Amendments to the 1997 SJC Master Plan ^a						
Num- ber	Description of Amendment	Туре	Approval Date	CEQA Clearance		
1	Interim off-Airport Office Space and Reuse of Vacated On- Airport Space for Air Carrier-related Uses	Minor	June 1998	Master Plan EIR Reuse		
2	Expanded Fixed Base Operator (FBO) Leasehold for ACM Aviation	Minor	June 1999	Master Plan EIR Reuse		
3	Interim Relocation of Federal Inspection Services (FIS) Facility	Minor	June 1999	Master Plan EIR Reuse		
4	Interim Rental Car Ready/Return Facility Consolidation	Minor	April 2000	Master Plan EIR Reuse		
5	Terminal Area Development Program Modifications (including terminal, parking garage, and roadway project revisions, as well as associated interim facility changes)	Minor	November 2001	Master Plan EIR Addendum #1		
6	94th Aero Squadron Early Lease Termination/Removal and Interim Reuse for Runway Project Cement Plant	Minor	December 2001	Master Plan EIR Reuse		
7	Relocation of Remote Transmitter/Receiver Facility to North Side of Control Tower & Reuse of Site for General Aviation	Minor	February 2002	Master Plan EIR Reuse		
8	Automated People Mover (APM) between Airport and Metro/Airport LRT Station	Minor	March 2003	Master Plan Supplemental EIR		
9	Additional General Aviation Facilities on west side of Airport & Designate Employee Parking as ultimate use in Terminal A Parking Garage	Major	April 2003	Master Plan EIR Addendum #2		
10	Off-Airport Construction Staging & Change in Designated Location of Future Airline Maintenance/Equipment Storage Facilities	Minor	June 2003	Master Plan EIR Reuse		
11	Lease of 52-acre off-Airport Site for the Temporary Relocation of Rental Cars & Employee Parking	Minor	November 2004	Master Plan EIR Addendum #4		
12	Square Footage of Centralized Passenger Terminal increased to 1,700,000 square feet	Minor	March 2005	Master Plan EIR Addendum #4		
13	Shifted the Master Plan Horizon Year from 2010 to 2017; Modified designs of Terminal Area Facilities; Modified range of interim uses on former-FMC Site	Major	June 2006	Master Plan EIR Addendum #6		
14	Change in Eastside Non-Terminal Development Projects to pro- vide flexibility in location, function, & development sequencing	Minor	May 2007	Master Plan EIR Reuse		
15	Shifted the Master Plan Horizon Year from 2017 to 2027; Decrease size of air cargo/belly-freight facilities; Increase acreage for general aviation facilities; Modify Taxiways H and K	Major	June 2010	Master Plan EIR Addendum #8		

^a Per Section 25.02.300 of the San José Municipal Code, amendments to the Master Plan Update are classified as "minor" or "major". The criteria for defining minor and major amendments are set forth in that same section of the Municipal Code.

Notes:

EIR Addendum #3 addressed a modification to the Airport Noise Control Program that was approved on October 21, 2003. EIR Addendum #5 addressed the Airport's Gate Management Plan that was approved on November 15, 2005. EIR Addendum #7 addressed the impacts of the Master Plan with regard to its potential to increase terrorist attacks. EIR Addendum #9 evaluated the greenhouse gas impacts of the Master Plan. EIR Addendum #10 addressed the impacts of a new FBO. EIR Addendum #11 addressed the impacts of four interim airline gates. No Master Plan Amendment was involved with any of these EIR Addenda.

TABLE 2							
Summary of Key Projects in the Approved SJC Master Plan ^a							
Project Type Description of Project							
Airfield	- Reconstruct/lengthen Runway 12L/30R to 11,000 feet						
Improvements	- Reconstruct/lengthen Runway 12R/30L to 11,000 feet						
Passenger	- Modify existing terminals to create centralized passenger terminal with						
Terminals	49 air carrier gates and 1,700,000 square feet ^b						
Public Parking Facilities	- Construct parking garages with 16,200 spaces ^c						
Rental Car	- Construct consolidated parking garage with 6,000 spaces,						
Facilities	including 2,000 ready/return spaces						
Air Cargo	- Construct new all-cargo facilities totaling 1,165,100 square feet						
Facilities	- Construct new belly-freight facilities totaling 92,400 square feet						
Aviation Support Facilities	- Construct new fuel storage facility with capacity of 4,000,000 gallons						
General Aviation	- Provide general aviation facilities on a total of 100 acres						
Facilities	on the west side of the Airport						
	- Construct on-Airport APM						
Transportation	- Upgrade/widen Terminal Drive						
And Access	- Construct grade separations on Airport Boulevard at Skyport Drive and Airport Boulevard						
	- Construct APM between Airport and Metro/Airport LRT Station						
Notes:							
^a Section 2.3.1 (beg SJC Master Plan p	inning on page 2-5) of the Final EIR contains a listing and description of all rojects.						
^b Number of air carrier gates limited to 40 by Section 25.04.300(B)(1) of the San José							

^b Number of air carrier gates limited to 40 by Section 25.04.300(B)(1) of the San José Municipal Code.

^c Number of public parking spaces limited to 12,700 by Section 25.04.300(B)(3) of the San José Municipal Code.

Source: SJC Master Plan, as amended through June 8, 2010.

TABLE 3 Comparison of Airport Master Plan Activity Levels							
	Act Activity	ual	Forecasted Level Used in CEQA Analyses				
Forecast Horizon Year \rightarrow			2010	2010	2027		
	Baseline Used in			2003 Second	2010/2014 Eighth and Tenth		
	1997 EIR	Existing	1997	EIR	EIR		
	(1993)	(2017)	EIR	Addendum*	Addenda		
Annual Air Passengers (millions)	7.0	12.5	17.6	17.6	17.6		
Annual Air Cargo (tons)	81,237	61,365	315,300	315,300	189,700		
General Aviation (based aircraft)	491	133	320	360	209		
Annual Aircraft Operations							
Air Passenger	115,832	119,574	243,100	186,400	183,660		
Air Cargo	5,044	1,606	13,300	13,100	6,830		
General Aviation	176,581	34,518	115,300	129,700	73,200		
Military	888	216	800	800	100		
Total	298,345	155,914	372,500	330,000	263,790		

*As compared to the 1997 EIR, these numbers reflected changes in the projected fleet mix at SJC based on industry practices and trends. These numbers did not change in 2006 when the City amended the Master Plan to extend the Master Plan horizon year from 2010 to 2017. For a discussion of the downturn in the economy and other factors that led to this extension, see Section 3.1 of the Sixth Addendum to the 1997 Master Plan EIR.

Sources:

- Table 2.3.1 of the 1997 Master Plan EIR
- 2nd Addendum to 1997 Master Plan EIR
- 6th Addendum to 1997 Master Plan EIR
- 8th Addendum to 1997 Master Plan EIR
- Summary of Aviation Demand Forecasts (Ricondo & Associates, 2009)
- Annual Status Report on the Airport Master Plan for 2016

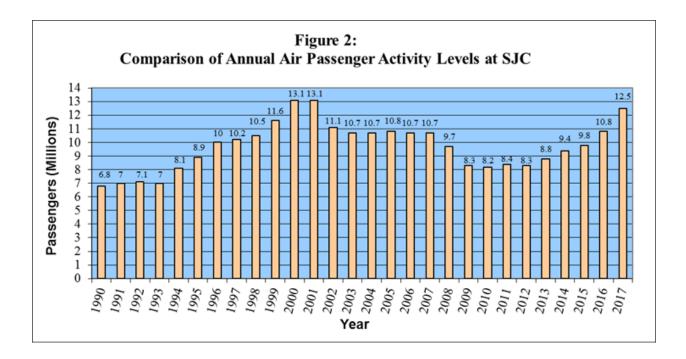
•

226,800 annual operations¹, but the Master Plan accommodated (and the EIR analyzed) only 320 based aircraft with 115,300 annual operations.

2.2 IMPLEMENTATION OF THE AIRPORT MASTER PLAN 1997 – 2017

Subsequent to the approval of the Master Plan in 1997, many of the capital improvement projects have been constructed. This includes the majority of the airfield improvement projects such as the extension of the Airport's two main runways to 11,000 feet each and associated taxiway improvements. On the east side of SJC are new and remodeled passenger terminals, a customs facility for international flights, new/expanded parking lots and garages, and a new consolidated rental car facility. A new fuel storage facility has been constructed, as have numerous upgrades to the Airport's roadway system. On the west side of SJC, new general aviation facilities were constructed that include approximately 240,000 ft^2 of aircraft hangars, an approximately 10,000 ft^2 terminal, an outdoor seating area, a ground service equipment (GSE) shop, an aircraft apron, a fuel farm, an automobile parking area, and aircraft taxiway connectors.

The remaining Master Plan capital projects include several taxiway upgrades/extensions, new air cargo facilities on the east side of the Airport, construction of the South Concourse of Terminal B, upgrades and expansion of various support facilities (e.g., maintenance, flight kitchen, rescue/firefighting, etc.), and the buildout of general aviation facilities on the west side of the Airport.


2.2.1 Updates to Forecasts and Airport Master Plan Amendments

2.2.1.1 Introduction and Background

Similar to most master plans that contain numerous individual projects that are implemented over a multi-year period, the City has approved a number of Airport Master Plan amendments to reflect changed conditions in the aviation industry. The following paragraphs summarize the changed conditions and the factors that led to them.

At the time the original demand forecasts were undertaken in 1994, SJC was experiencing substantial annual growth in the number of air passengers using the airport. That substantial growth, which is summarized in Figure 2, was projected to continue through the year 2010. However, several unforeseen events subsequently transpired, which resulted in a major effect on the aviation industry and on activity levels at SJC: 1) terrorist attacks on September 11, 2001; 2) bursting of the high-tech "dot com" bubble in Silicon Valley; 3) substantial increases in the price of aviation fuel; and 4) the widespread economic recession that began in 2008, the recovery from which is ongoing.

¹ An aircraft "operation" is defined as a takeoff or landing. Therefore, if an aircraft flies into the Airport and subsequently takes offs, two operations have occurred.

As a result of these events and other factors, the airline industry has been undergoing rapid and significant changes. For example, airlines are frequently modifying their route structure and the markets they serve in response to changes in economic and competitive conditions. In addition, airline start-ups, mergers, reorganizations, and bankruptcies are more common in today's aviation industry than in past years.

At SJC, the cumulative effect of all of these changes was a decrease in airport activity between 2000 and 2012. Beginning in 2013 and continuing to the present, this trend has reversed as the economy recovers. Figure 2 depicts these changes.

Such changes have necessitated updates to SJC's aviation forecasts, which in turn has resulted in various changes to the size, function, and location of some of the Airport's planned air passenger, air cargo, and general aviation facilities.

2.2.1.2 1994 Forecasts

The original Airport Master Plan horizon year of 2010 was based on aviation demand forecasts that were prepared in 1994. The forecasts, which were utilized throughout the 1997 Master Plan EIR, quantified the expected demand for air transportation services at SJC in 2010, based upon an analysis of economic, employment, and demographic data. Based on those forecasts, a list of airport facility improvement projects to accommodate the projected demand was developed. These projects became the Airport Master Plan that was approved by the San José City Council in 1997.

2.2.1.3 2003 Forecast Update and Master Plan Amendment

In 2003, the 1994 assumptions for aircraft fleet mix and aircraft operations projected to occur by 2010 were revised to reflect the latest practices of the airlines, air cargo carriers, and owners/operators of

general aviation aircraft. Also in 2003, the number of based general aviation aircraft at SJC was raised from 320 to 360 to reflect a Master Plan Amendment that allowed the expansion of Atlantic Aviation (formerly the San Jose Jet Center), an existing fixed base operator (FBO) at the Airport.² The Atlantic Aviation expansion project was evaluated in the Second EIR Addendum (2003).

2.2.1.4 2005 Forecast Update and 2006 Master Plan Amendment

As part of a 2005 financial feasibility analysis, the level of air passenger activity at SJC that was originally projected to be reached by year 2010, was projected not to be reached until year 2017. This updated forecast formed the basis for a decision in 2006 by the City to shift the horizon year for the Airport Master Plan from 2010 to 2017. The shift in horizon year from 2010 to 2017 was evaluated in the Sixth EIR Addendum (2006).

2.2.1.5 2009 Forecasts and 2010 Master Plan Amendment

In 2009, the City completed another update to the aviation demand forecasts for SJC. As shown in Table 3, the major findings of the 2009 updated forecast were as follows:

- The level of air passenger activity at SJC that was originally projected to be reached by year 2010 (i.e., 17.6 million annual passengers), and subsequently projected to be reached by 2017, is now projected not to be reached until year 2027.
- For air cargo, the 2009 updated forecast showed a much slower growth rate in future demand than previously projected. As shown in Table 3, the projected annual air cargo volume for year 2027 is 189,700 tons. This demand level is 40% less than the 315,300 tons that had been previously projected to occur by year 2010 and subsequently by 2017.
- For general aviation, the 2009 updated forecast showed a much lower growth rate in future demand than previously projected. As shown in Table 3, the projected demand for year 2027 is 209 based aircraft. This demand level is 42% less than the accommodated demand of 360 based aircraft that had been previously projected for year 2010 and subsequently 2017. In addition, the general aviation environment has changed, and is projected to continue to change, from a fleet comprised largely of single-engine piston aircraft to a fleet comprised largely of corporate jet aircraft. As an example, as shown in Table 4, the 1994 forecasts projected that 9% of all based aircraft in 2010 would be corporate jets, whereas the 2009 forecasts project that 67% of all based aircraft in 2027 will be corporate jets. Actual data, as shown in Table 4, comparing general aviation aircraft based at SJC in 1994 and 2017, confirms the projection and shows that there are fewer piston aircraft and more jets over time. This projected trend will continue based on industry-wide changes in general aviation.

² A fixed base operator (FBO) is an aviation term that refers to an airport-based business that typically provides general aviation facilities and services such as aircraft parking, storage, maintenance, servicing, and fueling, as well as pilot/passenger facilities, restaurants, offices, meeting rooms, flight instruction, aircraft rental, pilot supplies, etc.

TABLE 4							
Existing and Projected Composition of Based General Aviation Aircraft Fleet Mix							
	Proje	ected	Act	tual			
	1994	2009					
	Forecast for	Forecast for					
	Horizon Year	Horizon Year					
Aircraft Category	2010	2027	1994	2017			
Single-Engine Piston	67 %	23 %	73 %	46 %			
Multi-Engine Piston	15 %	3 %	15 %	6 %			
Turboprop	5 %	5 %	3 %	6 %			
Turbojet	9 %	67 %	7 %	39 %			
Helicopter	4 %	2 %	2 %	3 %			
Total	100 %	100 %	100 %	100 %			

- San Jose International Airport Master Plan Update Final Report, 1999.
- Summary of Aviation Demand Forecasts for SJC, Ricondo & Associates, 2009.
- City of San Jose Airport Department (source for 2017 data)

These changes led the City to amend the Master Plan in 2010 to 1) shift the horizon year from 2017 to 2027, 2) relocate and decrease the size of planned air cargo facilities, 3) relocate and increase the size of planned general aviation facilities, and 4) modify two taxiways to accommodate the expanded general aviation facilities. These changes were evaluated in the Eighth EIR Addendum (2010).

2.2.1.6 **Summary**

When compared to the Master Plan in the 1997 EIR, the current data show:

- Air passenger growth is occurring far more slowly than originally projected;
- The post-recession increases in the number of passengers utilizing SJC that began in 2013 and continues today is consistent with the latest forecasts that show continued growth to 17.6 million passengers annually by 2027.
- Total aircraft operations at SJC are lower than projected and are projected to be 29% lower in 2027 than what had been projected for 2010 and subsequently 2017;
- Air cargo volume, measured in tons per year, is lower than projected and is projected to be 40% lower in 2027 than what had been projected for 2010 and subsequently 2017; and
- General aviation activity, expressed as the number of based aircraft, is less than projected and is projected to be 42% lower in 2027 than what had been projected for 2010 and subsequently 2017.

3.1 BACKGROUND

In 2014, the City of San Jose approved the construction of a general aviation FBO on a 30-acre site located on the west side of the Airport (refer to Figure 4). The project included seven aircraft hangars providing approximately 240,000 ft² of hangar space. Six of the hangers are 30,000 ft² and are designed to each accommodate three large cabin business jet aircraft of the types that are currently in common usage. The seventh hangar is 60,000 ft², including approximately 6,000 ft² of office/shop space. The seventh hangar is designed to accommodate up to one Boeing 767 and one Boeing 757 or similarly-sized aircraft.³ The project also included an approximately 10,000 ft² terminal, a 7,500 ft² outdoor seating area, a 3,600 ft² ground service equipment (GSE) shop, 17 acres of concrete aircraft apron, a fuel farm, an automobile parking area, and aircraft taxiways. Construction of the project was completed in 2016 and the FBO is fully operational.

3.2 PROPOSED PROJECT

The Project that is being addressed in this 12th EIR Addendum is the expansion of the above-described, existing, general aviation FBO on the west side of the Airport through the addition of an eighth hangar. The 3.72-acre Project site is located directly south of the existing FBO and is designated for general aviation in the approved Airport Master Plan. Consistent with the objectives of the Master Plan, the Project will accommodate a portion of the existing and projected demand for general aviation air transportation services at SJC.

As shown on Figure 3, the Project site is currently an unused asphalt vehicle surface parking lot. The easterly side of the Project site borders the airfield. The FAA air traffic control tower, aviation communication equipment, and other existing general aviation facilities are located to the south of the Project site. Martin Avenue runs along the westerly side of the Project site. The Project's site plan is shown on Figure 4 and representative building elevations are shown on Figure 5. The Project will be constructed to meet LEED standards.⁴ The following paragraphs provide additional detail regarding the proposed Project.

<u>Aircraft Hangar</u>: The Project will construct a $30,000 \text{ ft}^2$ aircraft hangar with an additional $4,000 \text{ ft}^2$ of office space. The hangar will be designed to accommodate two large cabin business jet aircraft of the types that are currently in common usage and will be of the same size and configuration of six of the seven previously-constructed hangars approved in 2014.

³ Large aircraft such as the Boeing 717/727/737/747/757/767 and/or the Airbus 319/320/330 are in widespread use by passenger airlines and cargo carriers, but some of these aircraft types are configured and operate for business uses. These larger business aircraft currently operate at SJC.

⁴ Projects that meet these standards, which were developed by the U.S. Green Business Council, are typically more energy-efficient and have fewer environmental effects when compared to projects that don't meet these standards. For more detail, please see Section 4.5.2.2 of this Addendum.

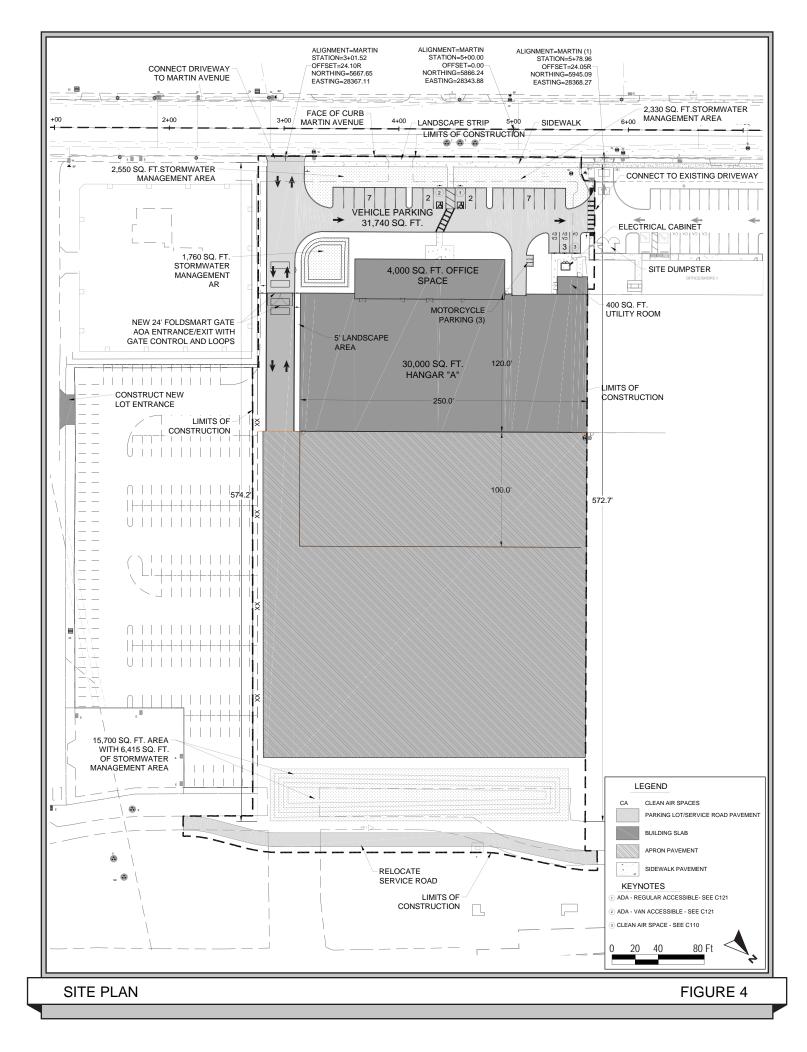
<u>Aircraft Apron</u>: The Project will include approximately 1.85 acres of concrete aircraft apron (sometimes referred to as "aircraft ramp") between the hangars and the airfield, as shown on Figure 4. The proposed apron would connect to the apron constructed as part of the existing FBO. The aircraft apron is used for a variety of aircraft-related operations including taxiing, maneuvering, fueling, loading/unloading, staging, short-term parking, etc.

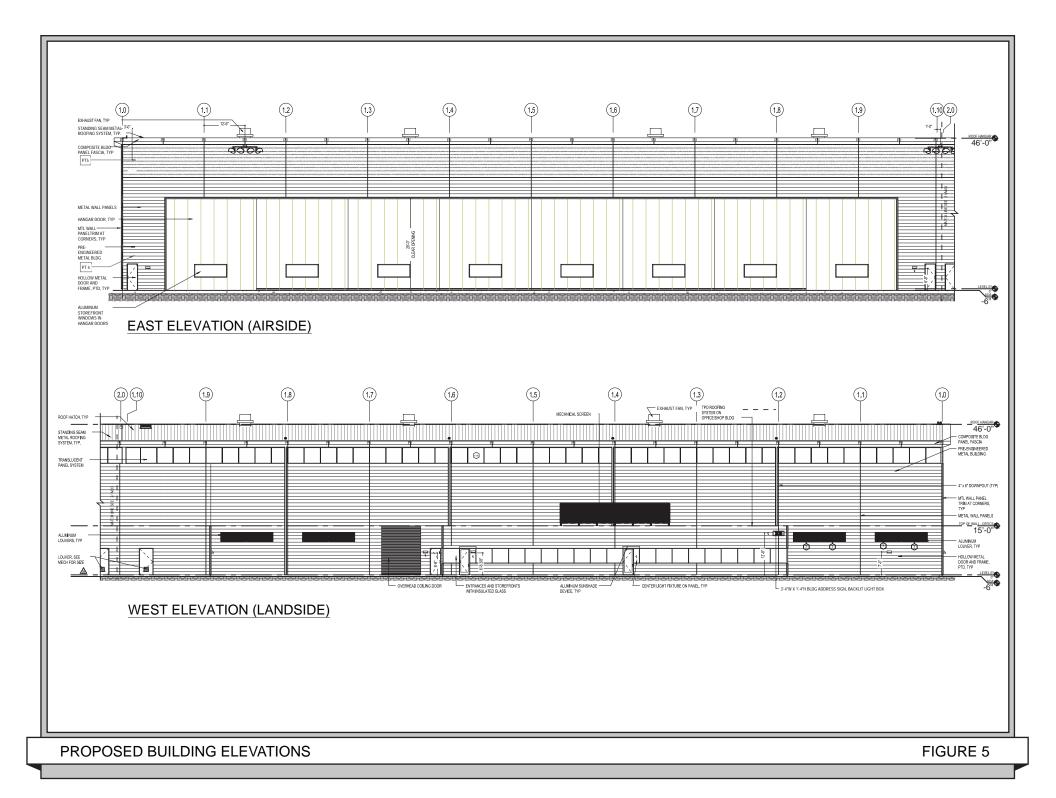
<u>Access and Parking</u>: As shown on Figure 4, access to the Project site will be via a driveway on Martin Avenue. On-site parking for employees, customers, and visitors will be provided. A total of approximately 26 parking spaces are proposed.

<u>Landscaping</u>: Landscape on the Martin Avenue side of the Project site will consist mainly of shrub and groundcover planting. As much of the landscape area will be devoted to stormwater treatment, the planting in those areas will consist of plants recommended in the City's stormwater guidelines.

Approximately 4-6 trees are proposed to be installed in the peninsulas within the parking lot to provide shade adjacent to the parking stalls. The tree species will match those on the adjacent site to serve as a visually-unifying element between the existing and proposed sites. In addition, approximately 5-8 street trees will be planted between the proposed new sidewalk and the back of curb along Martin Avenue. The understory planting along the Martin Avenue frontage will match the scheme already installed. The southeast side of the Project site has a small planting buffer that will consist of trees, ground cover and shrubs to form a visual barrier.

<u>Utilities and Services</u>: Utilities will be provided to the Project via connections to the existing utility systems that are located on or adjacent to the Project site. Stormwater will be treated in stormwater management areas adjacent to the proposed building, parking lot, and aircraft apron prior to discharge into the existing storm drainage system; please see Section 4.7, *Hydrology & Water Quality*, for additional discussion of stormwater treatment. Outdoor lighting will be provided for operational and security purposes; light fixtures will comply with applicable codes that are designed to prevent spillover and glare. The existing service road that parallels the easterly site boundary will be realigned approximately 15 feet from the east Project parcel boundary to the west edge of pavement of the service road to provide adequate separation between vehicles on the service road and aircraft on the apron.


<u>Operations</u>: Based on Signature's experience in operating FBOs, taking into account the business aircraft environment in California and the Bay Area, Signature anticipates that there will be approximately 20-30 new annual aircraft operations when the proposed hangar is fully operational. According to Signature, this estimate is based on the activity levels of the tenants they anticipate will occupy the new hangar. [Note: For the various analyses undertaken for this Addendum, the City is utilizing a more conservative estimate of 2,800 annual aircraft operations.]


Signature also anticipates that there will be approximately two based aircraft at the FBO, taking into account its expected tenants and the aircraft owned and operated by those tenants. For additional discussion of the Project's capacity, as measured in number of based aircraft, please see Section 4.1.

AERIAL OF PROJECT AREA

FIGURE 3

SECTION 4. ENVIRONMENTAL IMPACTS OF THE PROJECT⁵

4.1 INTRODUCTION

In order to assess many of the environmental impacts of the Project, including ground traffic, air traffic, noise, and air quality, the first step is for the CEQA Lead Agency to independently determine the capacity of the facilities being constructed. This is a crucial step in the analysis of every type of project, whether residential, commercial, industrial, institutional, recreational, etc. For example, for residential projects, capacity is typically expressed as the number of dwelling units; for commercial, the amount of square footage; for hotels, the number of rooms; and so forth.

For general aviation, capacity is expressed in the number of based aircraft. Once that number is determined, then one is able to calculate the expected number of operations, expected number of vehicle trips, emissions of air pollutants, noise emissions, etc.

Signature, the project applicant, has indicated to the City that the facilities they propose to construct, taking into account the tenants and types of aircraft that they anticipate serving, will accommodate two based aircraft. This number of aircraft reflects Signature's anticipation that their tenants will have large corporate jet aircraft in their fleet. Given Signature's anticipated tenants, a capacity of two based aircraft would not be unreasonable.

As part of the 2014 Tenth Addendum completed for the existing FBO adjacent to the Project site, the City undertook an independent evaluation of the proposed facilities in terms of their capacity, taking into account the current and projected corporate general aviation fleet mix, as well as typical FBO operational practices at airports around the United States. This evaluation assumed that most FBOs will work to accommodate requests to base an aircraft at their facility if there is room to do so, because that is the essence of their business. Because the Project proposes a 30,000 ft² aircraft hangar, which is the same size as one of the six of the hangars evaluated in the 2014 Tenth Addendum, the methodologies used in the previous analysis can be applied to the proposed Project. The City's evaluation included two different methodologies:

<u>Methodology #1 – Based Aircraft per Acre</u>: The Project will occupy 3.72 acres of the approximately 100 acres designated for 209 based general aviation aircraft, as forecasted by year 2027 in the amended Master Plan. The 100 acres was based on a 2009 analysis prepared for SJC by Ricondo & Associates as part of the process to amend the Master Plan to reflect the latest forecasts.⁶ Ricondo calculated that the Airport should designate 102 acres for general aviation to accommodate the forecast of 209 based aircraft, taking into account the trend toward a higher percentage of larger corporate jets. [Note: Given land availability constraints at SJC, only 100 acres were available, just shy of the 102 acres calculated

⁵ The analysis of impacts in Section 4 follows the same order and addresses the same topics as those contained in Chapter 3 of the SJC Master Plan EIR.

⁶ "Cargo and General Aviation Facility Requirements for Norman Y. Mineta San Jose International Airport", Ricondo & Associates, October 8, 2009.

by Ricondo.] Assuming a rough proportionate distribution of the 209 aircraft across the 100 acres, the Project could accommodate approximately eight based aircraft (3.7% of the total).

<u>Methodology #2 – Based Aircraft in Proposed Hangar</u>: As part of the preparation of the 2014 Tenth Addendum, the City retained Jacobs Engineering, a firm that specializes in the design of airport facilities throughout the world, took the plans for the Signature FBO and "placed" corporate aircraft into the hangars in a manner consistent with typical corporate FBO operations in the United States. This exercise utilized a mix of common corporate aircraft types consistent with the mix of aircraft expected to occupy a FBO. Because each of the six of the hangars in the existing FBO each have the same square footage as the hangar proposed by the Project (i.e., 30,000 ft²), the results of the previous analysis can be applied to the proposed Project. The results show that the Project could reasonably accommodate up to eight based aircraft, as shown on Figure 6.

Based on the identical results of these two methodologies, all of the analyses throughout this Addendum will use eight based aircraft as the maximum capacity of the Project.

There are currently 133 based general aviation aircraft at SJC.⁷ If the eight aircraft associated with the Project are added to the existing number, the total of 141 would be substantially below the 320 based aircraft analyzed in the 1997 Master Plan EIR and below the 209 based aircraft analyzed in the 2010 Eighth Addendum. Therefore, the number of based aircraft under "existing plus Project conditions" is less than the total number of based aircraft analyzed in the prior environmental analysis.

4.2 LAND USE

4.2.1 <u>Background</u>

Section 3.1 of the 1997 Master Plan EIR evaluated the land use impacts of the Master Plan in terms of 1) changes to on-Airport use, and 2) compatibility with adjacent land uses. The EIR concluded that all of the capital improvement projects that would be constructed under the Master Plan would not result in any significant on-Airport land use impacts because:

- Development would be consistent with all applicable FAA and Airport Land Use Commission (ALUC) safety zones, including runway protection zones and object free areas.
- Development would be consistent with the use of and plans for the Airport, namely, its safe and effective function as a major air transportation facility;
- Development would be consistent with the current uses at the Airport; and
- Conversion of prime farmland acreage to aviation uses would not be a significant impact.

⁷ Existing general aviation facilities occupy approximately 81 acres of the Airport. Under the "Based Aircraft per Acre" methodology, 81 acres of the approximately 100 acres designated for 209 based aircraft forecasted for year 2027 is projected to accommodate 169 aircraft. The fact that there are presently fewer aircraft than projected in the Eighth Addendum means that the "existing conditions" scenario has less activity, and therefore less impact, than what was previously disclosed.

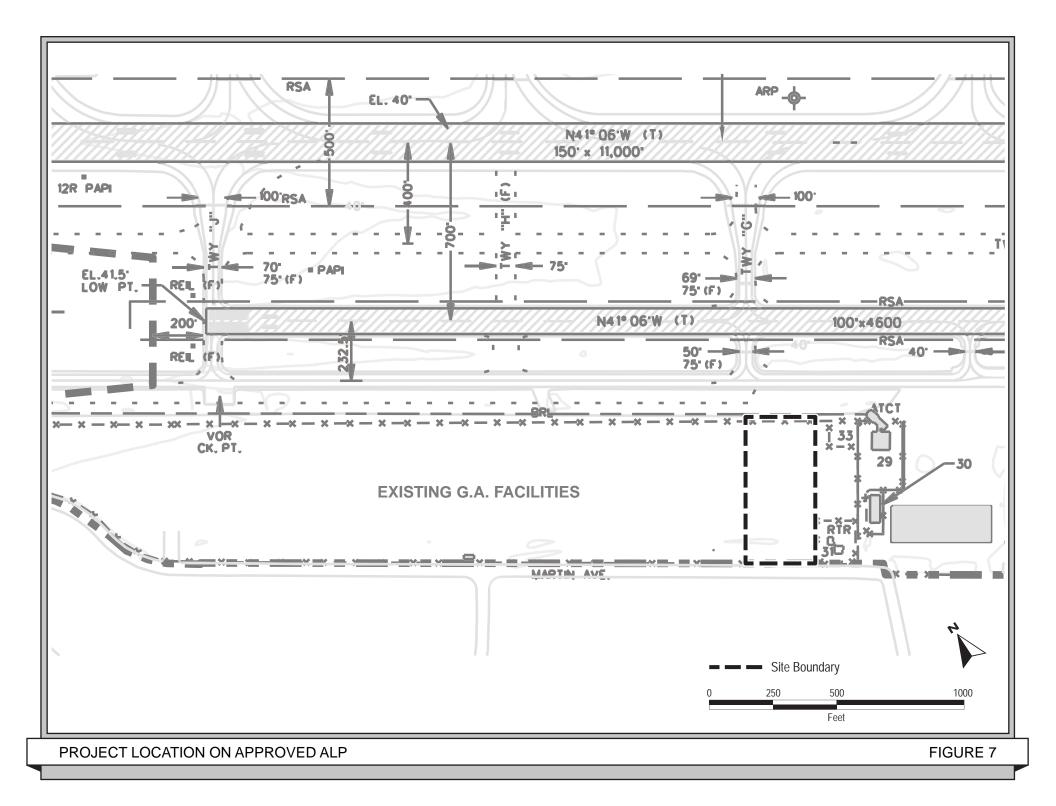
ESTIMATED BASED AIRCRAFT CAPACITY OF THE PROJECT

The EIR also concluded that implementation of the Master Plan would not result in a significant land use impact in terms of inconsistency with adjacent land uses because 1) it would not displace a large number of people, 2) would not conflict with established uses, and 3) would not disrupt or divide the physical arrangement of an established community.⁸

4.2.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

The Project proposes to construct a general aviation facility on a 3.72-acre site located on the west side of SJC. The site was originally designated for future air cargo facilities in the 1997 Master Plan, but was redesignated for general aviation facilities when the Master Plan was amended in 2010 to reflect updated forecasts. Consistent with those forecasts, this Addendum is analyzing development of a general aviation facility on this 3.72-acre site. The FAA-approved Airport Layout Plan (ALP), which is the official document that sets forth the layout and development of SJC in accordance with FAA design standards, also designates the Project site for general aviation. Figure 7 shows the Project's footprint within the area designated for general aviation on the ALP.

As shown on Figure 3, the Project site is currently an unused asphalt surface parking lot. The parking lot was formerly used for employee and public parking on an interim basis while new facilities were being constructed on the east side of the Airport. This parking lot is no longer required because in 2011, employee parking was moved from this site to a dedicated area in the terminal area. Further, in 2011, long-term parking was moved from this area to an interim surface lot on the former rental car/ready return parking lot site. This lot is currently providing sufficient capacity to meet the long-term parking demand.


The easterly side of the site borders the airfield. The FAA control tower, aviation communication equipment⁹, and general aviation facilities are located to the south of the site. Martin Avenue is along the westerly side of the site, with commercial and industrial uses located on the far side of Martin Avenue. There are no nearby residences, schools, or other land uses that would be incompatible with the Project. From the Project site, the distances to the closest school and closest residence are more than one-mile and more than one-half mile, respectively. As such, the Project is consistent with the current use of the Airport and the surrounding land uses.

Since the site is paved and part of the existing airport, the Project will not result in the loss of prime farmland.

Aircraft access between the Project site and the existing taxiway and runway infrastructure at the Airport will be via existing taxiway connectors that were constructed in 2014-16 as part of the original FBO facility. No new taxiway connectors are proposed as part of this Project. Therefore, since no new connections are proposed, no analysis of potential safety issues associated with changes in access to the taxiway and runway infrastructure is warranted.

⁸ The 1997 EIR did determine that a proposed fuel storage facility on a separate parcel of land from the main Airport property (i.e., across U.S. 101 and adjacent to the Guadalupe River) would result in a significant land use compatibility impact because of the project's location and mitigation was required. That parcel, however, is not located near, and would not be affected by, the proposed Project, nor is that parcel near where the Project's fuel facility is proposed to be located.

⁹ This is a series of antennae and associated equipment known as the Remote Transmitter/Receiver (RTR) facility.

In addition, the FAA reviewed the building to be constructed by the Project in accordance with the requirements of Part 77 of the Federal Aviation Regulations (FAR). Part 77 of the FAR establishes imaginary surfaces for airports and runways as a means to identify objects that are obstructions to air navigation, including buildings. The imaginary surfaces radiate out several miles from the airport and are defined as a certain altitude above mean sea level (msl). The FAA also reviewed the Project regarding its location adjacent to equipment used for aviation communication.

In a letter dated January 30, 2018, the FAA concluded that hangar building proposed to be constructed by the Project would not be a hazard to air navigation. The FAA also found that the Project would not interfere with the operation of the FAA's aviation communication equipment. The FAA's letter is attached as Appendix A.

4.2.3 <u>Conclusion</u>

The Project is compatible with the Airport Master Plan and the FAA-approved ALP, both of which designate the Project site for general aviation facilities. The Project would comply with all relevant FAA safety policies and, therefore, would be compatible with the operation of the Airport as a major air transportation facility. The Project would be compatible with the adjacent land uses.

The Project will not result in any new significant land use impacts and/or land use impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant land use impacts than were previously analyzed.

4.3 CULTURAL RESOURCES

4.3.1 <u>Background</u>

Section 3.2 of the 1997 Master Plan EIR included an assessment of the potential for development at the Airport to impact buried archaeological resources. The assessment, which was based largely on the results of a comprehensive on-Airport archaeological testing program, determined that certain areas of the Airport were archaeologically-sensitive, as shown on Figure 3.2.1 in the EIR. The EIR concluded that construction at such locations could encounter and disturb archaeological resources, which would be a significant impact. Therefore, mitigation was required for all projects within the archaeologically-sensitive areas, consisting of the monitoring of all subsurface construction activity by a qualified archaeologist. The archaeologist has the authority to stop work within the vicinity of any archaeological find so that the resource can be evaluated. This measure has been implemented, as applicable, on all capital improvement projects at the Airport that have been completed to date.

4.3.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

The Project proposes to construct a general aviation facility on a 3.72-acre site located on the west side of SJC. There are no buildings located on the site. The western portion of the site is, however, located

within an area designated as archaeologically-sensitive in the 1997 EIR.¹⁰ Although the site was paved as a parking lot subsequent to the completion of the EIR and no resources were found during its construction, there is still the potential for the Project to encounter archaeological resources because deeper subsurface work will be required for building foundations, utilities, foundation to support aircraft parking, etc. Therefore, the Project will implement the EIR mitigation measure that requires all subsurface work to be monitoring by a qualified archaeologist. Per the EIR Mitigation Measure 1 and SEIR Mitigation Measure 1, if archaeological resources are encountered, the archaeologist will stop work within a 100-foot radius of the find. The archaeologist will evaluate the find and identify appropriate mitigation. In addition, if human remains are encountered, the archaeologist will immediately notify the County Coroner and, if the remains are determined to be Native Americans, the Native American Heritage Commission will also be contacted.

4.3.3 <u>Conclusion</u>

The Project will result in the construction of facilities at a location already identified for construction in the Master Plan and accompanying EIR. The Project will not result in any new significant cultural resources impacts and/or cultural resources impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant cultural resources impacts than were previously analyzed.

4.4 TRANSPORTATION AND CIRCULATION

4.4.1 <u>Ground Transportation</u>

4.4.1.1 Background

The volume of ground traffic associated with SJC is directly related to the level of activity that occurs at the Airport. Each of the three major components of air transportation (i.e., air passengers, air cargo, and general aviation) contributes to the total volume of ground traffic at SJC.

The traffic impacts disclosed in Section 3.3 of the 1997 Master Plan EIR were based on the volume of traffic that was projected to occur under forecasted activity levels, as summarized in Table 5. The data in Table 5 also show the effect on PM peak-hour traffic volumes resulting from two Master Plan amendments that occurred subsequent to the completion of the 1997 Master Plan EIR:

• A 2003 amendment to increase the number of based general aviation aircraft from 320 to 360 to accommodate an expansion of general aviation facilities by Atlantic Aviation (formerly known as the San Jose Jet Center).

¹⁰ The existing Signature FBO is also in an archaeologically-sensitive area. Archaeological monitoring was undertaken during its construction and no cultural resources were found.

• A 2010 amendment to reflect updated forecasts, specifically a decrease in the projected number of based general aviation aircraft from 360 to 209 and a decrease in the projected annual volume of air cargo from 315,300 tons to 189,700 tons. [Note: as shown in Table 3, in 2017, there were 133 based general aviation aircraft at SJC. This number is consistent with the forecast of 209 general aviation aircraft at SJC by 2027.]

As shown in Table 5, traffic volumes under the amended Master Plan are projected to be 5.6% lower than the levels disclosed in the traffic analysis contained in the 1997 EIR.

	TABLE 5							
	SJC Master Plan Weekday PM Peak-Hour Traffic Volumes							
		1997 Master Plan, as		Master Plan, as amended in 2003 for Atlantic Aviation		Master Plan, as amended in 2010 to Reflect Updated		
		Disclosed in	,	Expansion		Fore	-	
	Weekday PM Peak-	A	# of Weekday	-	# of Weekday		# of Weekday	
Category	Hour Trip Rate	Activity Level	PM Peak- Hour Trips	Activity Level	PM Peak- Hour	Activity Level	PM Peak- Hour Trips	
			Ĩ		Trips		•	
Airlines	0.33/1,000 passengers	17,600,000 annual passengers	5,822	17,600,000 annual passengers	5,822	17,600,000 annual passengers	5,822	
Air Cargo	2.51/1,000 tons	315,300 annual tons	792	315,300 annual tons	792	189,700 annual tons	477	
General Aviation	0.69/based aircraft	320 based aircraft	222	360 based aircraft	249	209 based aircraft	145	
Misc			113		113		113	
Totals			6,949		6,976		6,557	
% Chan	% Change from Volume Disclosed in 1997 EIR				+ 0.39%		- 5.64%	

Notes:

- Trip rates are rounded to the nearest hundredth.
- For this analysis, PM peak-hour trips are used because the 1997 EIR determined that SJC generates more trips in the PM peak-hour than the AM peak-hour and, therefore, is a more conservative analysis.

Sources:

- Appendix 3.3.A of the 1997 Master Plan EIR
- 2nd Addendum to 1997 Master Plan EIR
- 8th Addendum to 1997 Master Plan EIR

For the Master Plan as a whole, the 1997 EIR disclosed that all of the traffic to be generated at the Airport would result in significant impacts at various intersections and on various freeways located in the surrounding area. Mitigation measures were incorporated into the Master Plan for these impacts. All of the mitigation measures for traffic impacts from Airport-related projects on the west side of the Airport (which includes this Project) have already been implemented. Specifically, for the following locations where significant impacts were disclosed that are in the vicinity of the Project on the westerly side of the Airport (measures related to the easterly side of the Airport are too remote to be affected by the Project), the required mitigation has already been implemented:

- I-880 Ramps at Coleman Avenue [EIR Intersection #27]: Interchange has been reconstructed and Coleman Avenue has been widened.
- Airport Boulevard at Coleman Avenue [EIR Intersection #28]: Intersection reconfigured as part of the I-880/Coleman Avenue Interchange Reconstruction Project.
- Coleman Avenue at Brokaw Road [EIR Intersection #29]: Mitigation consisting of the restriping of the westbound approach on Brokaw Road to include an exclusive left-turn lane and one shared left/through/right-turn lane has been implemented.
- De La Cruz Boulevard at Martin Avenue [EIR Intersection #31]: Mitigation consisting of no left-turns was needed only on an interim basis while west side long-term and employee parking lots were operational; these lots have since been relocated to the eastside of the Airport.
- De La Cruz Boulevard at Central Expressway [EIR Intersection #32]: Mitigation consisting of the addition of a third left-turn lane from eastbound Central to northbound De La Cruz has been implemented.

Finally, as required mitigation, the Airport operates a comprehensive Transportation System Management (TSM) Program that has the effect of reducing the number of peak-hour trips made in single-occupancy vehicles. Elements of the TSM Program include flexible work hours, bicycle parking, free transit passes to employees, and operation of a free shuttle bus to/from the Airport and the Santa Clara Caltrain and Metro/Airport Light Rail Stations. These elements have been, and continue to be, implemented by the Airport. In addition, all capital improvement projects at SJC, which will include the Project, implement traffic management plans during construction, which specify procedures to be followed for temporary lane or roadway closures.

4.4.1.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

Vehicles Trips to be Generated by the Project

As described above in Section 4.1, the Project could accommodate up to approximately eight aircraft. In turn, these aircraft would generate approximately six PM peak-hour trips per the trip generation rate of 0.69 per based aircraft in Table 5. This is a conservatively high number because the Institute of Transportation Engineers Trip Generation Manual (9th Edition) lists the average weekday PM peak-hour trip rate per based aircraft as 0.52, with the range of rates being 0.33 to 0.67.

To put six trips into context, projects that generate fewer than 100 peak-hour trips are not required by the Santa Clara County Congestion Management Program to prepare a traffic impact analysis because

that volume is deemed too low to cause potential traffic impacts.¹¹ The six PM peak-hour trips to be generated by the Project are well below this threshold.

To validate that there are no changed conditions that would imply that the vehicle traffic associated with the Project would cause general aviation traffic to exceed that accounted for in the EIR, such traffic was assessed in relation to current conditions at SJC. As shown in Table 6, if traffic associated with the Project is added to existing traffic, the total of 101 PM peak-hour trips would be well below the level of traffic analyzed in both the 1997 EIR and the 8th EIR Addendum.

TABLE 6						
Weekday Pm Peak-Hour General Aviation 7	Fraffic Volumes					
Scenario	# PM Peak-Hour Trips					
Existing (2017): 133 based aircraft @ 0.69 trips/based aircraft	92					
Project: 8 based aircraft @ 0.69 trips/based aircraft	6					
Existing + Project	98					
Analyzed in 1997 Master Plan EIR	222					
Analyzed in 8 th EIR Addendum for Amended Master Plan	145					

Project Access and Circulation

Access to the Project will be via a driveway located along Martin Avenue. Martin Avenue is a 2-lane roadway with on-street parking that serves commercial, industrial, and Airport-related land uses. It connects to Brokaw Road and Coleman Avenue on the south and De La Cruz Boulevard on the north, which are major arterials. De La Cruz Boulevard connects to U.S. 101 approximately 4,000 feet from its intersection with Martin Avenue, providing nearby freeway access to the Project site.

4.4.2 <u>Air Transportation</u>

4.4.2.1 Background

The projected level of air traffic at SJC is calculated from the aviation demand forecasts that are prepared in accordance with industry standards and FAA-approved methodologies. Once the demand for air passenger, air cargo, and general aviation services is calculated, the next step involves the determination of the types of aircraft, as well as the number of operations (i.e., takeoffs and landings) by such aircraft that will serve the demand. Determining aircraft types and the volume of aircraft operations is critical in airport planning because it allows airport operators to design and construct adequately-sized facilities to accommodate the demand. It is also important because it allows for operators to calculate and disclose the environmental effects (e.g., noise, air quality) of those aircraft operations.

¹¹ Transportation Impact Analysis Guidelines, Santa Clara Valley Transportation Authority, March 2009; City of San Jose Traffic Impact Analysis Handbook, Volume 1, Methods and requirements.

The volume of aircraft operations contained in the 1997 Master Plan EIR was based on the demand forecasts prepared in 1994, as summarized in Table 7. The data in Table 7 also show the change in aircraft operations resulting from two Master Plan amendments that occurred subsequent to the completion of the 1997 Master Plan EIR:

TABLE 7								
C	Comparison of SJC Master Plan Annual Aircraft Operations [Expressed as Total Annual Takeoffs & Landings]							
	Existing (2017)	1997 Master Plan, as Disclosed in 1997 EIR	Master Plan, as amended in 2003 for Atlantic Aviation Expansion Project*	Master Plan, as amended in 2010 to Reflect Updated Forecasts				
Air Passenger	119,574	243,100	186,400	183,660				
Air Cargo	1,606	13,300	13,100	6,830				
General Aviation	34,518	115,300	129,700	73,200				
Military	216	800	800	100				
Totals ¹	155,900	372,500	330,000	263,800				
% Change from Volume Disclosed in 1997 EIR	- 58%		- 11%	- 29%				

*As compared to the 1997 EIR, these numbers reflected changes in the projected fleet mix at SJC based on industry practices and trends. These numbers did not change in 2006 when the City amended the Master Plan to extend the Master Plan horizon year from 2010 to 2017. For a discussion of the downturn in the economy and changes to the aviation industry that led to this extension, see Section 3.1 of the 6th Addendum to the 1997 Master Plan EIR.

¹Totals rounded to the nearest 100.

Sources:

- Table 2.3.1 of the 1997 Master Plan EIR
- 2nd Addendum to 1997 Master Plan EIR
- 6th Addendum to 1997 Master Plan EIR
- 8th Addendum to 1997 Master Plan EIR
- Summary of Aviation Demand Forecasts (Ricondo & Associates, 2009)
- Annual Status Report on the Airport Master Plan for 2016

- A 2003 amendment to increase the number of based general aviation aircraft from 320 to 360 to accommodate an expansion of general aviation facilities by Atlantic Aviation. During that amendment, the demand forecasts were not changed, but an updated aircraft fleet mix was used to reflect the latest data on aircraft purchases and phase-outs and industry trends.
- A 2010 amendment to reflect updated forecasts prepared in 2009, which translated into a further decrease in the projected number of annual aircraft operations because of changes to the general aviation industry.

As shown in Table 7, total aircraft operations at SJC under the amended Master Plan are projected to be 29% lower than the levels disclosed in, and utilized throughout, the 1997 EIR.

Table 8 presents the data contained in Table 7 in terms of average daily operations by aircraft type. The purpose of Table 8 is to show how the Airport has tracked and analyzed the changes in the aircraft fleet mix since the 1990s and to compare those changes to that disclosed in the 1997 Master Plan EIR.

All of this information regarding the number and types of aircraft operations were input into the EIR's environmental analyses related to the effects of the operations, namely noise and air quality. See Sections 4.5 and 4.6 of this Addendum for discussions of air quality and noise, respectively.

4.4.2.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

As described in Section 4.1, the Project could accommodate approximately eight based aircraft. From Table 7, each based general aviation aircraft is projected to result in approximately 350 operations per year (i.e., 73,200 total annual general aviation operations \div 209 based aircraft = 350 annual operations per based aircraft). Applying this assumption to the number of annual general aviation operations shown in Table 7, the Project would result in 2,800 additional operations at SJC each year, which is equivalent to an average of eight operations each day. This volume equates to 0.8% of the aircraft operations assumed (and accounted for) in the 1997 Master Plan EIR and 1.1% of the aircraft operations projected in the amended Master Plan.

The calculated 2,800 annual Project-generated aircraft operations used in the analyses in this Addendum is conservative when compared to the estimated 20-30 annual operations anticipated by Signature. See Section 3, *Project Description*, for more information on Signature's estimate.

To validate that there are no changed conditions that would imply that the aircraft operations associated with the Project would cause general aviation operations to exceed that accounted for in the EIR, such operations were assessed in relation to current conditions at SJC. The actual number of general aviation operations in 2017 was 34,518. As shown in Table 9, if operations associated with the Project are added to existing operations, the total of 37,318 would be well below the level of operations analyzed in both the 1997 EIR and the 8th EIR Addendum.

TABLE 8							
Aircraft Operations at SJC by Aircraft Type							
Average Daily Aircraft Operations							
	1997	Master Plan, as					
	Master Plan,	amended in 2003 for	amended in 2010				
	as Disclosed	Atlantic Aviation	to Reflect Updated				
Aircraft Type	in 1997 EIR	Expansion Project ¹	Forecasts				
Business Corporate Jets	57.25	135.80	134.70				
Single Engine Piston	162.22	158.40	46.00				
Twin Engine Piston	34.99	30.30	6.10				
Twin Engine Turboprop	34.99	37.00	10.10				
Helicopter	28.63	10.00	4.10				
Airbus 318/319/320	12.05	40.00	94.30				
Airbus 300/310 (air cargo)	3.28	3.00	8.40				
Boeing 727-100/200	0.36	4.40	0				
Boeing 737-100/200	0	5.00	0				
Boeing 737-300/400/500/700/800/900	253.97	257.60	296.60				
Boeing 757	61.56	51.00	7.90				
Boeing 767	13.32	12.00	19.80				
Boeing 777 and 787	8.33	14.00	1.80				
DC-8/9	0.36	0.60	0				
DC-10/MD-11	9.93	2.00	2.10				
MD-80/81/82/83/87/88/90	130.50	81.00	2.00				
Regional Jets	30.12	56.00	83.30				
Regional Turboprops	178.69	6.00	5.30				
Air Cargo Turboprops	0	0	0.20				
Total Average Daily Operations	1,020.55	904.1	722.70				
Total Annual Operations ²	372,500	330,000	263,800				
% Change from Volume Disclosed in 1997 EIR -11% -29%							

¹As compared to the 1997 EIR, these numbers reflected changes in the projected fleet mix at SJC based on industry practices and trends. These numbers did not change in 2006 when the City amended the Master Plan to extend the Master Plan horizon year from 2010 to 2017. For a discussion of the downturn in the economy and changes to the aviation industry that led to this extension, see Section 3.1 of the 6th Addendum to the 1997 Master Plan EIR.

²Rounded to the nearest 100.

Sources:

- Appendix 3.5.A of the 1997 Master Plan EIR
- Summary of Aviation Demand Forecasts (Ricondo & Associates, 2009)

In addition, there are currently 133 based general aviation aircraft at SJC, and under the projected 350 annual operations per based aircraft, there would be $133 \times 350 = 46,550$ annual operations. Were the current 133 based aircraft to increase their operations to this projected level, and adding in the annual 2,800 operations from the Project, the total of 49,350 annual operations would still be below the total operations analyzed in the 1997 Master Plan EIR and the Eighth EIR Addendum.

TABLE 9	
Annual General Aviation Aircraft Operations	
Scenario	# of Annual Operations
Existing (2017)	34,518
Project	2,800
Existing + Project	37,318
Analyzed in 1997 Master Plan EIR	115,300
Analyzed in 8 th EIR Addendum for Amended Master Plan	73,200

Aircraft Types to be accommodated by the Project

As described in Section 3 of this Addendum, and consistent with the Airport Master Plan, the Project will focus on serving the business/corporate jet sector of the general aviation demand. Based on information provided to the City by Signature, the aircraft that are anticipated to be served by the Project will include many of the corporate general aviation aircraft types that are in widespread use in the United States. Examples include aircraft manufactured by Gulfstream, Cessna, Learjet, Bombardier, Dassault, Embraer, Hawker Beechcraft, Fairchild, Canadair, Piper, and Boeing. Aircraft sizes vary from small (e.g., four passengers) to large (e.g., Boeing 757 and 767).

The aircraft types that would be served by the Project currently operate at SJC, either as a based aircraft (i.e., the airplane's home is SJC) or as a transient aircraft (i.e., the plane flies into and out of SJC but is based elsewhere). This is also true for large aircraft such as the Boeing 717/727/737/747/757/767 and/or the Airbus 319/320/330, which are used by the passenger airlines, but some of which are configured as corporate planes. These larger corporate aircraft currently operate as transient general aviation aircraft at SJC, with servicing provided by existing FBOs at the Airport.

Most important, all of the aircraft types that would be served by the Project were accounted for in the EIR as shown in Table 8 and were evaluated in the various analyses (e.g., air quality and noise) undertaken for the Master Plan EIR, as supplemented and addended. This is discussed below in Section 4.5, *Air Quality*, and Section 4.6, *Noise*.

4.4.3 <u>Conclusion</u>

The Project will result in the construction of facilities in an area already identified for construction in the Master Plan and accompanying EIR. As discussed above, the Project will not result in 1) an

increase in activity levels at the Airport beyond that identified in the approved Master Plan, or 2) an increase in the capacity of the Airport beyond that identified in the approved Master Plan.

The Project will not result in any new significant transportation impacts and/or transportation impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant transportation impacts than were previously analyzed.

4.5 AIR QUALITY

4.5.1 <u>Background</u>

Section 3.4 of the 1997 Master Plan EIR quantified the emissions of air pollutants that would result from the implementation of the Master Plan. The analysis accounted for all aspects of activity at the Airport including aircraft operations, motor vehicle trips, the use of ground support equipment, fueling, building heating and cooling, and construction activities. For aircraft operations and motor vehicle trips, the quantification of emissions was based on the projected volumes of those activities, as described above in Section 4.4, *Transportation and Circulation*.

The 1997 EIR concluded that the implementation of the Master Plan would result in a significant increase in emissions of reactive organic gases (ROGs), oxides of nitrogen (NO_X) and particulate matter (PM₁₀). The EIR also concluded that concentration of NO_x due aircraft operations could exceed the State 1-hour standard in commercial areas north and south of the Airport (near the runways). As mitigation, the City adopted the following measures¹² to be used, as applicable, during the construction phase of all on-Airport capital improvement projects:

- Water all active construction areas at least twice daily;
- Cover all trucks hauling soil, sand, and other loose materials or require trucks to maintain at least two feet of freeboard;
- Pave, apply water three times daily, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas and staging areas at construction sites;
- Sweep daily all paved access roads, parking areas, and staging sites using wet power vacuum sweepers;
- Sweep streets daily, using wet power vacuum sweepers, if visible soil material is carried onto public streets;
- Hydroseed or apply soil stabilizers to inactive construction areas;
- Enclose, cover, water twice daily, or apply soil stabilizers to exposed stockpiles;
- Limit traffic speeds on unpaved roads to 15 mph;
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways;
- Replant vegetation in disturbed areas as quickly as possible;

¹² These measures are listed in Section 3.4.3.1 of the 1997 EIR.

- Suspend excavation and grading activities when wind gusts exceed 25 mph;
- Provide rideshare and transit incentives or construction personnel;
- Install wheel washers for trucks or wash off the tires of trucks and equipment leaving the construction site;
- Install wind breaks, where feasible, at windward side(s) of construction areas;
- Designate a person or persons to oversee the implementation of the dust control program;
- Maintain and operate equipment so as to minimize particulates from exhaust emissions; and
- Prohibit trucks and equipment to idle without purpose for long periods.

As listed in Section 3.4.3.1 of the EIR, the City also agreed, as mitigation for air quality impacts, to the following:

- Encourage operators of vans, shuttles, rental cars, and cargo trucks to convert their vehicles to alternative fuels (e.g., electric or compressed natural gas [CNG]);
- Adopt a TSM Program to reduce trips made by single-occupant vehicles;
- Construct new/modified stationary sources (i.e., buildings and fueling facilities) to comply with latest rules and regulations of the Bay Area Air Quality Management District (BAAQMD); and
- Support the use of single- or reduced-engine taxiing by air carriers.

All of the above-listed measures have been, and continue to be, implemented and will be implemented by the Project since the Project will be required to comply with all mitigation measures in the Master Plan EIR and Addenda. In addition, beyond the above measures that were required mitigation from the 1997 EIR, the City has implemented a substantial number of additional measures and programs that have significantly reduced Airport-related emissions. These additional emission reduction measures are listed in Table 10 and, where applicable, will be implemented by the Project as described below in Section 4.5.2.

4.5.1.1 Motor Vehicle Emissions at SJC: Amended Master Plan versus 1997 Master Plan

As shown in Table 5 in Section 4.4, based on updated forecasts prepared in 2009, the volume of motor vehicle trips from all Airport-related activities is now projected to be 5.6% lower than that disclosed in the 1997 EIR. Since such emissions are directly tied to the number of vehicle trips, it can be inferred that motor vehicle-related emissions will be proportionately lower than that shown in the 1997 EIR. In addition, other changes that have occurred since 1997, such as the conversion of the entire Airport Shuttle Bus System from diesel-powered to CNG-powered buses, has further reduced ground transportation emissions from that originally projected.

4.5.1.2 Aircraft Emissions at SJC: Amended Master Plan versus 1997 Master Plan

As shown in Table 7 in Section 4.4, based on updated forecasts prepared in 2009, the number of aircraft operations under the approved Master Plan is now projected to be 29% lower than that disclosed in the 1997 EIR. Specifically, there will be 108,710 fewer aircraft takeoffs and landings at SJC each year, as compared to the assumptions contained in the EIR. Since such emissions are directly tied to the number

	TABLE 10	
	& GHG Emissions Reduction Meas	
Measure	Description and Benefits	Status
Free Shuttle Bus connecting SJC with VTA LRT Station and Santa Clara Caltrain Station	Encourages transit use - buses running every 10-15 minutes from 5:30 a.m. to midnight daily	Commenced in 1998 and is ongoing
Free Bus/Rail Passes: allows unlimited use of VTA bus & light rail transit (LRT) systems	Encourages transit use by all 3,500+ employees at SJC, including City, airline, rental car company, passenger terminal concessionaire, and other Airport tenant employees.	Commenced in 1998 and is ongoing
Reduced/Single-Engine Taxiing by Aircraft	All airlines encouraged to perform single or reduced engine taxiing to the extent determined safe and efficient, thus lowering emissions.	Commenced in 1998 and is ongoing
Airport Operations & Maintenance Vehicle Fleet: purchase only alternate-fuel vehicles	The Airport's current service fleet includes 10 CNG-powered and 15 electric-powered vehicles, which avoids gasoline & diesel emissions	Commenced in 2000 and is ongoing
Second Air Carrier Runway: extend Runway 12L/30R from 4,400 feet to 11,000 feet	Reduces delays, idling, queuing.	Completed in 2001
Electric Vehicle Public Charging Stations	Provided in Terminal A Garage.	Completed in 2001
On-Airport CNG Fueling Station	Services CNG shuttle buses, commercial vehicles, and is open for public use.	Completed in 2003
Alternative Fuels Program: Requires at least 25% of all taxi/van trips to/from SJC to be by low- or zero- emission vehicles; program facilitated by SJC and VTA grants.	Currently, out of 300 taxis permitted at SJC, 119 are CNG- powered and 3 are hybrids.	Commenced in 2005 and is ongoing
Cell Phone Waiting Lot	Designated free parking area to discourage drivers picking up passengers from circling around the Airport	Completed in 2007
Replace all Airport Diesel Shuttle Buses with 34 New CNG Buses	Substantially reduces the Airport's total diesel and other pollutant emissions. ¹³	Completed in 2008
New Fuel Storage & Fuel Dispensing Facilities	Reduces emissions associated with fuel storage & handling equipment, as well as fuel truck movement on Airport roadways	Completed in 2009
Relocation/Consolidation of Rental Car Operations in new facility constructed adjacent to Terminal B.	Significantly reduces rental car vehicle movements and shuttle bus service to/from existing facility	Completed in 2010

¹³ According to the U.S. Department of Energy's Energy Efficiency & Renewable Energy website, CNG-powered buses produce significantly less CO₂ emissions than diesel-powered buses. See www.afdc.energy.gov.

TABLE 10 (continued)						
Measure	Description and Benefits	Status				
Photovoltaic System	1.12 megawatt photovoltaic solar electric system on roof of rental car garage. ¹⁴	Completed in 2010				
Upgrade on-Airport Roadways and Access: includes new I-880/Coleman interchange, new SR-87/Skyport interchange, Airport Blvd. improvements at Coleman, Skyport Dr., & Airport Pkwy entrances, and elimination of traffic signals	Substantially improve access, roadway capacity, and intersection levels of service	Completed in 2010				
Ground Power, Battery Recharge Facilities, and Preconditioned Air at all Terminal Gates	Promotes airline conversion of GSE to electric power & phase-out of diesel APUs/GPUs	Completed in 2010				
Construct New and Upgraded Terminal Buildings to achieve Leadership in Energy and Environmental Design (LEED) standards	Reduces emissions from building heating & cooling, hot water heating, etc.; lower electricity use will reduce offsite emissions	Completed in 2010 for Terminal B				
Recycled Water System	South Bay Water Recycling system extended to passenger terminal area with dual plumbing in new terminal.	Underway				
Commercial Vehicle Trip Fee: a fee is charged for each trip to the Airport	Reduces unnecessary vehicle trips	Ongoing				
Taxi Dispatch System: requires taxis to park in designated areas until dispatched	Reduces engine idling	Ongoing				
Public Transit Information: provided on Airport website and in Airport terminals	Encourages transit use	Ongoing				
Construction Project Pollutant Emissions Abatement Program	Requires measures be included in all construction plans/specs to minimize emissions from construction vehicles and equipment	Ongoing				
Lighting Replacement	Replace indoor & outdoor lights with energy-efficient bulbs & fixtures	Ongoing				
Automated People Mover: will connect SJC to nearby LRT, Caltrain and future BART Systems	Would encourage additional transit usage	Future. Project design and funding to be determined.				
CNG = compressed natural gas GSE = ground service equipment APU = auxiliary power unit	LRT = light rail transi GPU = ground power					

¹⁴ According to the project's fact sheet, the annual production of the system is projected to be 1.7 million kilowatt hours of electricity, which will avoid 1,284 tons of CO_2 annually.

			TABLE 1	1			
Criter	ia Pollutant 1	Emissions fro	m Projected (- General Aviat	ion Aircraft (Ineration	s
Chiun			in Average P			peration	13
	Aircraft Type						% Change
	Single- Engine Piston	Multi- Engine Piston	Turbo- props	Turbo- jets	Heli- copters	Total	from Volume Disclosed in 1997 EIR
1997 Master Plan, as disclosed in the 1997 EIR	[162.22 avg. daily operations]	[34.99 avg. daily operations]	[34.99 avg. daily operations]	[57.25 avg. daily operations]	[28.63 avg. daily operations]		
Carbon Monoxide	1,248	613	162	159	106	2,287	
Hydrocarbons	14	20	136	51	48	269	
Nitrogen Oxides (NO _x)	2	2	9	29	40	84	
Sulfur Oxides (SO _x)	1,150	664	2,281	4,445	5,940	14,480	
Master Plan, as amended in 2003 for Atlantic Aviation Expansion	[158.40 avg. daily operations]	[30.30 avg. daily operations]	[37.00 avg. daily operations]	[135.80 avg. daily operations]	[10.00 avg. daily operations]		
Carbon Monoxide	1,218	531	171	376	37	2,333	+ 2%
Hydrocarbons	13	17	144	121	17	312	+ 16%
Nitrogen Oxides (NO _x)	2	2	9	70	14	98	+ 17%
Sulfur Oxides (SO _x)	1,123	575	2,412	10,544	2,075	16,728	+16 %
Master Plan, as amended in 2010 to Reflect Updated Forecasts for Year 2027*	[46.00 avg. daily operations]	[6.10 avg. daily operations]	[10.10 avg. daily operations]	[134.70 avg. daily operations]	[4.10 avg. daily operations]		
Carbon Monoxide	354	107	47	373	15	896	- 61%
Hydrocarbons	4	4	39	120	7	173	- 35%
Nitrogen Oxides (NO _x)	1	0	3	69	6	79	- 6%
Sulfur Oxides (SO _x)	326	116	658	10,458	851	12,409	- 14%
Notaci							

Notes:

• Emissions calculated using aircraft emission factors per landing-takeoff (LTO) cycle, as contained in Appendix 3.4.A of the 1997 EIR, such factors published by the U.S. EPA.

• Numbers in [] are the average daily operations by each aircraft type under a given scenario.

• Daily emissions data are rounded to the nearest pound.

• Numbers may not total due to rounding.

* Emissions from the Project are accounted for in these data.

Sources:

- Appendix 3.5.A of the 1997 Master Plan EIR
- Summary of Aviation Demand Forecasts (Ricondo & Associates, 2009)

of aircraft operations, it can be inferred that aircraft-related emissions will be proportionately lower than that shown in the 1997 EIR, all other factors being equal.

The above paragraph notwithstanding, it is recognized that the current and projected composition of the general aviation fleet is different from that analyzed in the 1997 EIR. Specifically, there is a substantially higher percentage of larger corporate jets and a substantially lower percentage of small piston-powered aircraft than originally analyzed. Therefore, to verify the conclusion of the previous paragraph, the emissions from the updated general aviation aircraft fleet mix and level of operations were calculated and compared what was assumed in the 1997 EIR. The results of these calculations are shown in Table 11.

The data in Table 11 show that general aviation aircraft emissions will in fact be lower under the amended Master Plan, which accounts for the emissions from the Project, for all criteria pollutants, as compared to the emissions disclosed in Section 3.4 of the 1997 EIR.

Similarly, toxic air contaminant (TAC) emissions from the updated SJC aircraft fleet mix and level of operations were calculated and compared to what was assumed in the 1997 EIR. The results of this comparison are shown in Table 12. The data show that TAC emissions will be lower under the amended Master Plan, which accounts for the emissions from the Project, as compared to the TAC emissions disclosed in Section 3.4 of the 1997 EIR.

TABLE 12						
Toxic Air Contaminant Emissions from Projected Aircraft Operations [Expressed in Pounds per Year]						
Master Plan, as% Change from1997 Master Plan, As Disclosed inAmended in 2010 to Reflect UpdatedImpact DisclosedContaminant1997 EIRForecasts*1997 EIR						
Acetaldehyde	220	56	- 75 %			
Acrolein	0	0	0			
Benzene	2,290	1,719	- 25 %			
1, 3 Butadiene	0	0	0			
Chlorobenzene	0	0	0			
Formaldehyde	330	84	- 75 %			
РАН	0	0	0			
Propylene	998	254	- 75 %			
Toluene	1,312	334	- 75 %			
Xylenes	41,831	35,898	- 14 %			

* Emissions from the Project are accounted for in these data.

Sources:

- Appendix 3.5.A of the 1997 Master Plan EIR
- Summary of Aviation Demand Forecasts (Ricondo & Associates, 2009)

4.5.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

4.5.2.1 *Emissions during Construction*

The Project site is located on the westerly side of the Airport. Surrounding land uses are industrial and commercial. The closest residences are more than one-half mile from the site.

The construction phase of the Project will involve the clearing of the site, which will consist of the removal of the existing asphalt surface parking lot formerly used for employee and public parking. After the site is cleared and graded, construction of the improvements (i.e., building, parking, landscaping, aircraft apron, etc.) will commence. Similar to all construction projects, these activities will generate air pollutants in the form of dust, emissions from construction equipment, emissions from vehicles driven by construction workers, emissions from solvents, etc.

These emissions were disclosed and accounted for in the 1997 EIR. The Project site itself was assumed in the EIR to be developed for air cargo facilities, the construction of which would be the same as those proposed by the Project with respect to construction-generated emissions. As with the construction of all capital improvement projects at the Airport, the Project will implement all mitigation measures listed in the 1997 EIR that will reduce emissions, all of which are described above in Section 4.5.1.

4.5.2.2 *Emissions from Stationary Sources*

The Project is being designed to be certified as a "LEED Silver" facility. The Leadership in Energy and Environmental Design (LEED) Program was established by the U.S. Green Building Council to support the development of environmentally responsible and resource-efficient projects. Projects that received LEED certification are typically more energy-efficient and have fewer environmental effects (e.g., emissions) than those projects that simply meet the minimum standards of most building codes. LEED-related measures to be included in the Project will include the following:

- development density and community connectivity;
- public transportation access;
- bicycle storage and changing rooms;
- low-emitting and fuel efficient vehicles;
- water efficient landscaping; water use reduction;
- optimizing energy performance;
- green power;
- construction waste management;
- indoor environmental quality measures; and
- exemplary construction waste diversion and green power.

For example, a LEED-certified building will use a combination of building orientation, design, materials, and efficient heating/cooling systems to reduce energy costs. Low-flow plumbing fixtures will be installed, as will energy-efficient lighting fixtures and bulbs. Each energy-conserving feature

incorporated into the Project earns points under the LEED rating system, with the point system taking into account the degree to which a measure saves energy and/or implements specified environmental goals and objectives.

LEED certification was not assumed in the 1997 EIR. Therefore, emissions associated with the stationary sources to be constructed by the Project will be less than that disclosed and accounted for in the EIR.

4.5.2.3 *Emissions from Motor Vehicles*

As described above in Section 4.4, the Project will generate traffic trips in an amount less than considered in the 1997 EIR and Eighth EIR Addendum. The emissions associated with all Airport-generated traffic (both baseline and projected) were quantified and disclosed in the 1997 EIR. The 1997 EIR found that there would be no carbon monoxide "hot spot" caused by development of the Master Plan and the Project's traffic is less than analyzed in the 1997 EIR.

The Project will comply with the above-described TSM Program, a mitigation measure included in the EIR for the purpose of reducing trips (and therefore emissions). Further, all employees of the Project will be provided with free transit passes (known as VTA ECO Passes). In addition, the Project will be LEED Silver certified and will further reduce mobile emissions due to low-emission and fuel-efficient vehicles, including ground service equipment, to be used at the FBO.

4.5.2.4 Emissions from Aircraft

As described above in Section 4.4, the Project will result in additional aircraft operations in an amount equivalent to 0.8% of the operations assumed (and accounted for) in the 1997 Master Plan. The emissions associated with all aircraft emissions (both baseline and projected) were quantified and disclosed in the 1997 EIR. Further, although the general aviation aircraft fleet mix has evolved since the 1997 EIR to where there is now a substantially higher percentage of corporate jets versus piston aircraft, the data in Table 11 show that emissions of criteria air pollutants would still be within the total shown in the EIR. Similarly, the date in Table 12 show that TAC emissions from all aircraft operations at SJC would still be within the total shown in the EIR. Therefore, aircraft operations emissions from the Project will be consistent with the 1997 EIR.

To validate that there are no changed conditions, see Table 9, which shows that existing (calendar year 2016) general aviation operations, in combination with the additional operations that will result from the Project, will be less than half that assumed and analyzed in the 1997 EIR.

4.5.3 <u>Conclusion</u>

The Project will result in the construction of facilities in an area already identified for construction in the Master Plan and accompanying EIR. As discussed above, the Project will not result in 1) an increase in emissions levels at the Airport beyond that identified in the approved Master Plan, or 2) an increase in the capacity of the Airport beyond that identified in the approved Master Plan.

The Project will not result in any new significant air quality impacts and/or air quality impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant air quality impacts than were previously analyzed.

4.6 NOISE

4.6.1 <u>Background</u>

Section 3.5 of the 1997 EIR presented an extensive analysis of the noise impacts of the Master Plan, with a focus on the noise impacts to the community from aircraft operations. The noise analysis was based on the projected number of takeoffs and landings at build-out of the Master Plan (see list in Table 8 of this Addendum), which at the time was projected to occur by year 2010. The analysis was undertaken per FAA guidelines and methodology and included the use of FAA's Integrated Noise Model (INM). The analysis accounted for aircraft types, flight patterns, aircraft destinations, and time of day. Per FAA methodology, each aircraft operation occurring between 7 pm and 10 pm was counted as three operations, and each aircraft operation occurring between 10 pm and 7 am was counted as ten operations. This weighting accounts for the fact that noise occurring during evening and nighttime hours has a greater potential for disturbance than that occurring during daytime hours.

The 1997 EIR concluded that aircraft noise due to implementation of the Master Plan would result in significant noise impacts. Exterior noise impacts were determined to be unavoidable. Interior noise impacts were mitigated through the implementation of the Airport's Noise Control Program. The Noise Control Program includes:

- Airport Curfew: Restricts takeoffs and landings between 11:30 pm and 6:30 am to aircraft with FAA-certified composite noise levels of 89 decibels or less.¹⁵
- Acoustical Treatment Program: This program, which was completed in 2009, provided soundproofing to 2,675 residences and four schools in the Airport vicinity.
- Jet Aircraft Training: Jet aircraft training is prohibited at SJC.
- Engine Run-Ups: High power testing of jet engines (known as run-ups) during curfew hours is restricted.

¹⁵ Curfew originally restricted operations based on the weight of an aircraft, which assumed that the larger the aircraft, the more noise it produces. With current technology, the correlation between size and noise level is no longer accurate. Therefore, in 2003, with FAA approval, the City revised the curfew criteria from one that was weight-based to one that is noise-based. The 89.0-decibel level was chosen because it duplicated the weight-based criterion as closely as possible. Details are contained in the Third EIR Addendum (October 2003).

In 2003, the City completed a Supplemental EIR for the Master Plan because it was determined, based on data collected subsequent to 1997, that noise impacts would be substantially greater than that disclosed in the 1997 EIR. The 2003 Supplemental EIR reached the same conclusions and included the same mitigation as the 1997 EIR; the difference between the two documents was that the "noise footprint" of the Airport on the community was substantially larger in 2003 (see Table 13). A minor update to the 2003 Supplemental EIR noise analysis also took place in 2003 to account for a 6-acre expansion of general aviation facilities by Atlantic Aviation.

In 2010, the City amended the Master Plan to reflect the revised aviation forecasts, as summarized in Section 4.4 of this Addendum. Prior to approving the amendment the City prepared the Eighth EIR Addendum, which included a revised noise analysis. The noise analysis was updated because the revised forecasts revealed substantial changes in both the aircraft fleet mix and the projected number of operations by each aircraft type; these changes are shown in Table 7 of this Addendum. As shown in Table 13, the revised noise analysis in the Eighth EIR Addendum calculated a substantial decrease in the size of the Airport's noise footprint, as compared to that shown in the 2003 Supplemental EIR, as amended. This decrease was due to the combination of 1) fewer total operations and 2) the greater use of newer/quieter aircraft.

TABLE 13							
Comparison of Airport's Noise Footprint							
	[E	Expressed in Acres]					
	1997 Master Plan, as Disclosed in 1997 EIR	2003 Supplemental EIR, as amended for Atlantic Aviation Expansion Project	Master Plan, as amended in 2010 to Reflect Updated Forecasts	% Change from Impact Disclosed in 2003 Supplemental EIR, as amended			
Area within 65 dB Noise Contour	2,409	3,632	2,615	- 28%			
Area within 60 dB Noise Contour	5,653	9,422	6,428	- 32%			
 Section 2.2 of 2 Section 4.5 of 2 	2 nd Addendum to 1	an EIR Supplemental EIR .997 Master Plan EIF 997 Master Plan EIF					

• Section 4.5 of 8th Addendum to 1997 Master Plan EIR

In addition to aircraft noise, the 1997 Master Plan EIR evaluated noise impacts associated with the projected increase in motor vehicle traffic. The evaluation concluded that such impacts would not be significant because increase in traffic noise would not exceed 0.1 decibels. Therefore, no mitigation for traffic-generated noise was proposed or required.

The 1997 Master Plan EIR also evaluated the impacts of construction noise. The analysis concluded that construction noise would not be significant because of the distance between any location on the Airport and the closest residences would be a minimum of 800 feet.¹⁶ Therefore, no mitigation for construction-generated noise was proposed or required.

4.6.2 <u>Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended</u>

4.6.2.1 Noise during Construction

The Project site is located on the westerly side of the Airport. Surrounding land uses are industrial and commercial, as well as the airfield. The closest residences are more than one-half mile west of the site. In addition, there are numerous intervening buildings and other structures between the Project site and the closest residences, which would further reduce noise. Therefore, noise impacts during the construction phase of the Project would not be significant.

4.6.2.2 Noise from Stationary Sources and Ground Operations

The Project will generate noise associated with the taxiing, servicing, fueling, and maintenance of aircraft. Noise will also be emitted from equipment used to heat and cool the buildings and hangars. This noise would be compatible with the adjacent commercial and industrial uses, as well as the airfield itself. Such noise would have the potential to create impacts if there were nearby noise-sensitive land uses such as residences. As noted above, however, there are no such uses nearby; the closest residences are more than one-half mile to the west of the Project site, with numerous intervening buildings and structures.

It is also important to note that the Project site was originally designated in the Master Plan for air cargo facilities. The noise from air cargo facilities would be comparable to that associated with the Project because the air cargo operations would involve the taxiing, servicing, and fueling of large commercial jet aircraft, as well as the loading, unloading, and transport of cargo.

Therefore, noise from the Project's stationary sources and ground operations would not be significant and would be consistent with that disclosed in the 1997 EIR.

4.6.2.3 Noise from Motor Vehicles

As described above in Section 4.4, the Project will generate additional traffic in an amount the same as projected in the 1997 EIR. Since the 1997 EIR concluded that all Airport-generated traffic combined would not result in a significant noise increase, the Project's noise increase from traffic would result in an impact consistent with the prior environmental review.

¹⁶ The closest neighborhood is Rosemary Gardens, which is located on the far side of the Guadalupe River and the SR 87 freeway from the easterly boundary of the Airport.

4.6.2.4 Noise from Aircraft

As described above in Section 4.4, the Project will result in additional aircraft operations in an amount equivalent to 0.8% of the operations assumed and accounted for in the 1997 Master Plan EIR and 1.1% of the aircraft operations assumed and accounted for in the amended Master Plan/Eighth EIR Addendum. The noise impacts associated with all aircraft operations (both baseline and projected) were quantified and disclosed in the 2003 Supplemental EIR, as amended. Pursuant to FAA procedures for the analysis of noise at airports, all of the noise analyses in the Master Plan EIR, 2003 Supplemental EIR, and the EIR Addenda employ nighttime weighting factors.

With regard to aircraft types that would be based at, and serviced by, the facilities to be constructed by the Project, most will be business corporate jets, which is consistent with the Master Plan forecasts (see Section 2.2.1.5). Signature Flight Support, the Project applicant, has indicated that the aircraft that are anticipated to be served by the Project will include many of the corporate aircraft types that are in widespread use in the United States. Signature has designed the project include those manufactured by Gulfstream, Cessna, Learjet, Bombardier, Dassault, Embraer, Hawker Beechcraft, Fairchild, Canadair, Piper, and Boeing.

The aircraft types that would be served by the Project currently operate at SJC, either as a based aircraft (i.e., the airplane's home is SJC) or as a transient aircraft (i.e., the plane flies into and out of SJC but is based elsewhere). This is also true for large aircraft such as the Boeing 717/727/737/747/757/767/787 and/or the Airbus 319/320/330, which are used by the airlines, but some of which are configured as corporate planes. These larger corporate aircraft currently operate at SJC as general aviation aircraft, with servicing provided by existing FBOs at the Airport.

The fact that most of the aircraft associated with the Project would be corporate jets is consistent with the latest fleet mix forecasts for general aviation, which were reflected in the updated noise analysis contained in the Eighth EIR Addendum (2010). This greater percentage of corporate aircraft in the latest forecasts is reflected in the data in Tables 4 and 8, as well as in the latest numbers of based aircraft at SJC.

Most important, all of the aircraft types that would be served by the Project were accounted for in the noise analyses undertaken for the Master Plan EIR, as supplemented and addended.¹⁷

Aircraft Operations during the Curfew

The City adopted a Noise Control Program for SJC in 1984, a key component of which are time-ofday restrictions on certain aircraft operations, commonly referred to as the "curfew."¹⁸ The Project

¹⁷ Source: Brown-Buntin Associates letter to David Powers & Associates, October 15, 2013, a copy of which is contained in Appendix C of the Tenth Addendum.

¹⁸ For an extensive background discussion on the curfew, including a 2003 revision to the criteria under which certain aircraft are permitted to operate during the curfew, please see Section 3 of the Third Addendum to the Master Plan EIR (October 2003).

does not propose to modify the curfew. It is important to note, however, that some of the corporate jets that currently operate at SJC, which would also be served by the Project, are permitted to operate during SJC's curfew hours (11:30 pm to 6:30 am) because their FAA-certified composite noise level is 89 dB or less (see Section 4.5.1, above, for details).¹⁹ Such operations are accounted for in all of the noise analyses undertaken for the EIR, Supplemental EIR and EIR Addenda. Specifically, curfew operations are input to the noise model as a "night operation," wherein each operation is counted/weighted as 10 operations. Such weighting is in accordance with FAA procedures and accounts for the increased sensitivity of noise occurring during such time periods.

From Table 8, the data indicate that the average number of daily operations by corporate jets at SJC in 2027 is projected to be 134.7. Of this total, the projected breakdown by time-of-day is as follows:

- 80% daytime (7 am to 7 pm)
- 10% evening (7 pm to 10 pm) each operated counted/weighted as three operations
- 10% night (10 pm to 7 am) each operated counted/weighted as ten operations

As noted above, these assumptions were input into the noise analysis (Brown-Buntin Associates, 2010).

Consistent with existing requirements, all aircraft operators and pilots associated with the Project will be mandated to comply with the provisions of the Airport's curfew. The Project's lease does not include an eviction remedy for curfew violations and consequently other FBOs at the Airport will also no longer have an eviction remedy. The City has never used the eviction provision and instead have imposed a \$2,500 fine to successfully deter repeat non-compliance. The curfew remains a completely enforceable provision under the City's Municipal Code. The City will still enforce its curfew through fines as well as other litigation remedies which it has used in the past. The noise analysis assumed compliance with the noise ordinance and compliance is still assumed as the noise ordinance will contain the same restrictions and will be enforced. Therefore, the nighttime levels of noise caused by the Project are the same as previously analyzed.

To summarize, some aircraft that will likely be based at the Project's facilities, or will likely be served by the Project's facilities, may operate during the curfew because they meet the 89-decibel noise criterion. Such aircraft do so under existing conditions at SJC, but the frequency of such operations will likely increase under the Project by virtue of the fact that the Project is intended to serve more of the general aviation demand. These aircraft operations and the associated noise impacts are accounted for in the noise analyses undertaken in the 1997 EIR, 2003 Supplemental EIR, and various EIR Addenda.

¹⁹ The list of such aircraft is published on the Airport's website. The list is also available via publications and notices provided to all pilots and aircraft operators as part of standard flight planning procedures.

4.6.3 <u>Conclusion</u>

The Project will result in the construction of facilities in an area already identified for construction in the Master Plan and accompanying EIR. As discussed above, the Project will not result in 1) an increase in noise levels at the Airport beyond that identified in the approved Master Plan, or 2) an increase in the capacity of the Airport beyond that identified in the approved Master Plan.

The Project will not result in any new significant noise impacts and/or noise impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant noise impacts than were previously analyzed.

4.7 HYDROLOGY AND WATER QUALITY

4.7.1 <u>Background</u>

Section 3.6 of the 1997 Master Plan EIR disclosed that portions of the Airport were within a 100-year floodplain and, therefore, construction within such areas could result in flooding impacts until such time as a planned flood control project along the Guadalupe River was constructed. The flood control project was subsequently completed by the Santa Clara Valley Water District and U.S. Army Corps of Engineers.

The 1997 EIR also disclosed that the capital improvement projects to be constructed under the Master Plan, which included the temporary paved parking lot on the Project site, would increase the acreage of paved surfaces at SJC. The additional paved areas would result in an increase in the volume of stormwater runoff, which in turn could result in localized flooding. In addition, the increased stormwater runoff would likely contain pollutants that would degrade the water quality of the Guadalupe River since the City's storm drainage system discharges into the river. Mitigation was identified for these impacts, consisting of increasing the capacity of on-Airport stormwater storage areas (i.e., open areas between the runways and taxiways) and the continued implementation of the Airport's Stormwater Pollution Prevention Plan (SWPPP) in accordance with the City's National Pollution Discharge Elimination System (NPDES) permit issued by the Regional Water Quality Control Board (RWQCB).

The 1997 EIR noted that during the construction phase of capital improvement projects at the Airport, there was a potential for sediment and other pollutants to enter storm drains, which could degrade water quality. The EIR noted that projects would, however, be required by City's NPDES permit to utilize best management practices (BMPs) during construction. The BMPs would serve to minimize the potential for pollutants to enter storm drainage systems.

Subsequent to the completion of the 1997 EIR, the regulations pertaining to the control of both the volume and content of stormwater runoff have become substantially more stringent in an effort to

improve water quality in California streams and bodies of water. The latest NPDES permit issued by the RWQCB requires San Jose and other municipalities to reduce stormwater pollution through source control measures and stormwater treatment measures. City Policy 6-29 mandates compliance with the NPDES permit for all projects meeting certain criteria. Currently, projects that create or replace 10,000 square feet or more of impervious surface, which includes the Project, are required to use site design and source control measures and numerically-sized low impact development (LID) stormwater treatment measures.

To summarize, the current stormwater pollution control requirements constitute mitigation beyond that identified in the 1997 EIR, so the net effect is that stormwater runoff from new projects is now having less impact than projects that would have complied with the mitigation required in 1997. As described in the following section, the Project will implement the current (and more stringent) stormwater pollution control measures that are part of the latest NPDES permit.

4.7.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

The Project will construct general aviation facilities, including a hanger, an aircraft parking apron, and vehicle parking on a 3.72-acre site. The site is currently paved as a surface parking lot.²⁰ When the parking lot was constructed, the provisions of the NPDES permit in effect at the time were implemented. The Project will also relocate an existing service road adjacent to the site.

The Project site is not located within a 100-year floodplain.

During both the construction and operational phases, the Project will implement the Airport's SWPPP, which includes BMPs that are designed to prevent sediment and other pollutants from entering storm drainage systems. This is the water quality mitigation identified in the 1997 EIR, as summarized above in Section 4.7.1.

Table 14 compares existing and post-Project impervious and pervious surfaces on the Project site. The data in Table 14 show that the overall percentage of impervious surfaces on the site will decrease due to the Project.

Per the current NPDES requirements described above, and as described in the Project's Site Development Permit application, the Project will treat stormwater runoff as follows:

• The landside portion of the Project (i.e., the open public areas such as the parking lot, driveways, and pedestrian areas) will drain to bioswales located on the southern side of the proposed hangar and on the southern side of the proposed parking lot adjacent to Martin Avenue. The bioswales will connect to the Airport's existing underground storm drainage system. The bioswales will be sized and designed to provide treatment of the drainage from the entire landside portion of the Project.

²⁰ There is a narrow unpaved strip adjacent to the sidewalk along Martin Avenue, which equates to 9% of the Project site. The remainder of the site is paved.

TABLE 14							
Pervious and Impervious Surfaces on the Project Site							
Site Surface	Existing/Pre- Construction (sf)	%	Project/Post- Construction (sf)	%	Difference (sf)	%	
Impervious Surfaces							
Buildings	0	0	34,000	19.1	+ 34,000	+ 19.1	
Hardscape	159,078	89.3	102,730	57.7	- 56,348	- 31.6	
Subtotal	159,078	89.3	136,730	76.8	- 22,348	- 12.5	
Pervious Surfaces	Pervious Surfaces						
Landscaping or	19,087	10.7	41,435	23.2	+ 22,348	+ 12.5	
Other Pervious							
Totals:	178,165	100.0	178,165	100.0			
Notes:	•		-11		-11		

Percentages in this table are rounded to the nearest tenth.

The total area analyzed in this table includes areas outside of the 3.72-acre project site boundary where ground disturbing activities will occur, such as the proposed service road and the landscape strip adjacent to Martin Avenue.

• The airside portion of the Project (i.e., aircraft apron) will drain toward a bioswale located between the proposed apron and the proposed realigned service road. This bioswale will connect to the Airport's existing underground storm drainage system and will be sized and designed to provide treatment of the drainage from the entire airside portion of the Project.

To summarize, as described above, the Project will comply with current stormwater pollution treatment requirements. Such requirements are more stringent than the stormwater treatment mitigation measures contained in the 1997 Master Plan EIR. Therefore, the stormwater runoff impacts of the Project will be less than that described in the 1997 EIR.

4.7.3 <u>Conclusion</u>

The Project will result in the construction of facilities at a location already constructed as a parking lot under the Master Plan and accompanying EIR. The Project will not result in any new significant hydrologic or water quality impacts and/or hydrologic or water quality impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. In fact, current requirements pertaining to the treatment of stormwater that will be implemented by the Project will exceed the stormwater mitigation measures contained in the Master Plan EIR. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant hydrologic or water quality impacts than were previously analyzed.

4.8 GEOLOGY AND SEISMICITY

4.8.1 <u>Background</u>

Section 3.7 of the 1997 Master Plan EIR disclosed that 1) there are weak and/or expansive soils at SJC, and 2) the entire area is subject to strong groundshaking in the event of a major earthquake on one of the region's active faults. The EIR concluded that these conditions represent hazards that could lead to substantial property damage and/or harm to humans if buildings and other facilities (e.g., fuel storage) were not designed to account for these hazards. Mitigation listed in the EIR stated that all facilities will adhere to applicable building codes, consistent with standard engineering practice to achieve an acceptable level of risk. For fuel storage facilities, the mitigation states that their design will comply with the Above-Ground Petroleum Storage Act, National Fire Protection Association standards, the California Pipeline Safety Act, and other applicable statutes.

4.8.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

According to a geotechnical hazards map prepared for the City of San Jose, the Project site contains soils with "high" expansive properties (Cooper-Clark Associates, 1974). In addition, the Project site, similar to the entire region, will be subject to strong groundshaking in the event of a major earthquake on an active fault. Thus, the geologic and seismic conditions at the Project site are as described in the 1997 Master Plan EIR.

As required by the mitigation listed in the EIR, the building that will be constructed by the Project will comply with current building and seismic safety codes. Consistent with the 1997 EIR's findings, these mitigation measures will reduce the impact to less-than-significant.

4.8.3 <u>Conclusion</u>

The Project will result in the construction of facilities at a location already identified for construction in the Master Plan and accompanying EIR. The Project will not result in any new significant geologic or seismic impacts and/or geologic or seismic impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant geologic or seismic impacts than were previously analyzed.

4.9 BIOLOGICAL RESOURCES

4.9.1 <u>Background</u>

Section 3.8 of the 1997 EIR disclosed the impacts of the Master Plan on biological resources. The analysis found two key areas where significant impacts would occur:

- Impacts to the biological habitat along the Guadalupe River due to construction of a new bridge over the river and due to the proximity of a new fuel storage facility adjacent to the river.
- Impacts to the burrowing owl (a California species of special concern) and its habitat due to construction of capital improvement projects at the Airport.

With regard to the first area, the Guadalupe River is located on the opposite side of the Airport from the Project site and will not be affected by the Project. Therefore, the remainder of this discussion will focus on the burrowing owl as it is germane to the Project site.

Since the construction of the capital improvement projects identified in the Master Plan would result in the net loss of approximately 38 acres of potential owl nesting habitat at the Airport, the 1997 EIR concluded this impact would be significant. As mitigation identified in the EIR, the City developed and adopted a comprehensive Burrowing Owl Management Plan (BOMP), which avoids harm to individual owls by moving them out of construction impact zones and by keeping them out of runway safety areas. The BOMP includes areas set aside at the Airport for the owls to nest and forage, which are designated as burrowing owl management areas. The BOMP also includes measures for monitoring and the replacement of natural burrows with artificial burrows at the Airport.

All of the required actions listed in the BOMP have been implemented on an ongoing basis since 1997 under the direction of a qualified biologist. This includes preconstruction surveys, owl relocations, artificial burrow construction, habitat enhancement, banding, monitoring, and reporting. The Airport currently employs a full-time biologist to oversee the BOMP and to undertake other duties related to wildlife.

4.9.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

The Project will be constructed on a site that is almost entirely paved. The exception is a narrow unpaved strip along the westerly edge of the site, adjacent to the curb of Martin Avenue, that is devoid of trees and shrubs. Additionally, between the Project site and existing Taxiway V there is an unpaved area approximately 1.3 acres in size that could potentially be used by burrowing owls for shelter and nesting. A portion of this area (roughly 2,200 ft²) will be paved to accommodate a slight shifting of the alignment of the existing service road to the east. The portion to be paved will no longer function as potential burrowing owl habitat. This loss of habitat was anticipated and accounted for in the 1997 EIR because this site was originally planned for development with air cargo facilities.

Construction activities associated with the Project could harm individual owls if they are present within the impact area. Accordingly, the Project will implement the mitigation identified in the EIR to protect owls, as contained in the BOMP. Specifically, the areas to be disturbed will be surveyed by a biologist prior to the commencement of construction. Any natural burrows located within the construction impact zone will be identified and closed. One-way doors will be installed for at least 48 hours prior to the closing of any natural burrows so as to avoid trapping any owls. To avoid impacts during the nesting season, the burrows will be closed prior to February 15th of the year in which ground disturbance is scheduled to take place.

4.9.3 <u>Conclusion</u>

The Project will result in the construction of facilities at a location already identified for construction in the Master Plan and accompanying EIR. The Project will not result in any new significant biological resources impacts and/or biological resources impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant biological resources impacts than were previously analyzed.

4.10 ENERGY SUPPLY AND NATURAL RESOURCES

4.10.1 <u>Background</u>

Section 3.9 of the 1997 EIR evaluated the effects of the Master Plan with regard to energy consumption and the use of non-renewable resources. The analysis concluded that the use of energy and natural resources would not be "wasteful" and therefore the impact would not be significant. This conclusion took into account the fact that all new and renovated buildings at the Airport would comply with the energy efficiency standards contained in Title 24 of the *California Code of Regulations*. Based on this conclusion, no mitigation was identified.

4.10.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

The Project will construct a building consisting of a $30,000 \text{ ft}^2$ aircraft hangar and $4,000 \text{ ft}^2$ of office space. There will also be parking areas for both motor vehicles and aircraft, which will include nighttime lighting. These facilities will utilize energy in various forms for heating, cooling, lighting, equipment operation, aircraft servicing, etc. The facilities will comply with the energy efficiency standards of Title 24, consistent with the assumption used in the 1997 EIR.

In addition, the Project is being designed to be certified as a "LEED Silver" facility. The Leadership in Energy and Environmental Design (LEED) Program was established by the U.S. Green Building Council to support the development of environmentally responsible and resource-efficient projects. Projects that received LEED certification are typically more energy-efficient than those projects that simply meet the minimum standards contained in Title 24. Section 4.5.2.2 of this Addendum lists the LEED-related, energy-reducing, measures that are part of the Project.

LEED certification was not assumed in the 1997 EIR. Therefore, energy usage associated with the facilities to be constructed by the Project will be less than that disclosed and accounted for in the EIR As discussed in Section 4.4, *Transportation and Circulation*, the Project will not result in an increase in ground traffic and/or air traffic beyond that identified in the 1997 Master Plan EIR, nor will the Project increase the capacity of SJC beyond that identified in the 1997 EIR. Therefore, energy consumption associated with these activities will not exceed the levels disclosed in the 1997 EIR.

4.10.3 <u>Conclusion</u>

The Project will not result in any new significant energy impacts and/or energy impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant energy impacts than were previously analyzed.

4.11 AESTHETICS

4.11.1 <u>Background</u>

Section 3.10 of the 1997 EIR analyzed the visual and aesthetic impacts of the projects to be constructed as part of the Master Plan. The EIR assessed the effects of a variety of new structures including terminals, hangars, 8-story parking garages, jet blast fences at the ends of the runways, lighting, and an above-ground fuel storage facility. The purpose of the analysis was to determine if the masses and heights of these facilities would block scenic views, substantially alter the visual character of the area, and/or be incompatible with the surrounding land uses. This analysis took into account the fact that the land uses adjacent to SJC are commercial and industrial, as well as the presence of three major freeways (U.S. 101, SR 87, and I-880).

With regard to the Project site on the west side of the Airport, the 1997 EIR assumed it would be developed with new air cargo facilities. The air cargo facilities would have included buildings with heights of approximately 80-90 feet in order to service the wide-body jet aircraft commonly used by the Airport's all-cargo carriers (e.g., Fedex and UPS). These wide-body cargo aircraft include the Airbus A-300, the McDonnell-Douglas DC-10 and MD-11, and Boeing 767.

The analysis in the Master Plan EIR concluded that only the above-ground fuel storage facility, consisting of eight 500,000-gallon above-ground tanks, would result in a significant aesthetic effect. This conclusion was based on the fact that the tanks would be located next to (and easily visible from) U.S. 101, a designated scenic highway. Mitigation in the form of screening between the tanks and the freeway was identified.

4.11.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

The Project site is located on the west side of SJC and is currently an unused surface parking lot. The site is bordered by the airfield, the FAA air traffic control tower (height = 109 feet), four FAA communication towers (height = 90 feet), an existing FBO, and commercial uses. The closest residences are more than one-half mile from the site. The site is devoid of vegetation. The existing visual/aesthetic character is typical of a developed, urban environment. See Figure 3 (aerial photo) and Photos 1 and 2.

4.12.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

As discussed in Section 4.4, *Transportation and Circulation*, the Project will not result in an increase in aviation activity beyond that identified in the 1997 Master Plan EIR, nor will the Project increase the capacity of SJC beyond that identified in the 1997 EIR. Therefore, the demand for public services and utilities associated with these activities will not exceed the levels disclosed in the 1997 EIR.

The Project site is served by existing utility systems, including electric, natural gas, cable, phone, storm drain, and sanitary sewer. The existing systems are located along Martin Avenue and on the Airport. The on-site utilities to be constructed by the Project would connect to these existing systems. The Project would not require the extension or expansion of utility systems to serve the expanded FBO.

The Project proposes to demolish the existing parking lot and replace it with a FBO to serve general aviation aircraft. The FBO will include one 46-foot tall aircraft hangar. Elevations are shown on Figure 5.

The building to be constructed would be compatible with the adjacent commercial and aviation uses, which includes six hangars of the same height and size as well as one hangar 86 feet in height and $60,000 \text{ ft}^2$ in size. The building would be substantially lower than the adjacent FAA air traffic control tower (height = 109 feet) and the four adjacent communication towers (height = 90 feet). The proposed building is not adjacent to a designated scenic highway and there would be no substantial adverse effect on any scenic vistas. While the Project site would be transformed from a surface parking lot to a site with a building, the existing character of the area would remain as it is today, which is a developed, urban environment.

Finally, as noted above, the Project site was originally designated for air cargo facilities and was analyzed as such in the Master Plan EIR. The size and heights of the buildings that would have been constructed for air cargo aircraft (i.e., 80-90 feet) would be substantially taller than the proposed 46-foot tall building.

To summarize, the Project would not result in any significant visual/aesthetic impacts. In addition, the visual/aesthetic effects of the Project would be similar to those described in the 1997 EIR.

4.11.3 <u>Conclusion</u>

The Project will result in the construction of facilities at a location already identified for construction in the Master Plan and accompanying EIR. The Project will not result in any new significant aesthetic/visual impacts and/or aesthetic/visual impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant aesthetic/visual impacts than were previously analyzed.

4.12 PUBLIC SERVICES AND UTILITIES

4.12.1 <u>Background</u>

Section 3.11 of the 1997 EIR analyzed the effects of the Master Plan on the demand for public services (e.g., police and fire) and utilities (e.g., gas, electricity, water, wastewaster, etc.). The EIR concluded that while the capital improvement projects and increased aviation activity associated with the Master Plan would increase the demand for services and utilities, such demand would be accommodated by existing services and utility infrastructure. No mitigation was required.

4.12.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

As discussed in Section 4.4, *Transportation and Circulation*, the Project will not result in an increase in aviation activity beyond that identified in the 1997 Master Plan EIR, nor will the Project increase the capacity of SJC beyond that identified in the 1997 EIR. Therefore, the demand for public services and utilities associated with these activities will not exceed the levels disclosed in the 1997 EIR.

The Project site is served by existing utility systems, including electric, natural gas, cable, phone, storm drain, and sanitary sewer. The existing systems are located along Martin Avenue and on the Airport. The on-site utilities to be constructed by the Project would connect to these existing systems. The Project would not require the extension or expansion of utility systems to serve the expanded FBO.

Police, fire, and emergency services are provided to the Airport, including the Project site by the City of San Jose Police and Fire Departments. The San Jose Police Department includes an Airport Division, which is based on-site. Station 20 of the San Jose Fire Department, which is located on the east side of the Airport, is dedicated for Airport fire protection and other emergency services. Station 20 includes multiple aircraft rescue and firefighting vehicles, as required at air carrier airports per Part 139 of the Federal Aviation Regulations. The San Jose Police and Fire Departments serve the existing Signature FBO and they would also serve the expansion.

4.12.3 <u>Conclusion</u>

The Project will not result in any new significant utility/services impacts and/or utility/services impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant utility/services impacts than were previously analyzed.

4.13 HAZARDOUS MATERIALS

4.13.1 <u>Background</u>

Section 3.12 of the 1997 EIR assessed the impacts of the Master Plan with regard to hazardous materials. The analysis addressed the use, storage, and transport of hazardous materials, as well as potential environmental effects associated with sites known to be contaminated with hazardous materials. The EIR noted that there are a number of on-Airport locations where contamination had occurred as a result of fuels leaking from storage tanks. Per Tables 3.12.A.8 and 3.12.A.9 of Appendix 3.12.A of the EIR, all of these locations are on the east side of the Airport. None of these locations are on or immediately adjacent to the Project site.

The EIR concluded that hazardous materials impacts would be significant with regard to the following:

- An accidental release at the proposed fuel storage facility (8 tanks of 500,000 gallons each) adjacent to U.S. 101 and the Guadalupe River could expose the public to hazardous materials and could result in harm to the ecology of the Guadalupe River. Mitigation in the EIR consisted of a requirement to design, construct, and maintain the fuel storage facility in compliance with all applicable regulations, including on-site containment and a 100-foot setback from the River.
- Construction at sites with contaminated soils and/or work on buildings containing asbestos could expose construction workers to hazardous materials. Mitigation in the EIR requires the Airport to investigate potentially contaminated sites before construction and, based on the results of the investigation, to implement the appropriate measures identified to protect workers.

4.13.2 <u>Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended</u>

4.13.2.1 Impacts of Existing Conditions on the Project

As was the case for the existing Signature FBO, the proposed expansion site was historically used for farming until 1995. The site was converted to an interim surface parking lot while construction of new parking and passenger terminal facilities occurred on the east side of the Airport. According to the 1997 EIR, there were no above-ground or underground fuel storage tanks located on the site.

In 2012, given the historic use of the west side of the Airport for farming, a Phase I and Limited Phase II Environmental Site Assessment (ESA) were prepared for the original Signature FBO Project site, as required by the EIR, to determine if pesticides were likely to be any hazardous materials present or any conditions that would indicate potential contamination from such materials (URS, 2012). The ESA included a review of environmental records and databases, review of historic and current aerials, a surface reconnaissance, interviews with Airport staff, and soil/groundwater sampling and analysis. The findings of the ESA are as follows:

- None of the properties with contamination within one mile cross- or up-gradient of the Project site were identified as having the potential to impact the site. There were no identified open soil or groundwater contaminated facilities. Therefore, there are no off-site properties that represent a hazard or constraint for the Project.
- Pesticides were probably used at and in the vicinity of the original Signature FBO site, a conclusion that was subsequently verified by analysis of soil samples taken on-site. Specifically, the 2012 ESA determined that concentrations of chromium, dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyltrichloroethane (DDT), and other pesticides were present in the soil but at levels not considered hazardous.

Signature entered into the County of Santa Clara Department of Environmental Health's ("County") Voluntary Cleanup Program (VCP) in January 2015. The County approved a Soil Management Plan (SMP) in April 2015 and approved an As-Built Soil Reuse Report in February 2017. The County issued a No Further Action Letter in February 2017 and is evaluating the site for case closure.²¹

A soil characterization study was undertaken on the proposed expansion site in 2017 (Woodard & Curran, 2017). The study, which is attached as Appendix B, consisted of on-site soil sampling and the laboratory testing of those samples. The findings of the study are that various pesticides are present in the soil with some concentrations exceeding Environmental Screening Levels (ESLs) and Total Threshold Limit Concentration (TTLC) levels established by regulatory agencies. None of the pesticides in soil exceed the construction worker ESL. In one sample, the pesticide dieldrin is present at 0.18 mg/kg, which slightly exceeds the commercial ESL of 0.17 mg/kg. Arsenic was also present in one sample at a concentration of 21.5 mg/kg that exceeded the regional estimate of background concentrations in the San Francisco Bay Region of 11 mg/kg.

The Project will comply the mitigation measure listed in Section 3.12 of the EIR that requires preparation of a SMP that will be submitted to the County for approval to protect the health and safety of site construction workers, and occupants of the project. The SMP shall be in a form similar to the one approved by the County for the adjacent Signature FBO, and shall include procedures used to determine the handling, use, re-use, and disposal of impacted soil. The SMP shall also delineate soil that exceeds commercial screening levels that may be acceptable for re-use on-site if direct contact is limited through the use of barriers such as asphalt pavement or building foundations. Excess soil would be hauled for off-site disposal at a Class I, II, or III landfill, the selection of which would depend on the concentration of pesticides within the soil.²² The SMP will be used by the City and the Project's contractor to ensure that construction workers and future users/employees of the SMP is consistent with the mitigation measure listed in Section 3.12 of the EIR, which reduces impacts related to contaminated soil to a less-than-significant level.

4.13.2.2 Impacts of the Project

The Project, similar to the other FBOs, passenger airlines, and cargo carriers at SJC, will use hazardous materials in the course of normal operations. Such materials will consist of those typically associated with vehicle and equipment operation and servicing, including fuels, paints, solvents, oils and ethylene glycol (deicer). The use and storage of these materials at the Airport is regulated under a variety of

²¹ Source: <u>https://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T10000006435</u>

²² Class I landfills are landfill facilities that are authorized to accept hazardous waste. Class II landfills are landfill facilities that are not authorized to accept hazardous waste. Class III landfills are municipal landfills that are not authorized to accept hazardous waste.

federal, state, and local statutes, with inspections undertaken by the Santa Clara County Hazardous Materials Compliance Division and the City of San Jose Fire Department. The Project's use, storage, and disposal of these substances will comply with these regulations and, therefore, there would be no significant hazardous materials impact. The Project will be consistent with the mitigation identified in the 1997 EIR, which requires compliance with all applicable regulations, and those regulations have become more stringent since 1997.

4.13.3 <u>Conclusion</u>

The Project will not result in any new significant hazardous materials impacts and/or hazardous materials impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant hazardous materials impacts than were previously analyzed.

4.14 AIR SAFETY

4.14.1 <u>Background</u>

Section 3.13 of the 1997 EIR examined the air safety impacts of the Master Plan in terms of 1) airport design issues, and 2) the correlation between aviation activity levels and air safety. The EIR concluded that the implementation of the Master Plan would not result in an increase in air safety risks. This conclusion was based on the fact that all capital improvement projects – including taxiway and runway improvements – would comply with FAA design standards. The EIR noted that any waiver from a design standard would not be approved by FAA without a site-specific analysis that determines that the waiver would not compromise safety. The EIR also determined that there is no meaningful relationship between aviation activity and accident rates. No mitigation was identified or warranted.

4.14.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

The Project would construct a new hanger at an existing FBO facility for general aviation on the west side of SJC. As discussed in Section 4.2, *Land Use*:

- The project would be located on a site designated for general aviation in the approved Airport Master Plan and on the FAA-approved Airport Layout Plan.
- The FAA has determined that the proposed Project will not constitute a hazard to air navigation and would not interfere with the adjacent communication facility.

The increase in aircraft operations resulting from the Project would not increase air safety risks. This is based on the analysis in the Master Plan EIR that determined that there is no meaningful relationship between aviation activity and accident rates.

4.14.3 <u>Conclusion</u>

The Project will result in the construction of facilities at a location already identified for construction in the Master Plan and accompanying EIR. The Project will not result in any new significant air safety impacts and/or air safety impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant air safety impacts than were previously analyzed.

4.15 GREENHOUSE GASES

4.15.1 <u>Background</u>

A number of gases emitted from both natural sources and human activities are known to affect global climate, a phenomenon commonly referred to as the "greenhouse effect" or "global warming." Such gases, known as greenhouse gases (GHGs), include carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), and fluorinated gases. The burning of fossil fuels, including for transportation, is a major source of anthropogenic GHGs. At SJC, sources of GHG emissions include ground vehicles, aircraft, and energy used for airport buildings and facilities. For a detailed discussion of GHGs, including causes and effects, sources, regulations, etc., please see Section 4.1 of the Ninth Addendum to the Master Plan EIR (2011).

Although the issues associated with the effects of emissions of GHGs on climate change were known in the 1990s, there was no requirement to analyze such impacts under CEQA until 2010.²³ Therefore, at the time the 1997 Master Plan EIR was prepared, this topic was not included. The lack of discussion of greenhouse gas does not preclude use of an addendum for the Project. *Citizens for Responsible Equitable Environmental Development v. City of San Diego* (2011) 196 Cal.App.4th 515, 532 (upholding a local agency's determination that "new information" about GHG emissions did not require supplemental environmental review under Pub. Res. Code § 21166 because information regarding the effect of GHG emissions on climate was known long before the lead agency approved the EIR in 1994); see also *Concerned Dublin Citizens v. City of Dublin* (2013) 214 Cal. App.4th 1301, 1319-1320.

The above paragraph notwithstanding, to be conservative, the City prepared the Ninth Addendum to the Master Plan EIR in 2011 to determine if the buildout of the remaining unconstructed projects identified in the Master Plan would result in an adverse impact with regard to global climate change. The Ninth Addendum evaluated the GHG emissions that would occur at SJC if the remaining Master Plan projects were constructed and compared that to a "no project scenario" whereby no further projects would be constructed at SJC. With regard to general aviation activity levels, the analysis found that a lack of facilities to base a general aviation aircraft at SJC would not result in fewer or shorter flights because owners will choose to base their aircraft at alternate airports under one of the following scenarios:

²³ Section 15064.4 of the CEQA Guidelines now requires a Lead Agency to analyze the GHG emissions of projects. The Guidelines state that the Lead Agency has the discretion to determine, in the context of a particular project, whether to undertake a quantitative or qualitative analysis.

- If the aircraft is based at an airport within reasonable driving distance of the San Jose area, the number of aircraft flights would be the same as if the aircraft were based at SJC. It can also be assumed that flight durations would be approximately the same as if the aircraft were based at SJC since the alternate airport would not be far from SJC. There would, however, be increased automobile emissions associated with the greater driving distances between the San Jose area and the alternate airport. Thus, under this scenario, while GHG emissions at SJC itself would be lower, overall GHG emissions would be higher, or
- If the aircraft is based at an airport beyond a reasonable driving distance from the San Jose area, aircraft operations would double and aircraft emissions of GHGs would increase accordingly.

Therefore, for general aviation, the best-case scenario in terms of minimizing GHG emissions would be to accommodate the local demand at the closest local airport, namely SJC. This conclusion is consistent with many aspects of land use planning whereby it is preferable from energy conservation and emissions reduction perspectives to locate services in proximity to those land uses that generate the demand for such services. As an example, it is desirable to locate supermarkets and other retail stores in proximity to residential areas in order to achieve reductions in emissions, energy use, and travel times associated with driving between these land uses.

In summary, the Ninth Addendum analyzed whether development of SJC would cumulatively contribute to regional GHG emissions and found that regional GHG emissions would be less if SJC was developed consistent with the Master Plan as it would limit ferrying of aircraft in from other airports to pick up passengers and it would limit driving distances to other airports.

Although the Ninth Addendum concluded that the construction of the remaining Master Plan projects would not result in a significant effect related to global climate change, the Addendum noted that the Airport had already implemented, and continues to implement, numerous measures that have the effect of reducing GHG emissions. Such measures, which also reduce emissions of criteria air pollutants, are listed in Table 10 of this document. These measures are consistent with, and in furtherance of, plans, policies, and regulations adopted for the purpose of reducing GHG emissions.

4.15.2 Project Impacts in Relation to Master Plan EIR, as Supplemented & Addended

This 12th Addendum specifically analyzes the construction of an expanded FBO facility. As discussed above, the Project will construct an additional general aviation facility at SJC pursuant to the approved Airport Master Plan. The new facility will, in turn, result in additional aircraft operations in an amount equivalent to 0.8 % of the operations assumed (and accounted for) in the 1997 Master Plan (see Section 4.4, *Transportation & Circulation*, of this Addendum for details). The Project will not increase the capacity of SJC beyond that identified in the 1997 EIR. As such, the Project will not generate new GHG emissions beyond those analyzed and considered in the 1997 EIR and Ninth Addendum. This is confirmed in the discussion of traffic and air quality impacts which show that the Project's contribution to vehicular and aircraft emissions is less than analyzed in the prior environmental review, and therefore the Project's GHG emissions are likewise less than the emissions from the Airport that were previously analyzed.

Each of these aircraft operations will emit GHGs. However, for the reasons described above in Section 4.15.1, not building the Project, and therefore not accommodating the demand for general aviation services at SJC, will not avoid these emissions because the aircraft operations will still occur.

Specifically, the unmet demand at SJC will be met at other airports and the result will be higher overall GHG emissions, as compared to accommodating the demand at SJC.

4.15.3 <u>Conclusion</u>

The Project will not result in any new significant GHG impacts and/or GHG impacts that are substantially different from those described in the Master Plan EIR or subsequent environmental documents. No new mitigation is required. There is no new information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence. Finally, there are no changes to the circumstances under which the Project is undertaken that would result in more significant GHG impacts than were previously analyzed.

SECTION 5. CONCLUSION

The City has evaluated the environmental effects of the Project in this Addendum. Based upon the factual information contained in the above analyses, the City has reached the following conclusion:

Approval of the Project described in Section 3 will not have any significant environmental impacts not previously disclosed in the SJC Master Plan EIR, nor changes with respect to the circumstances under which the Project is undertaken, that would indicate that the Project's impacts will be any greater than those previously analyzed. No new mitigation is required. Therefore, no subsequent or supplemental EIR is warranted or required.

SECTION 6. REFERENCES

Brown-Buntin Associates, **Review of Corporate Aircraft Fleet Mix at Proposed Signature Flight Support FBO at San Jose International Airport**, October 2013.

Cooper-Clark Associates, Geotechnical Investigation for the City of San Jose, 1974.

Federal Aviation Administration, Airport Layout Plan for Norman Y. Mineta San Jose International Airport, June 2011.

Institute of Transportation Engineers, **Trip Generation Manual**, 9th Edition, 2012.

Jacobs Engineering, Safety Analysis of Proposed Signature Flight Support FBO Development Project at Norman Y. Mineta San Jose International Airport, October 2013.

Ricondo & Associates, **Summary of Aviation Demand Forecasts for Norman Y. Mineta San Jose International Airport**, July 31, 2009.

Ricondo & Associates, Cargo and General Aviation Facility Requirements for Norman Y. Mineta San Jose International Airport, October 8, 2009.

San Jose, City of, and TRA/Black & Veatch, **San Jose International Airport Master Plan Update Final Report**, December 1999.

San Jose, City of, San Jose International Airport Master Plan, July 2010 Update.

San Jose, City of, Final EIR for San Jose International Airport Master Plan Update, 1997.

San Jose, City of, Final Supplemental EIR for San Jose International Airport Master Plan Update, January 2003.

San Jose, City of, **Revised First EIR Addendum for San Jose International Airport Master Plan Update**, September 2001.

San Jose, City of, **Second EIR Addendum for San Jose International Airport Master Plan Update**, April 2003.

San Jose, City of, **Third EIR Addendum for San Jose International Airport Master Plan Update**, October 2003.

San Jose, City of, **Fourth EIR Addendum for San Jose International Airport Master Plan Update**, November 2004.

San Jose, City of, **Fifth EIR Addendum for San Jose International Airport Master Plan Update**, April 2005.

San Jose, City of, **Sixth EIR Addendum for San Jose International Airport Master Plan Update**, April 2006.

San Jose, City of, Seventh EIR Addendum for San Jose International Airport Master Plan Update, October 2006.

San Jose, City of, **Eighth EIR Addendum for San Jose International Airport Master Plan Update**, February 2010.

San Jose, City of, Ninth EIR Addendum for San Jose International Airport Master Plan Update, January 2011.

San Jose, City of, **Tenth EIR Addendum for San Jose International Airport Master Plan Update**, October 2013.

San Jose, City of, Eleventh EIR Addendum for San Jose International Airport Master Plan Update, April 2018.

San Jose, City of, **2016 Annual Status Report on the Airport Master Plan**, March 2017.

Santa Clara Valley Transportation Authority, **Transportation Impact Analysis Guidelines**, March 2009.

URS, Updated Phase I and Limited Phase II Environmental Site Assessment, Mineta San José International Airport – West Side Parking Lot, June 2012.

Woodard & Curran, Soil Characterization Results, Hangar A, San Jose International Airport, November 2017

SECTION 7. REPORT PREPARERS

ADDENDUM AUTHOR

City of San José, Department of Planning, Building & Code Enforcement

Rosalynn Hughey, Acting Director David Keyon, Senior Planner

City of San José, Airport Department

John Aitken, Director Judy Ross, Interim Assistant Director Cary Greene, Airport Planner Ryan Sheelen, Airport Planner

<u>CONSULTANTS</u>

David J. Powers & Associates, Inc.

Environmental Consultants & Planners San José, California

John Hesler, Senior Environmental Specialist Michael Lisenbee, Senior Project Manager Zachary Dill, Graphic Artist

Woodard & Curran, Inc.

Environmental Engineering & Remediation San Jose, California

Jedd Steinglass, Project Manager

APPENDIX A

No Hazard Determinations (Federal Aviation Administration)

January 30, 2018

TO: Mineta San Jose International Airport Attn: Mike Miramontes, Planning and Development Division 1701 Airport Blvd Suite B-1130 San Jose, CA 32801-2986 MMiramontes@SJC.org RE

CC: CITY OF SAN JOSE 200 E. SANTA CLARA STREET SAN JOSE, CA 95113 jaitken@sjc.org CC: American Infrastructure Development, Inc. Attn: Mohsen Mohammadi 3810 Northdale Blvd., Suite 170 Tampa, FL 33624 mohsen@aidinc.us

RE: (See attached Table 1 for referenced case(s)) **FINAL DETERMINATION**

ASN	Prior ASN	Location	Latitude (NAD83)	Longitude (NAD83)	AGL (Feet)	AMSL (Feet)
2017- AWP-3182-NRA	2016-AWP-586-NRA	SAN JOSE, CA	37-21-36.74N	121-56-01.22W	46	93
2017- AWP-3183-NRA	2016-AWP-586-NRA	SAN JOSE, CA	37-21-34.88N	121-55-59.18W	46	94
2017- AWP-3184-NRA	2016-AWP-586-NRA	SAN JOSE, CA	37-21-35.96N	121-56-02.34W	46	94
2017- AWP-3185-NRA	2016-AWP-586-NRA	SAN JOSE, CA	37-21-34.10N	121-56-00.30W	46	94
2017- AWP-3186-NRA	2016-AWP-586-NRA	SAN JOSE, CA	37-21-34.25N	121-56-00.97W	46	61
2017- AWP-3187-NRA	2016-AWP-586-NRA	SAN JOSE, CA	37-21-35.04N	121-56-01.83W	46	61

Description: Corners of Hangar A and Two Points on Lower Offices. Metal siding throughout building. Concerned about airspace, but particularly concerned about RTR antennas directly south of the proposed building.

We do not object with conditions to the construction described in this proposal provided:

You comply with the requirements set forth in FAA Advisory Circular 150/5370-2, "Operational Safety on Airports During Construction."

The proponent is required to coordinate all associated activities with the Airport Manager/Airport Traffic Control Tower (ATCT) 5 business days prior to the beginning of the project.

This determination is subject to review if disruption to FAA Operations should occur.

The new development must be coordinated with the airport sponsor and included in the next update to the Airport Layout Plan

A separate notice to the FAA is required for any construction equipment, such as temporary cranes, whose working limits would exceed the height and lateral dimensions of your proposal.

This determination does not constitute FAA approval or disapproval of the physical development involved in the proposal. It is a determination with respect to the safe and efficient use of navigable airspace by aircraft and with respect to the safety of persons and property on the ground.

In making this determination, the FAA has considered matters such as the effects the proposal would have on existing or planned traffic patterns of neighboring airports, the effects it would have on the existing airspace structure and projected programs of the FAA, the effects it would have on the safety of persons and property on the ground, and the effects that existing or proposed manmade objects (on file with the FAA), and known natural objects within the affected area would have on the airport proposal.

This determination expires on July 30, 2019 unless:

(a) extended, revised or terminated by the issuing office.

(b) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for the completion of construction, or the date the FCC denies the application.

NOTE: Request for extension of the effective period of this determination must be obtained at least 15 days prior to expiration date specified in this letter.

If you have any questions concerning this determination contact Lloyd E. Lewis (310) 725-3650 lloyd.e.lewis@faa.gov.

Lloyd E. Lewis DivUser

APPENDIX B

Soil Characterization Report (Woodard & Curran) 41 Hutchins Drive Portland, Maine 04102 www.woodardcurran.com

Via Electronic Mail

November 10, 2017

James Rutherford MVHS 95 LLC 405 El Camino Real, #109 Menlo Park, CA 94025

Re: Soil Characterization Results Hangar A, San Jose International Airport

Dear Jim:

Woodard & Curran has completed a soil sampling program to characterize material that may be encountered and/or generated as waste during a proposed construction project at Hangar A (the Site), which is located at the San Jose International Airport (SJC).

The following letter report summarizes the project background, soil sampling field program, laboratory analytical results, and our findings relative to those results.

Background

The Site is located in the western portion of SJC along Martin Avenue in the City of San José, Santa Clara County, California. The area of the leasehold where Hangar A is proposed is approximately 3.67 acres in size and is surrounded by SJC to the northwest, northeast, and southeast, and a mix of light industrial and commercial businesses to the south and west. The location of the Site is presented in **Figure 1**.

Consistent with the findings of a June 28, 2012, Updated Phase I Environmental Site Assessment (ESA) and Limited Phase II ESA prepared by URS for the adjacent Signature Flight Support leasehold, the area of the Site has a history of agricultural land use. As such, URS concluded that pesticides were probably used at and in the vicinity of the Site.

This conclusion was verified during a previous hangar construction effort at the adjacent Signature Flight Support leasehold. During this work, concentrations of chromium, dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyltrichloroethane (DDT), and other pesticides were found to be present in soil at this facility. Therefore, as the history of the Site is similar to the adjacent Signature Flight Support leasehold, similar environmental conditions may be reasonably expected.

The previous hangar construction effort at the Signature Flight Support leasehold employed a program of soil characterization, classification of soil into certain categories based on sample data, and specific management and handling requirements for each soil category. This approach was proposed to the Santa Clara County Voluntary Cleanup Program (VCP) and documented in Woodard & Curran's March 15, 2017, Soil Management Plan (Revision 1).

As the currently proposed construction project at the Site is similar in nature to the previous work at the Signature Flight Support leasehold, a soil sampling plan that followed the general rationale and methodology used during the previous project was developed by Woodard & Curran. This sampling approach was documented in a September 14, 2017, Proposed Soil Investigation Plan: Hangar A, Signature Flight Support FBO Leasehold (Revision 1), which was reviewed and approved by Scott Riddle

of SJC. The intent of the sampling effort described in the Proposed Soil Investigation Plan was to assist in planning for the proposed construction effort at the Site, and to inform an appropriate soil management approach that will be developed and then implemented during construction. The following section describes the completed sampling program.

Soil Characterization Activities

Prior to the initiation of the field investigation, Woodard & Curran prepared a site-specific health and safety plan, obtained an underground utility clearance ticket from Underground Service Alert (USA), and coordinated private utility clearance at each proposed sample location by Subdynamic Locating of San Jose, CA.

Woodard & Curran then contracted Gregg Drilling & Testing, Inc. to install the soil sampling points on October 11, 2017. Weather conditions on this day included partly sunny skies and temperatures in the 60s Fahrenheit. Soil sampling activities were documented on-Site by George Valenzuela of Woodard & Curran.

Following the removal of overlaying asphalt, Gregg Drilling & Testing, Inc. utilized manual methods (i.e., hand augers) to collect the required soil samples. Sampling equipment was decontaminated in between each boring and each sample interval using Alconox and deionized water.

Soil sample locations were distributed throughout the proposed area of construction, breaking the Site into four distinct areas to be evaluated during the characterization effort. One soil boring was completed in each area and identified as WCB-1, WCB-2, WCB-3, and WCB-4. Each soil boring within these areas was then broken down into three depth intervals to support the appropriate segregation and management of soil during construction. Soil sample locations are referenced on **Figure 2**.

Considering the environmental history of the area of the Site, the rationale for the selection of sample depth intervals is summarized below:

- 0 to 6 inches below grade surface (bgs) surficial: accessible soil that may have been impacted by pesticide application or other surficial releases. Asphalt pavement and base materials were excluded when possible from the collected surficial sample;
- 12 to 18 inches bgs shallow: potentially accessible soil and possible fill materials; and
- 30 to 36 inches bgs subsurface: soil that is likely native material and/or near the maximum extent of excavation.

Consistent with previous environmental sample data and considering the depositional history of contaminants of concern at the Site, discrete samples from each boring and interval were analyzed for pesticides, and composite samples representing each boring were analyzed for typical soil disposal parameters including:

- Volatile Organic Compounds (VOCs) by EPA Method 8260;
- Total Petroleum Hydrocarbons as Diesel (TPH-DRO) by EPA Method 8015;
- Polychlorinated Biphenyls (PCBs) by EPA Method 8082;
- CA Title 22 (CAM-17) Metals by EPA Method 6010B/7471A; and

• Polynuclear Aromatic Hydrocarbons (PAH) by EPA Method 8270C.

Composite samples were simply identified by boring number (WCB-1 through WCB-4) and discrete samples were identified by boring number and sample interval in inches bgs (e.g., WCB-1 (0-6)). The collected samples were stored on ice and then transported by Woodard & Curran to Test America, an independent CA-certified analytical laboratory located in Pleasantville, CA for analysis.

Following the completion of each boring, the sample location was backfilled with a combination of cuttings and bentonite chips. The surface of each location was then restored with asphalt patch to match existing conditions.

Summary of Site Conditions

The laboratory analytical results of samples collected during Site Characterization activities indicate that soil at the Site contains detectible concentrations of TPH, pesticides, and metals. In addition, concentrations of PCBs were identified at sample locations WCB-1 and WCB-2; however, the results were below the laboratory reporting limit and these results are therefore qualified as estimated. Finally, the VOC analytes acetone and/or methylene chloride were identified at each boring location, though these compounds are common laboratory contaminants and are unlikely to be representative of Site conditions.

In general, higher pesticide concentrations were detected in soil sample points WCB-3 and WCB-4. This distribution correlates with historical agricultural activities where additional pesticides may have been applied in the area of the former crop fields, with less intense applications near Martin Avenue. Metals concentrations were generally evenly distributed both aerially and throughout the sample depth intervals. As such, most detected metals, and in particular arsenic, are likely related to background or naturally occurring conditions and not Site activities or releases. However, the concentrations of arsenic, nickel, and cobalt at sample point WCB-4 were higher than the concentrations quantified at the other boring locations. In addition, the arsenic concentration at WCB-4 was above the regional estimate of background arsenic concentrations in the San Francisco Bay Region of 11 mg/kg. Therefore, it is possible that the metals concentrations at WCB-4 are related to historical Site activities, or may be the result of elevated but otherwise naturally occurring geologic conditions.

Data tables that summarize the detected analyte concentrations and reference them relative to the several different environmental screening levels and waste classification limits are included with this letter report at **Attachment A**. The screening levels selected for comparison and the rationale behind their selection are presented below.

Please note that soil characterized by arsenic concentrations that were below the regional estimate of background concentrations in the San Francisco Bay Region of 11 mg/kg was assumed to be consistent with natural conditions. Therefore, concentrations of arsenic that did not exceed 11 mg/kg were not considered further with respect to human health risk or soil management options. In addition, though some laboratory reporting limits were above the action levels presented in Tables 1 through 4, analytes that could not be practically quantified using the available laboratory analytical methods were considered to be non-detect and below the applicable action levels.

Attachment A, Table 1: San Francisco Bay Regional Water Quality Control Board February 2016 Tier 1 Default Environmental Screening Levels (ESLs). Soil results that indicate analyte concentrations below these values would likely be unrestricted for onsite or off-site reuse. Attachment A, Table 2:

- San Francisco Bay Regional Water Quality Control Board February 2016 ESLs Table S-1: Soil Direct Exposure Human Health Screening Levels for the Commercial/Industrial Land Use Scenario. Soil results that indicate analyte concentrations below these values would likely be acceptable for on-site reuse or off-site disposal at a Class I, II, or III landfill¹. Soil that is represented by results that exceed these levels may still be acceptable for reuse on-site if direct contact is limited through the use of barriers such as asphalt pavement or building foundations, or would likely be acceptable for off-site disposal at a Class I, II, or III landfill.
- Attachment A, Table 3: Current California Code of Regulations Total Threshold Limit Concentration (TTLC) levels. Soil that is represented by results that exceed these levels may by acceptable for reuse on-site if direct contact is limited through the use of barriers such as asphalt pavement or building foundations, or would likely be acceptable for off-site disposal at a Class I landfill.
- Attachment A, Table 4: San Francisco Bay Regional Water Quality Control Board February 2016 ESLs Table S-1: Soil Direct Exposure Human Health Screening Levels for the Construction Worker Scenario. Results are presented for worker training and risk communication considerations during construction.

Please note that the assumptions relative to likely reuse and disposal scenarios will need to be verified once the final development design is complete and a Soil Management Plan (SMP) is developed. Additional verification of the soil management approach may also be gained through participation in the VCP as discussed in the Recommendations section of this report.

A copy of the complete laboratory analytical results is included as Attachment B.

Findinas

Based on the results of the Site Characterization and comparison to the screening levels and thresholds described above, a summary of pertinent Site conditions that may be reasonably anticipated during future construction and redevelopment activities, as well as during the future use of the Site, is presented below.

- Though development plans are not finalized, it is anticipated that approximately 3,000 cubic yards of excess soil may be generated during construction. Based on known concentrations of pesticides and/or metals, this material will require proper management during construction. Pending final grading and development design, it is likely that some or all of this material will be acceptable for reuse on-Site or at the SJC property, or (pending soil volume constraints relative to the final design) will require off-site transport for reuse or disposal at an appropriate receiving facility. Appropriate management and reuse/disposal options for this excess material may be identified in a SMP.
- The pesticide dieldrin and arsenic were quantified at concentrations that exceeded the ESLs for the Commercial/Industrial exposure scenario in certain samples. Therefore, if soil represented

¹ Class I landfills are landfill facilities that are authorized to accept hazardous waste. Class II landfills are landfill facilities that are not authorized to accept hazardous waste. Class III landfills are municipal landfills that are not authorized to accept hazardous waste. In general, the unit cost for disposal is highest at Class I landfills and lowest at Class III landfills.

by these samples is to be reused on-Site, it is likely that measures to reduce the potential for direct contact, such as burial below asphalt pavement, would be warranted to manage future human health risk and regulatory liability. Appropriate management, reuse, and disposal options for soil that exceeds the ESLs for the Commercial/Industrial exposure scenario may be identified in a SMP.

- Concentrations of the pesticides DDE and/or endrin detected in two soil samples exceed the current California Code of Regulations TTLC levels. As a result, applicable soil that is generated as excess material (i.e., waste) would be classified as a State-regulated non-resource compensation and recovery act (RCRA) hazardous waste if removed from the Site or SJC property, and would require disposal at a Class I landfill. Appropriate management, reuse, and disposal options for soil that exceeds the TTLC levels may be identified in a SMP.
- Concentrations of arsenic, nickel, and cobalt in soil at the Site exceed the San Francisco Bay Regional Water Quality Control Board February 2016 ESLs Table S-1: Soil Direct Exposure Human Health Screening Levels for the Construction Worker exposure scenario. Therefore, potential direct contact human health risk may exist for workers during construction. It is likely that these conditions may be addressed in the training and hazard communications sections of a SMP that may be prepared for the Site.

Though the appropriate soil management and reuse/disposal options will be evaluated as part of the next phase of work at the Site (i.e., the development of a SMP), the following preliminary summary of likely reuse and disposal options, and volume ratios are presented to assist with project planning. Volume ratios are based on the volume of soil represented by each soil boring and each depth interval as a percentage of the total soil volume that may be disturbed during redevelopment. The total volume disturbed assumes an excavation depth of 4 feet bgs throughout the leasehold.

Please note that these details are preliminary and must be re-evaluated following final design and the development of the SMP.

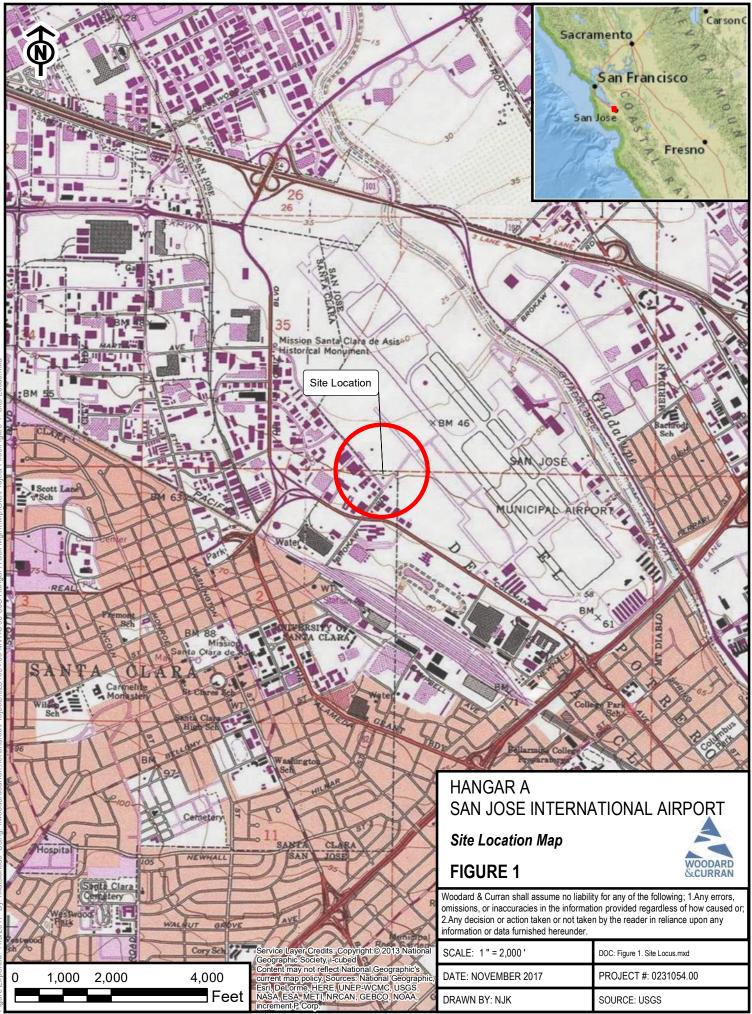
Likely Soil Reuse or Disposal Option	Approximate Expected Percentage of Total Volume
Unrestricted (may be used on or off-site under any scenario)	10%
Reuse on-site or disposal at a Class I, II, or III landfill	60%
Reuse on-site under barrier or disposal at a Class I, II, or III landfill	15%
Reuse onsite under barrier or disposal at a Class I landfill only	15%

Recommendations

Consistent with the findings of this Soil Characterization, Woodard & Curran recommends that a SMP be developed to assist and facilitate the proper handling, storage, transport, reuse, and/or off-site disposal of excess soil generated during construction. Once finalized, the SMP may be included in contract documents and may also be used to support participation in the VCP. Participation in the VCP is at the discretion of MVHS 95 LLC. Though the methodology used in this Soil Characterization and the approaches that may be developed in the SMP have been applicable to projects in the past, there may

be value in participation in the VCP to manage environmental liability associated with the development of the Site.

If there are any questions concerning the findings or recommendations presented in this letter report, please contact the undersigned at 207-558-3737 or at <u>isteinglass@woodardcurran.com</u>.


Sincerely,

WOODARD & CURRAN

Jedd Steinglass, LSP Project Manager

Enclosure(s) Figure 1 – Site Location Map Figure 2 – Soil Sample Locations Attachment A – Data Summary Tables Attachment B – Laboratory Data Report

PN: 231054.00

-	SCALE: 1 " = 100 '	DOC: Figure 1 Sample Locations.mxd
100	DATE: NOVEMBER 2017	PROJECT #: 0231054.00
1	DRAWN BY: NJK	SOURCE: NAIP

Table 1 - Tier 1 Default ESL Data Summary San Jose International Airport Hangar A

Organization and an and the life is the	Devine Identification		WOD 4										14/00 2				
Concentrations are presented for detected	Boring Identification	WCB-1	WCB-1	WCB-1	WCB-1	WCB-2	WCB-2	WCB-2	WCB-2	WCB-3	WCB-3	WCB-3	WCB-3	WCB-4	WCB-4	WCB-4	WCB-4
analytes only in mg/kg.	Depth Interval (inches bgs)	Composite (0-36)	0-6	12-18		Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36
	Sample Date	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017
Analysis and Detected Analyte	Tier 1 ESL ¹																
Volatile Organic Compounds																	
Acetone	0.50	ND (<0.047)	NA	NA	NA	0.16	NA		NA			NA	NA	()	NA	NA	NA
Methylene chloride	0.08	0.0039	NA	NA	NA	0.0086	NA	NA	NA	0.011	NA	NA	NA	0.0055	NA	NA	NA
Pesticides																	
Aldrin	0.04	NA	ND (<0.0024)	ND (<0.003)	ND (<0.0027)	NA	(0.0039	0.0042			ND (<0.014)	ND (<0.028)		ND (<0.013)	ND (<0.012)	ND (<0.0026)
Chlordane (alpha)	0.48	NA	0.0018	0.014	0.0055	NA	ND (<0.0053)	0.034	0.0062		0.0047	0.03	0.15		0.029	0.032	0.0015
Chlordane (gamma)	0.48	NA	0.0023	0.016	0.004	NA	ND (<0.0053)	0.048	0.012		0.0059	0.038	0.11		0.026	0.037	ND (<0.0026)
Chlordane (technical)	0.48	NA	0.041	0.14	0.035	NA	ND (<0.11)	0.16	0.051		0.085	0.22	0.61	NA	0.17	0.22	0.021
Dichlorodiphenyldichloroethane (DDD)	2.67	NA	ND (<0.0024)	0.11	0.047	NA	ND (<0.0053)	0.29	0.17		0.025	0.1	0.49		0.053	0.1	0.0035
Dichlorodiphenyldichloroethene (DDE)	1.89	NA	ND (<0.0024)	0.39	0.12	NA	0.0046		0.031		0.09	0.19	2.6		0.57	1.1	0.037
Dichlorodiphenyltrichloroethane (DDT)	1.89	NA	ND (<0.0024)	0.02	0.0015	NA	ND (<0.0053)	0.012	0.27	NA	ND (<0.012)	ND (<0.014)	0.09	NA	0.24	0.35	0.0031
Dieldrin	0.00017	NA	ND (<0.0024)	0.023	0.012	NA	ND (<0.0053)	0.15	0.022	NA	0.0037	0.022	0.18	NA	0.038	0.067	0.0024
Endrin	0.00065	NA	ND (<0.0024)	0.015	0.0023	NA	ND (<0.0053)	0.0061	ND (<0.0029)	NA	ND (<0.012)	ND (<0.014)	0.042	NA	0.093	0.22	0.0022
Endrin ketone	No Standard	NA	ND (<0.0024)	ND (<0.003)	ND (<0.0027)	NA	ND (<0.0053)	ND (<0.0025)	ND (<0.0029)	NA	ND (<0.012)	ND (<0.014)	ND (<0.028)	NA	ND (<0.13)	0.0054	ND (<0.0026)
Toxaphene	0.00042	NA	ND (<0.047)	ND (<0.059)	ND (<0.054)	NA	ND (<0.11)	ND (<0.049)	ND (<0.059)	NA	ND (<0.23)	0.55	0.75	NA	0.35	1.5	0.0092
CAM 17 Metals			, ,	, ,	, , , , , , , , , , , , , , , , , , ,				· · · · · ·								
Antimony	31.29	1.8	NA	NA	NA	2.1	NA	NA	NA	0.61	NA	NA	NA	1.1	NA	NA	NA
Arsenic	0.07	3.4	NA	NA	NA	5.3	NA	NA	NA	4.8	NA	NA	NA	21.5	NA	NA	NA
Barium	3019.10	242	NA	NA	NA	277	NA	NA	NA	365	NA	NA	NA	1090	NA	NA	NA
Beryllium	41.56	0.22	NA	NA	NA	0.15	NA	NA	NA	0.42	NA	NA	NA	1.1	NA	NA	NA
Cadmium (soil)	39.00	0.15	NA	NA	NA	0.26	NA	NA	NA	0.25	NA	NA	NA	ND (<0.56)	NA	NA	NA
Chromium III*	117321.43	59.5	NA	NA	NA	85.9	NA	NA	NA	51.2	NA	NA	NA	80.5	NA	NA	NA
Cobalt	23.40	10.4	NA	NA	NA	11.5	NA	NA	NA	8.6	NA	NA	NA	29.1	NA	NA	NA
Copper	3128.57	41.2	NA	NA	NA	49.6	NA	NA	NA	37.9	NA	NA	NA	31.4	NA	NA	NA
Lead	80.00	12.3	NA	NA	NA	30.2	NA	NA	NA	18.3	NA	NA	NA	12.2	NA	NA	NA
Mercury (elemental)	12.51	0.065	NA	NA	NA	0.18	NA	NA	NA	0.074	NA	NA	NA	0.12	NA	NA	NA
Molybdenum	391.07	0.39	NA	NA	NA	1.1	NA	NA	NA	0.71	NA	NA	NA	8.2	NA	NA	NA
Nickel	86.34	54.2	NA	NA	NA	105	NA	NA	NA		NA	NA	NA		NA	NA	NA
Silver	391.07	ND (<1.2)	NA	NA	NA	ND (<0.77)	NA	NA	NA		NA	NA	NA	0.27	NA	NA	NA
Thallium	0.78	0.77	NA	NA	NA	0.61	NA	NA	NA		NA	NA	NA		NA	NA	NA
Vanadium	393.11	53.7	NA	NA	NA	56.4	NA	NA	NA		NA	NA	NA	· · · · · · · · · · · · · · · · · · ·	NA	NA	NA
Zinc	23464.29	55.6	NA	NA	NA	89.7	NA	NA	NA		NA	NA	NA		NA	NA	NA
PCBs																	
Polychlorinated biphenyls (PCBs)	0.25	0.04	NA	NA	NA	0.051	NA	NA	NA	ND (<0.056)	NA	NA	NA	ND (<0.067)	NA	NA	NA
TPH		0.01				0.001											
TPH diesel	225.67	22	NA	NA	NA	120	NA	NA	NA	170	NA	NA	NA	65	NA	NA	NA
			10.1			120			101	110	1.0.1	101	101		10.1		

NA = Not Analyzed

ND = Not Detected above laboratory reporting limit, which is presented in parenthesis

* Total reported chromium values assumed to be tivalent chromium based on representative speciation data from adjacent property

1. Based on February 2016 San Francisco Bay Regional Water Quality Control Board Tier 1 Environmental Screening Levels (ESLs). Exposure scenarios used for Tier 1 (default) include:

Land Use: Residential Depth of Contaminated Soil: Shallow Groundwater Use: Drinking Water Resource Drinking Water: MCL Priority Soil Type: Sand

Exceeds ESL

Table 1 - Tier 1 Default ESL Data Summary San Jose International Airport Hangar A

Concentrations are presented for detected	Boring Identification	WCB-1	WCB-1	WCB-1	WCB-1	WCB-2	WCB-2	WCB-2	WCB-2	WCB-3	WCB-3	WCB-3	WCB-3	WCB-4	WCB-4	WCB-4	WCB-4
analytes only in mg/kg.	Depth Interval (inches bgs)	Composite (0-36)	0-6	12-18		Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36
	Sample Date	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017
	Commercial/Industrial																
Analysis and Detected Analyte	Direct Contact ESL ¹																
Volatile Organic Compounds																	
Acetone	628841.26	ND (<0.047)	NA	NA	NA	0.16	NA	NA	NA	0.13	NA	NA	NA	ND (<0.047)	NA	NA	N
Methylene chloride	24.87	0.0039	NA	NA	NA	0.0086	NA	NA	NA	0.011	NA	NA	NA	0.0055	NA	NA	N
Pesticides																	
Aldrin	0.16	NA	ND (<0.0024)	ND (<0.003)	ND (<0.0027)	NA	ND (<0.0053)	0.0039	0.0042	NA	ND (<0.012)	ND (<0.014)	ND (<0.028)	NA	ND (<0.013)	ND (<0.012)	ND (<0.0026
Chlordane (alpha)	2.15	NA	0.0018	0.014	0.0055	NA	ND (<0.0053)	0.034	0.0062	NA	0.0047	0.03	0.15	NA	0.029	0.032	0.001
Chlordane (gamma)	16.35	NA	0.0023	0.016	0.004	NA	ND (<0.0053)	0.048	0.012	NA	0.0059	0.038	0.11	NA	0.026	0.037	ND (<0.0026
Chlordane (technical)	53349.22	NA	0.041	0.14	0.035	NA	ND (<0.11)	0.16	0.051	NA	0.085	0.22	0.61	NA	0.17	0.22	0.02
Dichlorodiphenyldichloroethane (DDD)	12.09	NA	ND (<0.0024)	0.11	0.047	NA	ND (<0.0053)	0.29	0.17	NA	0.025	0.1	0.49	NA	0.053	0.1	0.003
Dichlorodiphenyldichloroethene (DDE)	8.53	NA	ND (<0.0024)	0.39	0.12	NA	0.0046	0.24	0.031	NA	0.09	0.19	2.6	NA	0.57	1.1	
Dichlorodiphenyltrichloroethane (DDT)	8.53	NA	ND (<0.0024)	0.02	0.0015	NA	ND (<0.0053)	0.012	0.27	NA	ND (<0.012)	ND (<0.014)	0.09	NA	0.24	0.35	0.003
Dieldrin	0.17	NA	ND (<0.0024)	0.023	0.012	NA	ND (<0.0053)	0.15	0.022	NA	0.0037	0.022	0.18	NA	0.038	0.067	0.0024
Endrin	289.20	NA	ND (<0.0024)	0.015	0.0023	NA	ND (<0.0053)	0.0061	ND (<0.0029)	NA	ND (<0.012)	ND (<0.014)	0.042	NA	0.093	0.22	0.002
Endrin ketone	No Standard	NA	ND (<0.0024)	ND (<0.003)	ND (<0.0027)	NA	ND (<0.0053)	ND (<0.0025)	ND (<0.0029)	NA	ND (<0.012)	ND (<0.014)	ND (<0.028)	NA	ND (<0.13)	0.0054	ND (<0.0026
Toxaphene	2.25	NA	ND (<0.047)	ND (<0.059)	ND (<0.054)	NA	ND (<0.11)	ND (<0.049)	ND (<0.059)	NA	ND (<0.23)	0.55	0.75	NA	0.35	1.5	0.009
CAM 17 Metals																	
Antimony	467.20	1.8	NA	NA	NA	2.1	NA	NA	NA	0.61	NA	NA	NA	1.1	NA	NA	N/
Arsenic	0.31	3.4	NA	NA	NA	5.3	NA	NA	NA		NA	NA	NA	21.5	NA	NA	N
Barium	216610.91	242	NA	NA	NA	277	NA	NA	NA	365	NA	NA	NA	1090	NA	NA	N
Beryllium	2212.07	0.22	NA	NA	NA	0.15	NA	NA	NA		NA	NA	NA	1.1	NA	NA	N
Cadmium (soil)	578.27	0.15	NA	NA	NA	0.26	NA	NA	NA	0.25	NA	NA	NA	ND (<0.56)	NA	NA	N
Chromium III*	1752000.00	59.5	NA	NA	NA		NA	NA	NA	51.2	NA	NA	NA		NA	NA	
Cobalt	347.00	10.4	NA	NA	NA	11.5	NA	NA	NA		NA	NA	NA		NA	NA	N
Copper	46720.00	41.2	NA	NA	NA	49.6	NA	NA	NA		NA	NA	NA	31.4	NA	NA	N
Lead	320.00	12.3	NA	NA	NA	30.2	NA	NA	NA	18.3	NA	NA	NA	12.2	NA	NA	N
Mercury (elemental)	186.68	0.065	NA	NA	NA	0.18	NA	NA	NA	0.074	NA	NA	NA	0.12	NA	NA	N
Molybdenum	5840.00	0.39	NA	NA	NA	1.1	NA	NA	NA	0.71	NA	NA	NA	8.2	NA	NA	N/
Nickel	11132.85	54.2	NA	NA	NA	105	NA	NA	NA	56.4	NA	NA	NA	143	NA	NA	N
Silver	5840.00	ND (<1.2)	NA	NA	NA	ND (<0.77)	NA	NA	NA	ND (<0.86)	NA	NA	NA	0.27	NA	NA	N
Thallium	11.68	0.77	NA	NA	NA	0.61	NA	NA	NA	0.5	NA	NA	NA	ND (<5.6)	NA	NA	N
Vanadium	5829.11	53.7	NA	NA	NA	56.4	NA	NA	NA		NA	NA	NA	86.2	NA	NA	N
Zinc	350400.00	55.6	NA	NA	NA	89.7	NA	NA	NA	75.3	NA	NA	NA	59.8	NA	NA	N
PCBs																	
Polychlorinated biphenyls (PCBs)	1.03	0.04	NA	NA	NA	0.051	NA	NA	NA	ND (<0.056)	NA	NA	NA	ND (<0.067)	NA	NA	N
ТРН																	
TPH diesel	1077.99	22	NA	NA	NA	120	NA	NA	NA	170	NA	NA	NA	65	NA	NA	N

NA = Not Analyzed

ND = Not Detected above laboratory reporting limit, which is presented in parenthesis

* Total reported chromium values assumed to be tivalent chromium based on representative speciation data from adjacent property

1. Based on San Francisco Bay Regional Water Quality Control Board February 2016 ESLs Table S-1: Soil Direct Exposure Human Health Screening Levels for the Commercial/Industrial Scenario.

Exceeds ESL

Table 1 - Tier 1 Default ESL Data Summary San Jose International Airport Hangar A

Concentrations are presented for detected	Boring Identification	WCB-1	WCB-1	WCB-1	WCB-1	WCB-2	WCB-2	WCB-2	WCB-2	WCB-3	WCB-3	WCB-3	WCB-3	WCB-4	WCB-4	WCB-4	WCB-4
analytes only in mg/kg.	Depth Interval (inches bgs)	Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36
	Sample Date	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017
Analysis and Detected Analyte	TTLC Level ¹			·			·	· · ·									
Volatile Organic Compounds																	
Acetone	No Standard	ND (<0.047)	NA	NA	NA	0.16	NA	NA	NA	0.13	NA	NA	NA	ND (<0.047)	NA	NA	N
Methylene chloride	No Standard	0.0039	NA	NA	NA	0.0086	NA	NA	NA	0.011	NA	NA	NA	0.0055	NA	NA	N
Pesticides																	
Aldrin	1.40	NA	ND (<0.0024)	ND (<0.003)	ND (<0.0027)	NA	ND (<0.0053)	0.0039	0.0042	NA	ND (<0.012)	ND (<0.014)	ND (<0.028)	NA	ND (<0.013)	ND (<0.012)	ND (<0.0026
Chlordane (alpha)	No Standard	NA	0.0018	0.014	0.0055	NA	ND (<0.0053)	0.034	0.0062	NA	0.0047	0.03	0.15	NA	0.029	0.032	0.001
Chlordane (gamma)	No Standard	NA	0.0023	0.016	0.004	NA	ND (<0.0053)	0.048	0.012	NA	0.0059	0.038	0.11	NA	0.026	0.037	ND (<0.0026
Chlordane (technical)	No Standard	NA	0.041	0.14	0.035	NA	ND (<0.11)	0.16	0.051	NA	0.085	0.22	0.61	NA	0.17	0.22	0.02
Dichlorodiphenyldichloroethane (DDD)	1	NA	ND (<0.0024)	0.11	0.047		ND (<0.0053)	0.29	0.17	NA	0.025	0.1	0.49	NA	0.053	0.1	
Dichlorodiphenyldichloroethene (DDE)	1	NA	ND (<0.0024)	0.39	0.12		0.0046	0.24	0.031	NA	0.09	0.19	2.6	NA	0.57	1.1	
Dichlorodiphenyltrichloroethane (DDT)	1	NA	ND (<0.0024)	0.02	0.0015		ND (<0.0053)	0.012	0.27	NA	ND (<0.012)	ND (<0.014)	0.09		0.24	0.35	
DDT Sum	1	NA	ND (<0.0024)	0.52	0.1685	NA	0.0046	0.542	0.471	NA	0.115	0.29	3.18	NA	0.863	1.55	
Dieldrin	8.00	NA	ND (<0.0024)	0.023	0.012	NA	ND (<0.0053)	0.15	0.022	NA	0.0037	0.022	0.18	NA	0.038	0.067	0.0024
Endrin	0.20	NA	ND (<0.0024)	0.015	0.0023	NA	ND (<0.0053)	0.0061	ND (<0.0029)	NA	ND (<0.012)	ND (<0.014)	0.042		0.093	0.22	0.0022
Endrin ketone	No Standard	NA	ND (<0.0024)	ND (<0.003)	ND (<0.0027)	NA	ND (<0.0053)	ND (<0.0025)	ND (<0.0029)	NA	ND (<0.012)	ND (<0.014)	ND (<0.028)		ND (<0.13)	0.0054	ND (<0.0026
Toxaphene	5.00	NA	ND (<0.047)	ND (<0.059)	ND (<0.054)	NA	ND (<0.11)	ND (<0.049)	ND (<0.059)	NA	ND (<0.23)	0.55	0.75	NA	0.35	1.5	0.0092
CAM 17 Metals																	
Antimony	500.00	1.8	NA	NA	NA		NA	NA	NA		NA	NA	NA		NA	NA	NA
Arsenic	500.00	3.4	NA	NA	NA		NA	NA	NA	-	NA	NA	NA		NA	NA	NA
Barium	10000.00	242	NA	NA	NA		NA	NA	NA		NA	NA	NA		NA	NA	NA
Beryllium	75.00	0.22	NA	NA	NA		NA	NA	NA	•••=	NA	NA	NA		NA	NA	NA
Cadmium (soil)	No Standard	0.15	NA	NA	NA		NA	NA	NA		NA	NA	NA	(NA	NA	NA
Chromium III*	500.00	59.5	NA	NA	NA		NA	NA	NA		NA	NA	NA		NA	NA	NA
Cobalt	8000.00	10.4	NA	NA	NA	-	NA	NA	NA		NA	NA	NA		NA	NA	NA
Copper	2500.00	41.2	NA	NA	NA		NA	NA	NA		NA	NA	NA	-	NA	NA	NA
Lead	1000.00	12.3	NA	NA	NA		NA	NA	NA		NA	NA	NA		NA	NA	NA
Mercury (elemental)	No Standard	0.065	NA	NA	NA		NA	NA	NA		NA	NA	NA		NA	NA	NA
Molybdenum	3500.00	0.39	NA	NA	NA		NA	NA	NA		NA	NA	NA	-	NA	NA	NA
Nickel	2000.00	54.2	NA	NA	NA		NA	NA	NA		NA	NA	NA	-	NA	NA	NA
Silver	500.00	ND (<1.2)	NA	NA	NA	(- /	NA	NA	NA	ND (<0.86)	NA	NA	NA	÷.=.	NA	NA	NA
Thallium	700.00	0.77	NA	NA	NA		NA	NA	NA		NA	NA	NA	(/	NA	NA	NA
Vanadium	2400.00	53.7	NA	NA	NA		NA	NA	NA		NA	NA	NA		NA	NA	NA
Zinc	5000.00	55.6	NA	NA	NA	89.7	NA	NA	NA	75.3	NA	NA	NA	59.8	NA	NA	N
PCBs																	
Polychlorinated biphenyls (PCBs)	50.00	0.04	NA	NA	NA	0.051	NA	NA	NA	ND (<0.056)	NA	NA	NA	ND (<0.067)	NA	NA	N
ТРН																	
TPH diesel	No Standard	22	NA	NA	NA	120	NA	NA	NA	170	NA	NA	NA	65	NA	NA	NA

NA = Not Analyzed

ND = Not Detected above laboratory reporting limit, which is presented in parenthesis

* Total reported chromium values assumed to be tivalent chromium based on representative speciation data from adjacent property

1. Based on 22 CCR § 66261.24 current through 10/20/17.

Exceeds TTLC Level

Table 1 - Tier 1 Default ESL Data Summary San Jose International Airport Hangar A

Concentrations are presented for detected	Boring Identification	WCB-1	WCB-1	WCB-1	WCB-1	WCB-2	WCB-2	WCB-2	WCB-2	WCB-3	WCB-3	WCB-3	WCB-3	WCB-4	WCB-4	WCB-4	WCB-4
analytes only in mg/kg.	Depth Interval (inches bgs)	Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36	Composite (0-36)	0-6	12-18	30-36
	Sample Date	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017	10/11/2017
	Construction Worker																
Analysis and Detected Analyte	Direct Contact ESL ¹																
Volatile Organic Compounds																	
Acetone	264318.73	ND (<0.047)	NA	NA	NA	0.16	NA	NA	NA	0.13	NA	NA	NA	ND (<0.047)	NA	NA	١
Methylene chloride	498.82	0.0039	NA	NA	NA	0.0086	NA	NA	NA	0.011	NA	NA	NA	0.0055	NA	NA	Ν
Pesticides																	
Aldrin	1.01	NA	ND (<0.0024)	ND (<0.003)	ND (<0.0027)	NA	ND (<0.0053)	0.0039	0.0042	NA	ND (<0.012)	ND (<0.014)	ND (<0.028)) NA	ND (<0.013)	ND (<0.012)	ND (<0.002
Chlordane (alpha)	14.05	NA	0.0018	0.014	0.0055	NA	ND (<0.0053)	0.034	0.0062	NA	0.0047	0.03	0.15	5 NA	0.029	0.032	0.00
Chlordane (gamma)	14.05	NA	0.0023	0.016	0.004	NA	ND (<0.0053)	0.048	0.012	NA	0.0059	0.038	0.11	NA	0.026	0.037	ND (<0.002
Chlordane (technical)	14.05	NA	0.041	0.14	0.035	NA	ND (<0.11)	0.16	0.051	NA	0.085	0.22	0.61	NA	0.17	0.22	0.0
Dichlorodiphenyldichloroethane (DDD)	81.12	NA	ND (<0.0024)	0.11	0.047	NA	ND (<0.0053)	0.29	0.17	NA	0.025	0.1	0.49) NA	0.053	0.1	0.00
Dichlorodiphenyldichloroethene (DDE)	57.26	NA	ND (<0.0024)	0.39	0.12	NA	0.0046	0.24	0.031	NA	0.09	0.19	2.6	6 NA	0.57	1.1	0.0
Dichlorodiphenyltrichloroethane (DDT)	57.26	NA	ND (<0.0024)	0.02	0.0015	NA	ND (<0.0053)	0.012	0.27	NA	ND (<0.012)	ND (<0.014)	0.09) NA	0.24	0.35	0.00
Dieldrin	1.07	NA	ND (<0.0024)	0.023	0.012	NA	ND (<0.0053)	0.15	0.022	NA	0.0037	0.022	0.18	B NA	0.038	0.067	0.00
Endrin	74.38	NA	ND (<0.0024)	0.015	0.0023	NA	ND (<0.0053)	0.0061	ND (<0.0029)	NA	ND (<0.012)	ND (<0.014)	0.042	2 NA	0.093	0.22	0.00
Endrin ketone	No Standard	NA	ND (<0.0024)	ND (<0.003)	ND (<0.0027)	NA	ND (<0.0053)	ND (<0.0025)	ND (<0.0029)	NA	ND (<0.012)	ND (<0.014)	ND (<0.028)) NA	ND (<0.13)	0.0054	ND (<0.002
Toxaphene	14.30	NA	ND (<0.047)	ND (<0.059)	ND (<0.054)	NA	ND (<0.11)	ND (<0.049)	ND (<0.059)	NA	ND (<0.23)	0.55	0.75	5 NA	0.35	1.5	0.00
CAM 17 Metals																	
Antimony	141.58	1.8	NA	NA	NA	2.1	NA	NA	NA	0.61	NA	NA	NA	1.1	NA	NA	Ν
Arsenic	0.98	3.4	NA	NA	NA	5.3	NA	NA	NA	4.8	NA	NA	NA	21.5	NA	NA	١
Barium	3019.10	242	NA	NA	NA	277	NA	NA	NA	365	NA	NA	NA	1090	NA	NA	1
Beryllium	41.56	0.22	NA	NA	NA		NA	NA	NA		NA	NA	NA	N 1.1	NA	NA	1
Cadmium (soil)	42.67	0.15	NA	NA	NA		NA	NA	NA		NA	NA	NA	ND (<0.56)	NA	NA	1
Chromium III*	530909.09	59.5	NA	NA	NA	85.9	NA	NA	NA	51.2	NA	NA	NA	80.5	NA	NA	1
Cobalt	27.90	10.4	NA	NA	NA		NA	NA	NA		NA	NA	NA		NA	NA	1
Copper	14157.58	41.2	NA	NA	NA	49.6	NA	NA	NA	37.9	NA	NA	NA	31.4	NA	NA	1
Lead	160.00	12.3	NA	NA	NA	30.2	NA	NA	NA		NA	NA	NA	12.2	NA	NA	1
Mercury (elemental)	43.59	0.065	NA	NA	NA	0.18	NA	NA	NA	0.074	NA	NA	NA	0.12	NA	NA	1
Molybdenum	1769.70	0.39	NA	NA	NA		NA	NA	NA		NA	NA	NA	8.2	NA	NA	1
Nickel	86.34	54.2	NA	NA	NA	105	NA	NA	NA	56.4	NA	NA	NA	143	NA	NA	1
Silver	1769.70	ND (<1.2)	NA	NA	NA	ND (<0.77)	NA	NA	NA	ND (<0.86)	NA	NA	NA		NA	NA	1
Thallium	3.54	0.77	NA	NA	NA		NA	NA	NA		NA	NA	NA		NA	NA	1
Vanadium	465.97	53.7	NA	NA	NA		NA	NA	NA		NA	NA	NA	86.2	NA	NA	١
Zinc	106181.82	55.6	NA	NA	NA	89.7	NA	NA	NA	75.3	NA	NA	NA	59.8	NA	NA	Ν
PCBs																	
Polychlorinated biphenyls (PCBs)	5.60	0.04	NA	NA	NA	0.051	NA	NA	NA	ND (<0.056)	NA	NA	NA	ND (<0.067)	NA	NA	Ν
TPH																	
TPH diesel	884.96	22	NA	NA	NA	120	NA	NA	NA	170	NA	NA	NA	65	NA	NA	Ν

NA = Not Analyzed

ND = Not Detected above laboratory reporting limit, which is presented in parenthesis

* Total reported chromium values assumed to be tivalent chromium based on representative speciation data from adjacent property

1. Based on San Francisco Bay Regional Water Quality Control Board February 2016 ESLs Table S-1: Soil Direct Exposure Human Health Screening Levels for the Construction Worker Scenario.

Exceeds ESL

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-82612-1 Client Project/Site: SJC Hanger A

For: Woodard & Curran, Inc. 41 Hutchens Drive Portland, Maine 04102

Attn: Jedd Steinglass

Denise Z Giglia

Authorized for release by: 10/27/2017 12:45:36 PM Denise Giglia, Project Management Assistant II denise.giglia@testamericainc.com

Designee for

Becky Mason, Project Manager II (413)572-4000 becky.mason@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	11
Surrogate Summary	35
QC Sample Results	38
QC Association Summary	49
Lab Chronicle	53
Certification Summary	60
Method Summary	61
Sample Summary	62
Chain of Custody	63
Receipt Checklists	65

1 2 3 4 5 6 7 8 9 10 11 12

Qualifiers

GC/MS VOA

GC/MS VO		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	_
GC/MS Se	mi VOA	
Qualifier	Qualifier Description	
Х	Surrogate is outside control limits	
GC Semi V		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.	
F1	MS and/or MSD Recovery is outside acceptance limits.	
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a	
х	dilution may be flagged with a D. Surrogate is outside control limits	
Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	_ 1
В	Compound was found in the blank and sample.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

1 2 3 4 5 6 7 8 9 10 11 12 13

Job ID: 720-82612-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-82612-1

Receipt

The samples were received on 10/17/2017 10:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.7° C.

GC/MS VOA

Method 8260B: The samples were analyzed in SVOA prior to the Volatiles department, sample hits for Methylene Chloride and Acetone may be due to lab contamination for the following samples: WCB-1 (720-82612-1), WCB-2 (720-82612-2), WCB-3 (720-82612-3) and WCB-4 (720-82612-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270C: Surrogate recovery for the following sample was outside control limits: WCB-3 (720-82612-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8270C: The following samples was diluted due to the abundance of non-target analytes: WCB-1 (720-82612-1), WCB-2 (720-82612-2), WCB-3 (720-82612-3), WCB-4 (720-82612-4) and (720-82516-B-5-Q). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8081A: The following sample was diluted due to color: WCB-2 (0-6) (720-82612-8). Elevated reporting limits (RL) are provided.

Method 8081A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 720-232563 and analytical batch 720-232637 were outside control limits. Sample matrix interference and non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8081A: The pattern present in the following samples does not exactly match the laboratory's analytical reference standard for Toxaphene: WCB-3 (12-18) (720-82612-12), WCB-3 (30-36) (720-82612-13), WCB-4 (0-6) (720-82612-14), WCB-4 (12-18) (720-82612-15) and WCB-4 (30-36) (720-82612-16). The individual representative peaks present have been quantitated and reported as Toxaphene.

Method 8081A: The %RPD between the primary and confirmation column exceeded 40% for alpha-Chlordane for the following samples: WCB-1 (0-6) (720-82612-5), WCB-2 (30-36) (720-82612-10), WCB-3 (0-6) (720-82612-11) and WCB-3 (12-18) (720-82612-12). The lower value(s) has been reported and qualified in accordance with the laboratory's SOP.

Method 8081A: The %RPD between the primary and confirmation column exceeded 40% for alpha-Chlordane & gamma-Chlordane for the following sample: WCB-1 (12-18) (720-82612-6). The lower value has been reported and qualified in accordance with the laboratory's SOP.

Method 8081A: The %RPD between the primary and confirmation column exceeded 40% for 4,4'-DDT & alpha-Chlordane for the following sample: WCB-1 (30-36) (720-82612-7). The lower values have been reported and qualified in accordance with the laboratory's SOP.

Method 8081A: The %RPD between the primary and confirmation column exceeded 40% for 4,4'-DDT & Endrin for the following sample: WCB-2 (12-18) (720-82612-9). The lower values have been reported and qualified in accordance with the laboratory's SOP.

Method 8081A: The %RPD between the primary and confirmation column exceeded 40% for Endrin for the following sample: WCB-4 (30-36) (720-82612-16). The lower value has been reported and qualified in accordance with the laboratory's SOP.

Method 8081A: The %RPD between the primary and confirmation column / detector exceeded 40% for gamma-Chlordane for the following sample: WCB-3 (30-36) (720-82612-13). The lower value has been reported and qualified in accordance with the laboratory's SOP.

Job ID: 720-82612-1 (Continued)

Laboratory: TestAmerica Pleasanton (Continued)

Method 8081A: The %RPD between the primary and confirmation column exceeded 40% for alpha-Chlordane & gamma-Chlordane for the following sample: WCB-4 (12-18) (720-82612-15). The lower values have been reported and qualified in accordance with the laboratory's SOP.

Method 8082: The following samples required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: WCB-3 (720-82612-3), (720-82612-A-3-I MS) and (720-82612-A-3-J MSD).

Method 8082: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 720-232564 and analytical batch 720-232559 were outside control limits. Sample matrix interference and non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8082: The following samples required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: WCB-1 (720-82612-1), WCB-4 (720-82612-4), (LCS 720-232564/2-A) and (MB 720-232564/1-A).

Method 8082: The following sample required a tetrabutylammonium sulfite (TBA) clean-up to reduce matrix interferences caused by sulfur: WCB-2 (720-82612-2).

Method 8015B: The following sample required a dilution due to the nature of the sample matrix: WCB-3 (720-82612-3). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 720-232501 and analytical batch 720-232603 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 6010B: The post digestion spike % recovery for Ba, Be, Cr associated with batch 720-232603 was outside of control limits.

Method 6010B: The serial dilution performed for the following sample associated with batch 720-232603 was outside control limits: (720-82646-A-2-E SD)

Method 6010B: The following samples was diluted due to the abundance of non-target analytes Ca and/or Fe: WCB-1 (720-82612-1), WCB-2 (720-82612-2), WCB-3 (720-82612-3) and WCB-4 (720-82612-4). Elevated reporting limits (RLs) are provided.

Method 6010B: The following sample was diluted due to the abundance of non-target analyte Mn: WCB-4 (720-82612-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3546: A deviation from the Standard Operating Procedure (SOP) occurred. Details are as follows: limited sample due to re-extraction so an LCSD was used in place of an MS/MSD

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: WCB-1

Lab Sample ID: 720-82612-1

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	3.9	J	9.5	3.8	ug/Kg	1		8260B	Total/NA
Diesel Range Organics [C10-C28]	22		1.3	0.98	mg/Kg	1	₽	8015B	Silica Gel
									Cleanup
PCB-1260	0.040	J	0.065	0.0069	mg/Kg	1	₽	8082	Total/NA
Antimony	1.8	J	2.3	0.38	mg/Kg	4	¢.	6010B	Total/NA
Arsenic	3.4	J	4.6	0.39	mg/Kg	4	₽	6010B	Total/NA
Barium	242		2.3	0.33	mg/Kg	4	₽	6010B	Total/NA
Beryllium	0.22	J	0.46	0.15	mg/Kg	4	¢.	6010B	Total/NA
Cadmium	0.15	J	0.58	0.057	mg/Kg	4	₽	6010B	Total/NA
Chromium	59.5	В	2.3	0.25	mg/Kg	4	₽	6010B	Total/NA
Cobalt	10.4		0.93	0.093	mg/Kg	4	¢	6010B	Total/NA
Copper	41.2		7.0	3.3	mg/Kg	4	₽	6010B	Total/NA
Lead	12.3		2.3	0.49	mg/Kg	4	₽	6010B	Total/NA
Molybdenum	0.39	J	2.3	0.30	mg/Kg	4	¢.	6010B	Total/NA
Nickel	54.2		2.3	0.24	mg/Kg	4	₽	6010B	Total/NA
Thallium	0.77	J	2.3	0.67	mg/Kg	4	₽	6010B	Total/NA
Vanadium	53.7		2.3	0.32	mg/Kg	4	¢.	6010B	Total/NA
Zinc	55.6		7.0	2.9	mg/Kg	4	₽	6010B	Total/NA
Mercury	0.065		0.019	0.0028	mg/Kg	1	₽	7471A	Total/NA

Client Sample ID: WCB-2

Lab Sample ID: 720-82612-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	160		48	37	ug/Kg	1	_	8260B	Total/NA
Methylene Chloride	8.6	J	9.6	3.8	ug/Kg	1		8260B	Total/NA
Diesel Range Organics [C10-C28]	120		2.5	1.8	mg/Kg	2	₽	8015B	Silica Gel
									Cleanup
PCB-1260	0.051	J	0.060	0.0063	mg/Kg	1	¢	8082	Total/NA
Antimony	2.1		1.5	0.26	mg/Kg	4	₽	6010B	Total/NA
Arsenic	5.3		3.1	0.26	mg/Kg	4	₽	6010B	Total/NA
Barium	277		1.5	0.22	mg/Kg	4	¢	6010B	Total/NA
Beryllium	0.15	J	0.31	0.10	mg/Kg	4	₽	6010B	Total/NA
Cadmium	0.26	J	0.38	0.038	mg/Kg	4	₽	6010B	Total/NA
Chromium	85.9	В	1.5	0.16	mg/Kg	4	¢	6010B	Total/NA
Cobalt	11.5		0.62		mg/Kg	4	₽	6010B	Total/NA
Copper	49.6		4.6	2.2	mg/Kg	4	₽	6010B	Total/NA
Lead	30.2		1.5	0.32	mg/Kg	4	φ.	6010B	Total/NA
Molybdenum	1.1	J	1.5	0.20	mg/Kg	4	₽	6010B	Total/NA
Nickel	105		1.5		mg/Kg	4	₽	6010B	Total/NA
Thallium	0.61	J	1.5	0.45	mg/Kg	4	¢	6010B	Total/NA
Vanadium	56.4		1.5	0.21	mg/Kg	4	₽	6010B	Total/NA
Zinc	89.7		4.6	2.0	mg/Kg	4	₽	6010B	Total/NA
Mercury	0.18		0.021	0.0030		1	φ	7471A	Total/NA

Client Sample ID: WCB-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	130	48	36	ug/Kg	1	_	8260B	Total/NA
Methylene Chloride	11	9.6	3.8	ug/Kg	1		8260B	Total/NA
Diesel Range Organics [C10-C28]	170	11	8.6	mg/Kg	10	¢	8015B	Silica Gel Cleanup

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

Lab Sample ID: 720-82612-3

Client Sample ID: WCB-3 (Continued)

Lab Sample ID: 720-82612-3

Lab Sample ID: 720-82612-4

Lab Sample ID: 720-82612-5

Lab Sample ID: 720-82612-6

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
Antimony	0.61	J	1.7	0.29	mg/Kg	<u> </u>	6010B	Total/NA	
Arsenic	4.8		3.5	0.29	mg/Kg	4 ¢	6010B	Total/NA	
Barium	365		1.7	0.25	mg/Kg	4 ^{‡‡}	6010B	Total/NA	
Beryllium	0.42		0.35	0.11	mg/Kg	4 ¤	6010B	Total/NA	
Cadmium	0.25	J	0.43	0.043	mg/Kg	4 ^{‡‡}	6010B	Total/NA	
Chromium	51.2	В	1.7	0.18	mg/Kg	4 ^{‡‡}	6010B	Total/NA	
Cobalt	8.6		0.69	0.069	mg/Kg	4 ¢	6010B	Total/NA	
Copper	37.9		5.2	2.5	mg/Kg	4 ^{‡‡}	6010B	Total/NA	
Lead	18.3		1.7	0.36	mg/Kg	4 🌣	6010B	Total/NA	3
Molybdenum	0.71	J	1.7	0.22	mg/Kg	4 ¢	6010B	Total/NA	
Nickel	56.4		1.7	0.18	mg/Kg	4 🌣	6010B	Total/NA	9
Thallium	0.50	J	1.7	0.50	mg/Kg	4 🌣	6010B	Total/NA	
Vanadium	42.9		1.7	0.24	mg/Kg	4 ¢	6010B	Total/NA	
Zinc	75.3		5.2	2.2	mg/Kg	4 [‡]	6010B	Total/NA	
Mercury	0.074		0.018	0.0027	mg/Kg	1 [‡]	7471A	Total/NA	

Client Sample ID: WCB-4

Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Methylene Chloride 5.5 J 9.4 3.8 ug/Kg 8260B Total/NA 1 65 3 ☆ 8015B **Diesel Range Organics [C10-C28]** 4.1 3.1 mg/Kg Silica Gel Cleanup Antimony 1.1 J 2.2 0.37 mg/Kg 4 🌣 6010B Total/NA Arsenic 21.5 4.5 0.38 mg/Kg 4 ¤ 6010B Total/NA 0.32 mg/Kg 4 🌣 Barium 1090 2.2 6010B Total/NA Beryllium 0.45 4 🌣 6010B Total/NA 1.1 0.14 mg/Kg 4 ¤ 6010B Total/NA Chromium 80.5 B 2.2 0.24 mg/Kg Cobalt 29.1 0.89 0.089 mg/Kg 4 🌣 6010B Total/NA Copper 6.7 3.2 mg/Kg 4 🌣 6010B Total/NA 31.4 Lead 12.2 5.6 1.2 mg/Kg 10 🌣 6010B Total/NA Molybdenum 8.2 2.2 0.29 mg/Kg 4 🌣 6010B Total/NA **4** 🌣 Nickel 143 2.2 0.23 mg/Kg 6010B Total/NA Silver 0.27 J 1.1 0.23 mg/Kg 4 🌣 6010B Total/NA 4 🌣 6010B Vanadium 86.2 2.2 0.30 mg/Kg Total/NA 4 🌣 6010B Total/NA Zinc 59.8 6.7 2.8 mg/Kg 0.12 0.0031 mg/Kg 1 🌣 7471A Total/NA Mercury 0.021

Client Sample ID: WCB-1 (0-6)

Analyte	Result Qualifier	RL	MDL U	Init	Dil Fac	DN	lethod	Prep Type
Chlordane (technical)	0.041 J	0.047	0.0034 m	ng/Kg	1	₩ 8	081A	Total/NA
alpha-Chlordane	0.0018 Jp	0.0024	0.00097 m	ng/Kg	1	₿ ∯	081A	Total/NA
gamma-Chlordane	0.0023 J	0.0024	0.00097 m	ng/Kg	1	₿ ∯	081A	Total/NA

Client Sample ID: WCB-1 (12-18)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	0.023	0.0030	0.00055	mg/Kg	1	₽	8081A	Total/NA
Endrin	0.015	0.0030	0.00099	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDT	0.020	0.0030	0.00074	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDE	0.39	0.0030	0.0012	mg/Kg	1	¢	8081A	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Woodard & Curran, Inc. Project/Site: SJC Hanger A

Client Sample ID: WCB-1 (12-18) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
4,4'-DDD	0.11	0.0030	0.00090	mg/Kg	1	☆	8081A	Total/NA
Chlordane (technical)	0.14	0.059	0.0043	mg/Kg	1	₽	8081A	Total/NA
alpha-Chlordane	0.014 p	0.0030	0.0012	mg/Kg	1	¢	8081A	Total/NA
gamma-Chlordane	0.016 p	0.0030	0.0012	mg/Kg	1	₽	8081A	Total/NA

Client Sample ID: WCB-1 (30-36)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	0.012		0.0027	0.00050	mg/Kg	1	\	8081A	Total/NA
Endrin	0.0023	J	0.0027	0.00090	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDT	0.0015	Jр	0.0027	0.00067	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDE	0.12		0.0027	0.0011	mg/Kg	1	¢	8081A	Total/NA
4,4'-DDD	0.047		0.0027	0.00082	mg/Kg	1	₽	8081A	Total/NA
Chlordane (technical)	0.035	J	0.054	0.0039	mg/Kg	1	₽	8081A	Total/NA
alpha-Chlordane	0.0055		0.0027	0.0011	mg/Kg	1	¢	8081A	Total/NA
gamma-Chlordane	0.0040	р	0.0027	0.0011	mg/Kg	1	₽	8081A	Total/NA

Client Sample ID: WCB-2 (0-6)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Ргер Туре
4,4'-DDE	0.0046 J	0.0053	0.0022 mg/Kg	2 🔅 8081A	Total/NA

Client Sample ID: WCB-2 (12-18)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aldrin	0.0039	0.0025	0.00082	mg/Kg	1	Þ	8081A	Total/NA
Dieldrin	0.15	0.0025	0.00045	mg/Kg	1	₽	8081A	Total/NA
Endrin	0.0061 p	0.0025	0.00082	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDT	0.012 p	0.0025	0.00061	mg/Kg	1	¢	8081A	Total/NA
4,4'-DDE	0.24	0.0025	0.0010	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDD	0.29	0.0025	0.00075	mg/Kg	1	₽	8081A	Total/NA
Chlordane (technical)	0.16	0.049	0.0036	mg/Kg	1	₽	8081A	Total/NA
alpha-Chlordane	0.034	0.0025	0.0010	mg/Kg	1	₽	8081A	Total/NA
gamma-Chlordane	0.048	0.0025	0.0010	mg/Kg	1	₽	8081A	Total/NA

Client Sample ID: WCB-2 (30-36)

Lab Sample ID: 720-82612-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aldrin	0.0042	0.0029	0.00099	mg/Kg	1	₽	8081A	Total/NA
Dieldrin	0.022	0.0029	0.00055	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDT	0.27	0.0029	0.00074	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDE	0.031	0.0029	0.0012	mg/Kg	1	¢	8081A	Total/NA
4,4'-DDD	0.17	0.0029	0.00090	mg/Kg	1	₽	8081A	Total/NA
Chlordane (technical)	0.051 J	0.059	0.0043	mg/Kg	1	₽	8081A	Total/NA
alpha-Chlordane	0.0062 p	0.0029	0.0012	mg/Kg	1	¢	8081A	Total/NA
gamma-Chlordane	0.012	0.0029	0.0012	mg/Kg	1	₽	8081A	Total/NA

Client Sample ID: WCB-3 (0-6)

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 720-82612-11

TestAmerica Job ID: 720-82612-1

Lab Sample ID: 720-82612-6

Lab Sample ID: 720-82612-7

Lab Sample ID: 720-82612-8

Lab Sample ID: 720-82612-9

Client: Woodard & Curran, Inc. Project/Site: SJC Hanger A

Client Sample ID: WCB-3 (0-6) (Continued)

Lab Sample ID: 720-82612-11

Lab Sample ID: 720-82612-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	0.0037	J	0.012	0.0021	mg/Kg	5	₿ \black black b	8081A	Total/NA
4,4'-DDE	0.090		0.012	0.0047	mg/Kg	5	₽	8081A	Total/NA
4,4'-DDD	0.025		0.012	0.0035	mg/Kg	5	₽	8081A	Total/NA
Chlordane (technical)	0.085	J	0.23	0.017	mg/Kg	5	¢	8081A	Total/NA
alpha-Chlordane	0.0047	Jp	0.012	0.0047	mg/Kg	5	₽	8081A	Total/NA
gamma-Chlordane	0.0059	J	0.012	0.0047	mg/Kg	5	¢	8081A	Total/NA

Client Sample ID: WCB-3 (12-18)

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	0.022		0.014	0.0025	mg/Kg	5	₩.	8081A	Total/NA
4,4'-DDE	0.19		0.014	0.0056	mg/Kg	5	¢	8081A	Total/NA
4,4'-DDD	0.10		0.014	0.0042	mg/Kg	5	¢	8081A	Total/NA
Toxaphene	0.55		0.27	0.047	mg/Kg	5	¢	8081A	Total/NA
Chlordane (technical)	0.22	J	0.27	0.020	mg/Kg	5	¢	8081A	Total/NA
alpha-Chlordane	0.030 p	р	0.014	0.0056	mg/Kg	5	₽	8081A	Total/NA
gamma-Chlordane	0.038		0.014	0.0056	mg/Kg	5	¢	8081A	Total/NA

Client Sample ID: WCB-3 (30-36)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	0.18		0.028	0.0051	mg/Kg	10	₽	8081A	Total/NA
Endrin	0.042		0.028	0.0093	mg/Kg	10	₽	8081A	Total/NA
4,4'-DDT	0.090		0.028	0.0069	mg/Kg	10	₽	8081A	Total/NA
4,4'-DDE	2.6		0.028	0.011	mg/Kg	10	¢	8081A	Total/NA
4,4'-DDD	0.49		0.028	0.0084	mg/Kg	10	₽	8081A	Total/NA
Toxaphene	0.75		0.055	0.0094	mg/Kg	1	₽	8081A	Total/NA
Chlordane (technical)	0.61		0.55	0.040	mg/Kg	10	φ.	8081A	Total/NA
alpha-Chlordane	0.15		0.028	0.011	mg/Kg	10	₽	8081A	Total/NA
gamma-Chlordane	0.11	р	0.028	0.011	mg/Kg	10	₽	8081A	Total/NA

Client Sample ID: WCB-4 (0-6)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	0.038	0.013	0.0023	mg/Kg	5	₽	8081A	Total/NA
Endrin	0.093	0.013	0.0042	mg/Kg	5	₽	8081A	Total/NA
4,4'-DDT	0.24	0.013	0.0031	mg/Kg	5	₽	8081A	Total/NA
4,4'-DDE	0.57	0.013	0.0051	mg/Kg	5	φ.	8081A	Total/NA
4,4'-DDD	0.053	0.013	0.0038	mg/Kg	5	₽	8081A	Total/NA
Toxaphene	0.35	0.050	0.0085	mg/Kg	1	₽	8081A	Total/NA
Chlordane (technical)	0.17 J	0.25	0.018	mg/Kg	5	φ.	8081A	Total/NA
alpha-Chlordane	0.029	0.013	0.0051	mg/Kg	5	₽	8081A	Total/NA
gamma-Chlordane	0.026	0.013	0.0051	mg/Kg	5	₽	8081A	Total/NA

Client Sample ID: WCB-4 (12-18)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Dieldrin	0.067	0.012	0.0023 mg/Kg	5 🔅 8081A	Total/NA
Endrin	0.22	0.012	0.0041 mg/Kg	5 🌣 8081A	Total/NA
Endrin ketone	0.0054 Jp	0.012	0.0024 mg/Kg	5 🌣 8081A	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

5

Lab Sample ID: 720-82612-13

Lab Sample ID: 720-82612-14

Lab Sample ID: 720-82612-15

Client Sample ID: WCB-4 (12-18) (Continued)

Lab Sample ID: 720-82612-15

Lab Sample ID: 720-82612-16

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
4,4'-DDT	0.35		0.012	0.0030	mg/Kg	5	₽	8081A	Total/NA
4,4'-DDE	1.1		0.012	0.0050	mg/Kg	5	¢	8081A	Total/NA
4,4'-DDD	0.10		0.012	0.0037	mg/Kg	5	¢	8081A	Total/NA
Toxaphene	1.5		0.049	0.0083	mg/Kg	1	¢	8081A	Total/NA
Chlordane (technical)	0.22 J	J	0.24	0.018	mg/Kg	5	¢	8081A	Total/NA
alpha-Chlordane	0.032 p	D	0.012	0.0050	mg/Kg	5	₽	8081A	Total/NA
gamma-Chlordane	0.037		0.012	0.0050	mg/Kg	5	¢	8081A	Total/NA

Client Sample ID: WCB-4 (30-36)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	0.0024	J	0.0026	0.00047	mg/Kg	1	☆	8081A	Total/NA
Endrin	0.0022	Jp	0.0026	0.00086	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDT	0.0031		0.0026	0.00064	mg/Kg	1	₽	8081A	Total/NA
4,4'-DDE	0.037		0.0026	0.0011	mg/Kg	1	¢	8081A	Total/NA
4,4'-DDD	0.0035		0.0026	0.00078	mg/Kg	1	₽	8081A	Total/NA
Toxaphene	0.0092	J	0.051	0.0087	mg/Kg	1	₽	8081A	Total/NA
Chlordane (technical)	0.021	J	0.051	0.0037	mg/Kg	1	₿. ¢	8081A	Total/NA
alpha-Chlordane	0.0015	J	0.0026	0.0011	mg/Kg	1	¢	8081A	Total/NA

13 14

5

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 720-82612-1

Matrix: Solid

5

6

Client Sample ID: WCB-1 Date Collected: 10/11/17 09:57

Date Received: 10/17/17 10:10

Analyte	anic Compounds (GC/M Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	4.7	1.1	ug/Kg			10/24/17 12:49	1
Acetone	ND	47		ug/Kg			10/24/17 12:49	1
Benzene	ND	4.7		ug/Kg		10/24/17 10:39		1
Dichlorobromomethane	ND	4.7		ug/Kg			10/24/17 12:49	1
Bromobenzene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 12:49	1
Chlorobromomethane	ND	19		ug/Kg		10/24/17 10:39	10/24/17 12:49	1
Bromoform	ND	4.7	1.9	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
Bromomethane	ND	9.5	0.75	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
2-Butanone (MEK)	ND	47	20	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
n-Butylbenzene	ND	4.7	0.95	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
sec-Butylbenzene	ND	4.7	0.68	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
ert-Butylbenzene	ND	4.7	0.69	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
Carbon disulfide	ND	4.7	1.9	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
Carbon tetrachloride	ND	4.7	0.59	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
Chlorobenzene	ND	4.7	0.65	ug/Kg		10/24/17 10:39	10/24/17 12:49	1
Chloroethane	ND	9.5	0.53	ug/Kg		10/24/17 10:39	10/24/17 12:49	
Chloroform	ND	4.7	0.63	ug/Kg		10/24/17 10:39	10/24/17 12:49	
Chloromethane	ND	9.5	0.68	ug/Kg		10/24/17 10:39	10/24/17 12:49	
2-Chlorotoluene	ND	4.7	0.62	ug/Kg		10/24/17 10:39	10/24/17 12:49	
l-Chlorotoluene	ND	4.7	0.65	ug/Kg		10/24/17 10:39	10/24/17 12:49	
Chlorodibromomethane	ND	4.7	0.67	ug/Kg		10/24/17 10:39	10/24/17 12:49	
,2-Dichlorobenzene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 12:49	
,3-Dichlorobenzene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 12:49	
,4-Dichlorobenzene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 12:49	
,3-Dichloropropane	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 12:49	
,1-Dichloropropene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 12:49	
,2-Dibromo-3-Chloropropane	ND	9.5		ug/Kg			10/24/17 12:49	
Ethylene Dibromide	ND	4.7		ug/Kg			10/24/17 12:49	
Dibromomethane	ND	9.5		ug/Kg			10/24/17 12:49	
Dichlorodifluoromethane	ND	9.5		ug/Kg			10/24/17 12:49	
,1-Dichloroethane	ND	4.7		ug/Kg			10/24/17 12:49	
,2-Dichloroethane	ND	4.7		ug/Kg		10/24/17 10:39		
,1-Dichloroethene	ND	4.7		ug/Kg			10/24/17 12:49	
cis-1,2-Dichloroethene	ND	4.7		ug/Kg			10/24/17 12:49	
rans-1,2-Dichloroethene	ND	4.7		ug/Kg			10/24/17 12:49	
I,2-Dichloropropane	ND	4.7		ug/Kg			10/24/17 12:49	
sis-1,3-Dichloropropene	ND	4.7		ug/Kg			10/24/17 12:49	
rans-1,3-Dichloropropene	ND	4.7		ug/Kg			10/24/17 12:49	
Ethylbenzene	ND	4.7		ug/Kg ug/Kg			10/24/17 12:49	
	ND							· · · · · · · · .
Hexachlorobutadiene		4.7		ug/Kg			10/24/17 12:49	
2-Hexanone	ND	47		ug/Kg			10/24/17 12:49	
sopropylbenzene	ND	4.7		ug/Kg		10/24/17 10:39		
I-Isopropyltoluene	ND	4.7		ug/Kg			10/24/17 12:49	
Methylene Chloride	3.9 J	9.5		ug/Kg			10/24/17 12:49	
4-Methyl-2-pentanone (MIBK)	ND	47		ug/Kg			10/24/17 12:49	
Naphthalene	ND	9.5		ug/Kg			10/24/17 12:49	
N-Propylbenzene	ND	4.7		ug/Kg			10/24/17 12:49	
Styrene	ND	4.7	0.60	ug/Kg		10/24/17 10:39	10/24/17 12:49	1

RL

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

4.7

19

4.7

9.5

MDL Unit

0.71 ug/Kg

0.64 ug/Kg

0.67 ug/Kg

0.70 ug/Kg

0.67 ug/Kg

0.58 ug/Kg

0.66 ug/Kg

0.60 ug/Kg

0.53 ug/Kg

0.73 ug/Kg

2.0 ug/Kg

1.6 ug/Kg

0.62 ug/Kg

4.7 ug/Kg

0.69 ug/Kg

1.2 ug/Kg

D

Prepared

10/24/17 10:39

Client Sample ID: WCB-1 Date Collected: 10/11/17 09:57 Date Received: 10/17/17 10:10

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1.1.1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

1,1,2-Trichloro-1,2,2-trifluoroethane

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

Tetrachloroethene

Analyte

Toluene

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

Lab Sample ID: 720-82612-1 Matrix: Solid

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

10/24/17 10:39 10/24/17 12:49

Analyzed

10/24/17 12:49

6

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2,2-Dichloropropane	ND	4.7	1.9 ug/Kg	10/24/17 10:39	10/24/17 12:49	1	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	99	45 - 131		10/24/17 10:39	10/24/17 12:49	1	
1,2-Dichloroethane-d4 (Surr)	105	60 - 140		10/24/17 10:39	10/24/17 12:49	1	
Toluene-d8 (Surr)	106	58 - 140		10/24/17 10:39	10/24/17 12:49	1	

Method: 8270C - Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 82/UC - Semivolatile							• •	Analyzad	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.66		0 0		10/23/17 09:04	10/23/17 22:05	2
Acenaphthylene	ND		0.66		mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Acenaphthene	ND		0.66		mg/Kg		10/23/17 09:04		2
Fluorene	ND		0.66	0.040	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Phenanthrene	ND		0.66	0.33	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Anthracene	ND		0.66	0.043	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Fluoranthene	ND		0.66	0.072	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Pyrene	ND		0.66	0.038	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Benzo[a]anthracene	ND		3.3	0.18	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Chrysene	ND		0.66	0.33	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Benzo[b]fluoranthene	ND		0.66	0.094	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Benzo[a]pyrene	ND		0.66	0.065	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Benzo[k]fluoranthene	ND		0.66	0.14	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Indeno[1,2,3-cd]pyrene	ND		0.66	0.13	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Benzo[g,h,i]perylene	ND		0.66	0.20	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Dibenz(a,h)anthracene	ND		0.66	0.15	mg/Kg		10/23/17 09:04	10/23/17 22:05	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	58		21 - 98				10/23/17 09:04	10/23/17 22:05	2
2-Fluorobiphenyl	71		30 - 112				10/23/17 09:04	10/23/17 22:05	2
Terphenyl-d14	82		59 - 134				10/23/17 09:04	10/23/17 22:05	2
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	23.6		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-1

Date Collected: 10/11/17 09:57

Date Received: 10/17/17 10:10

2 3 4 5 6 7 8 9 10 11

Lab Sample	ID: 720-82612-1
	Matrix: Solid

Percent Solids: 76.4

	<u> </u>	1.3 Limits 0 - 1 38 - 148 y Gas Chron RL		mg/Kg		10/25/17 11:08 Prepared 10/25/17 11:08 10/25/17 11:08	Analyzed	1 Dil Fac
0.06 73 Biphenyle Result ND	s (PCBs) by	0 - 1 38 - 148 y Gas Chroi	matograj			10/25/17 11:08	10/26/17 01:25	1
73 d Biphenyls Result ND		38 - 148 y Gas Chroi	matogra					-
d Biphenyls Result ND		y Gas Chroi	matogra			10/25/17 11:08	10/26/17 01-25	
Result ND			matogra				10/20/11 01.20	1
Result ND				bhy				
			MDL		D	Prepared	Analyzed	Dil Fac
ND		0.065	0.0024	mg/Kg	<u>₿</u>	10/23/17 09:12	10/23/17 21:18	1
		0.065	0.0024	mg/Kg	¢	10/23/17 09:12	10/23/17 21:18	1
ND		0.065	0.0024	mg/Kg	¢	10/23/17 09:12	10/23/17 21:18	1
ND		0.065	0.0024	mg/Kg	φ.	10/23/17 09:12	10/23/17 21:18	1
ND		0.065	0.0024	mg/Kg	¢	10/23/17 09:12	10/23/17 21:18	1
ND		0.065	0.0024	mg/Kg	¢	10/23/17 09:12	10/23/17 21:18	1
0.040	J	0.065	0.0069	mg/Kg	¢	10/23/17 09:12	10/23/17 21:18	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
79		45 - 132				10/23/17 09:12	10/23/17 21:18	1
92		42 - 146				10/23/17 09:12	10/23/17 21:18	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.8	J	2.3	0.38	mg/Kg	<u>☆</u>	10/20/17 15:24	10/23/17 12:54	4
3.4	J	4.6	0.39	mg/Kg	₽	10/20/17 15:24	10/23/17 12:54	4
242		2.3	0.33	mg/Kg	☆	10/20/17 15:24	10/23/17 12:54	4
0.22	J	0.46	0.15	mg/Kg	¢	10/20/17 15:24	10/23/17 12:54	4
0.15	J	0.58	0.057	mg/Kg	☆	10/20/17 15:24	10/23/17 12:54	4
59.5	В	2.3	0.25	mg/Kg	₽	10/20/17 15:24	10/23/17 12:54	4
10.4		0.93	0.093	mg/Kg	¢	10/20/17 15:24	10/23/17 12:54	4
41.2		7.0	3.3	mg/Kg	₽	10/20/17 15:24	10/23/17 12:54	4
12.3		2.3	0.49	mg/Kg	¢	10/20/17 15:24	10/23/17 12:54	4
0.39	J	2.3	0.30	mg/Kg	¢	10/20/17 15:24	10/23/17 12:54	4
54.2		2.3	0.24	mg/Kg	¢	10/20/17 15:24	10/23/17 12:54	4
ND		4.6	0.70	mg/Kg	☆	10/20/17 15:24	10/23/17 12:54	4
ND		1.2	0.23	mg/Kg	¢.	10/20/17 15:24	10/23/17 12:54	4
0.77	J	2.3	0.67	mg/Kg	¢	10/20/17 15:24	10/23/17 12:54	4
53.7		2.3	0.32	mg/Kg	¢	10/20/17 15:24	10/23/17 12:54	4
55.6		7.0	2.9	mg/Kg	¢	10/20/17 15:24	10/23/17 12:54	4
A)								
	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	ND ND 0.040 %Recovery 79 92 Result 1.8 3.4 242 0.22 0.15 59.5 10.4 41.2 12.3 0.39 54.2 ND ND 0.77 53.7 55.6 (A)	ND ND ND 0.040 J %Recovery Qualifier 79 92 92 J 1.8 J 3.4 J 242 J 0.22 J 0.15 J 59.5 B 10.4 41.2 12.3 J 0.39 J 54.2 ND ND ND 0.77 J 53.7 55.6 (A) Qualifier	ND 0.065 ND 0.065 0.040 J 0.065 %Recovery Qualifier Limits 79 45-132 42-146 Result Qualifier RL 1.8 J 2.3 3.4 J 4.6 242 2.3 0.22 0.22 J 0.46 0.15 J 0.58 59.5 B 2.3 10.4 0.93 41.2 7.0 2.3 2.3 0.39 J 2.3 54.2 2.3 0.39 ND 4.6 1.2 0.77 J 2.3 53.7 2.3 53.7 53.7 2.3 55.6 7.0 1.2 7.0 A) Result Qualifier RL	ND 0.065 0.0024 0.040 J 0.065 0.0024 0.040 J 0.065 0.0069 %Recovery Qualifier Limits 79 45-132 92 92 42-146 MDL Result Qualifier RL MDL 1.8 J 2.3 0.38 3.4 J 4.6 0.39 242 2.3 0.33 0.22 J 0.46 0.15 0.15 J 0.58 0.057 59.5 B 2.3 0.25 10.4 0.93 0.093 0.093 41.2 7.0 3.3 0.25 10.4 0.93 0.23 0.24 ND 4.6 0.70 ND 1.2 0.23 0.77 J 2.3 0.32 53.7 2.3 0.32 0.32 55.6 7.0 2.9	ND 0.065 0.0024 mg/Kg 0.040 J 0.065 0.0024 mg/Kg %Recovery Qualifier Limits 0.065 0.0069 mg/Kg 79 45-132 92 42-146 Vinit Result Qualifier RL MDL Unit 1.8 J 2.3 0.38 mg/Kg 242 2.3 0.33 mg/Kg 242 2.3 0.33 mg/Kg 0.15 J 0.58 0.057 mg/Kg 0.15 J 0.58 0.057 mg/Kg 10.4 0.93 0.093 mg/Kg 11.2 7.0 3.3 mg/Kg 12.3 2.3 0.49 mg/Kg 10.4 0.93 0.093 mg/Kg 12.3 2.3 0.30 mg/Kg 0.39 J 2.3 0.30 mg/Kg 0.39 J 2.3 0.30 mg/Kg	ND 0.065 0.0024 mg/Kg S ND 0.065 0.0024 mg/Kg S 0.040 J 0.065 0.0069 mg/Kg S %Recovery Qualifier Limits MDL Unit D 79 45 - 132 92 42 - 146 S S S Result Qualifier RL MDL Unit D S 1.8 J 2.3 0.38 mg/Kg S	ND 0.065 0.0024 mg/Kg I/23/17 09:12 ND 0.065 0.0024 mg/Kg I/23/17 09:12 0.040 J 0.065 0.0069 mg/Kg I/23/17 09:12 %Recovery Qualifier Limits Prepared Prepared 79 45-132 10/23/17 09:12 %Result Qualifier RL MDL Unit D Prepared 10/23/17 9:2 42.146 0.38 mg/Kg 10/20/17 15:24 3.4 J 4.6 0.39 mg/Kg 10/20/17 15:24 0.22 J 0.46 0.15 mg/Kg 10/20/17 15:24 0.22 J 0.46 0.15 mg/Kg 10/20/17 15:24 0.15 J 0.58 0.057 mg/Kg 10/20/17 15:24 10.4 0.93 0.093 mg/Kg 10/20/17 15:24 10.4 0.93 0	ND 0.065 0.0024 mg/Kg ☆ 10/23/17 09:12 10/23/17 21:18 ND 0.065 0.0065 0.0049 mg/Kg ☆ 10/23/17 09:12 10/23/17 21:18 0.040 J 0.065 0.0069 mg/Kg ☆ 10/23/17 09:12 10/23/17 21:18 %Recovery Qualifier Limits Frepared Analyzed 79 45-132 mg/Kg づ 10/23/17 09:12 Analyzed 79 45-132 mg/Kg づ 10/23/17 09:12 Analyzed 79 45-132 mg/Kg づ 10/23/17 12:54 Analyzed 79 45-132 mg/Kg づ 10/20/17 15:24 10/23/17 12:54 92 42-146 MDL Unit D Prepared Analyzed 10/23/17 09:12 10/20/17 15:24 10/23/17 12:54 10/23/17 12:54 10/23/17 12:54 3.4 J 4.6 0.39 mg/Kg 10/20/17 15:24 10/23/17 12:54 0.22 J 0.46 0.15 mg/Kg 10/20/17 15:24 10/23/17 12:54

Lab Sample ID: 720-82612-2

Matrix: Solid

5

6

Client Sample ID: WCB-2 Date Collected: 10/11/17 10:34

Date Collected: 10/11/17 10:34 Date Received: 10/17/17 10:10

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	4.8	1.2	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Acetone	160	48	37	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Benzene	ND	4.8	0.62	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Dichlorobromomethane	ND	4.8	0.69	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Bromobenzene	ND	4.8	0.76	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Chlorobromomethane	ND	19	0.69	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Bromoform	ND	4.8	1.9	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Bromomethane	ND	9.6	0.76	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
2-Butanone (MEK)	ND	48	20	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
n-Butylbenzene	ND	4.8	0.96	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
sec-Butylbenzene	ND	4.8	0.69	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
tert-Butylbenzene	ND	4.8	0.70	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Carbon disulfide	ND	4.8	1.9	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Carbon tetrachloride	ND	4.8	0.60	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Chlorobenzene	ND	4.8	0.66	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Chloroethane	ND	9.6	0.54	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Chloroform	ND	4.8	0.63	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Chloromethane	ND	9.6	0.69	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
2-Chlorotoluene	ND	4.8	0.62	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
4-Chlorotoluene	ND	4.8	0.65	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Chlorodibromomethane	ND	4.8	0.68	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,2-Dichlorobenzene	ND	4.8	0.65	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,3-Dichlorobenzene	ND	4.8	0.69	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,4-Dichlorobenzene	ND	4.8		ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,3-Dichloropropane	ND	4.8		ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,1-Dichloropropene	ND	4.8	0.66	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,2-Dibromo-3-Chloropropane	ND	9.6	1.6	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Ethylene Dibromide	ND	4.8	1.4	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Dibromomethane	ND	9.6	0.83	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Dichlorodifluoromethane	ND	9.6	0.76	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,1-Dichloroethane	ND	4.8	0.65	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,2-Dichloroethane	ND	4.8	0.73	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,1-Dichloroethene	ND	4.8	0.60	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
cis-1,2-Dichloroethene	ND	4.8	0.65	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
trans-1,2-Dichloroethene	ND	4.8	0.72	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
1,2-Dichloropropane	ND	4.8	0.61	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
cis-1,3-Dichloropropene	ND	4.8	0.66	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
trans-1,3-Dichloropropene	ND	4.8	0.64	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Ethylbenzene	ND	4.8	0.72	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Hexachlorobutadiene	ND	4.8	0.87	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
2-Hexanone	ND	48	9.6	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Isopropylbenzene	ND	4.8	0.65	ug/Kg		10/24/17 10:39	10/24/17 13:17	1
4-Isopropyltoluene	ND	4.8		ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Methylene Chloride	8.6 J	9.6		ug/Kg		10/24/17 10:39	10/24/17 13:17	1
4-Methyl-2-pentanone (MIBK)	ND	48		ug/Kg			10/24/17 13:17	1
Naphthalene	ND	9.6		ug/Kg			10/24/17 13:17	1
N-Propylbenzene	ND	4.8		ug/Kg		10/24/17 10:39	10/24/17 13:17	1
Styrene	ND	4.8		ug/Kg			10/24/17 13:17	1
1,1,1,2-Tetrachloroethane	ND	4.8		ug/Kg			10/24/17 13:17	· · · · · · · · 1

RL

4.8

MDL Unit

0.72 ug/Kg

Client Sample ID: WCB-2 Date Collected: 10/11/17 10:34 Date Received: 10/17/17 10:10

1,1,2,2-Tetrachloroethane

Analyte

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

Lab Sample ID: 720-82612-2 Matrix: Solid

10/24/17 10:39 10/24/17 13:17

Analyzed

Prepared

D

Dil Fac

1

Tetrachloroethene	ND		4.8	0.64	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
Toluene	ND		4.8	0.68	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	ł
1,2,3-Trichlorobenzene	ND		4.8	0.71	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
1,2,4-Trichlorobenzene	ND		4.8	0.68	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	_
1,1,1-Trichloroethane	ND		4.8	0.59	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
1,1,2-Trichloroethane	ND		4.8	0.67	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
Trichloroethene	ND		4.8	0.61	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
Trichlorofluoromethane	ND		4.8	0.54	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
1,2,3-Trichloropropane	ND		4.8	0.74	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.8	2.0	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
1,2,4-Trimethylbenzene	ND		4.8	1.6	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
1,3,5-Trimethylbenzene	ND		4.8	0.62	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
Vinyl acetate	ND		19	4.8	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
Vinyl chloride	ND		4.8	0.70	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
Xylenes, Total	ND		9.6	1.2	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	ï
2,2-Dichloropropane	ND		4.8	1.9	ug/Kg	10/24/17 10:39	10/24/17 13:17	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	96		45 - 131			10/24/17 10:39	10/24/17 13:17	1	
1,2-Dichloroethane-d4 (Surr)	109		60 - 140			10/24/17 10:39	10/24/17 13:17	1	
Toluene-d8 (Surr)	101		58 - 140			10/24/17 10:39	10/24/17 13:17	1	

Method: 8270C - Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.66	0.33	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Acenaphthylene	ND		0.66	0.055	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Acenaphthene	ND		0.66	0.037	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Fluorene	ND		0.66	0.039	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Phenanthrene	ND		0.66	0.33	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Anthracene	ND		0.66	0.042	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Fluoranthene	ND		0.66	0.072	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Pyrene	ND		0.66	0.037	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Benzo[a]anthracene	ND		3.3	0.18	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Chrysene	ND		0.66	0.33	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Benzo[b]fluoranthene	ND		0.66	0.094	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Benzo[a]pyrene	ND		0.66	0.065	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Benzo[k]fluoranthene	ND		0.66	0.14	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Indeno[1,2,3-cd]pyrene	ND		0.66	0.13	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Benzo[g,h,i]perylene	ND		0.66	0.20	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Dibenz(a,h)anthracene	ND		0.66	0.15	mg/Kg		10/23/17 09:04	10/23/17 22:31	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	28		21 - 98				10/23/17 09:04	10/23/17 22:31	2
2-Fluorobiphenyl	59		30 - 112				10/23/17 09:04	10/23/17 22:31	2
Terphenyl-d14	59		59 - 134				10/23/17 09:04	10/23/17 22:31	2
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	18.7		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-2

Date Collected: 10/11/17 10:34

Lab Sample ID: 720-82612-2 Matrix: Solid Percent Solids: 81.3

5 6

	O			0					
Method: 8015B - Diesel Range Analyte		DRO) (GC) Qualifier) - Silica Gel RL	Cleanup		D	Prepared	Analyzed	Dil Fa
Diesel Range Organics [C10-C28]	120		2.5		mg/Kg	— x	10/25/17 11:08	10/26/17 01:49	
					5 5				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Capric Acid (Surr)	0.08		0 - 1					10/26/17 01:49	
p-Terphenyl	56		38 - 148				10/25/17 11:08	10/26/17 01:49	
Method: 8082 - Polychlorinate	d Biphenvl	s (PCBs) b	v Gas Chror	natograi	ohv				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
PCB-1016	ND		0.060	0.0021	mg/Kg		10/23/17 09:12	10/23/17 21:01	
PCB-1221	ND		0.060	0.0021	mg/Kg	¢	10/23/17 09:12	10/23/17 21:01	
PCB-1232	ND		0.060	0.0021	mg/Kg	¢	10/23/17 09:12	10/23/17 21:01	
PCB-1242	ND		0.060	0.0021	mg/Kg	¢	10/23/17 09:12	10/23/17 21:01	
PCB-1248	ND		0.060	0.0021	mg/Kg	¢	10/23/17 09:12	10/23/17 21:01	
PCB-1254	ND		0.060	0.0021	mg/Kg	¢	10/23/17 09:12	10/23/17 21:01	
PCB-1260	0.051	J	0.060	0.0063	mg/Kg	☆	10/23/17 09:12	10/23/17 21:01	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
etrachloro-m-xylene	84		45 - 132				10/23/17 09:12	10/23/17 21:01	
	98		10 110				10/23/17 00.12	10/23/17 21:01	
Nethod: 6010B - Metals (ICP)			42 - 146				10/20/11 03.12		
Nethod: 6010B - Metals (ICP) nalyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil I
Method: 6010B - Metals (ICP) nalyte ntimony	Result	Qualifier	RL 	0.26	mg/Kg		Prepared 10/20/17 15:24	Analyzed 10/24/17 16:50	Dil I
Nethod: 6010B - Metals (ICP) nalyte ntimony rsenic	Result 2.1 5.3	Qualifier	RL 1.5 3.1	0.26 0.26	mg/Kg mg/Kg	— <u></u>	Prepared 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59	Dil I
Method: 6010B - Metals (ICP) analyte antimony arsenic Barium	Result 2.1 5.3 277		RL 1.5 3.1 1.5	0.26 0.26 0.22	mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59	Dil I
Method: 6010B - Metals (ICP) nalyte Antimony Arsenic Barium Beryllium	Result 2.1 5.3 277 0.15	J	RL 1.5 3.1 1.5 0.31	0.26 0.26 0.22 0.10	mg/Kg mg/Kg mg/Kg mg/Kg	******	Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	Dil I
Method: 6010B - Metals (ICP) Inalyte Intimony Insenic Barium Beryllium Cadmium	Result 2.1 5.3 277 0.15 0.26	J	RL 1.5 3.1 1.5 0.31 0.38	0.26 0.26 0.22 0.10 0.038	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * *	Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	Dil I
Method: 6010B - Metals (ICP) nalyte Intimony Int	Result 2.1 5.3 277 0.15 0.26 85.9	J	RL 1.5 3.1 1.5 0.31 0.38 1.5	0.26 0.26 0.22 0.10 0.038 0.16	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	******	Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	Dill
Aethod: 6010B - Metals (ICP) analyte antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	Result 2.1 5.3 277 0.15 0.26 85.9 11.5	J	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62	0.26 0.22 0.10 0.038 0.16 0.062	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * *	Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	Dil I
Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6	J	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6	0.26 0.22 0.10 0.038 0.16 0.062 2.2	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	Dil I
Method: 6010B - Metals (ICP) analyte antimony arsenic Barium Beryllium Cadmium Chromium Cobalt Copper ead	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2	J J B	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	
Method: 6010B - Metals (ICP) analyte antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2 1.1	J J B	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5 1.5	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32 0.20	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	Dil I
Method: 6010B - Metals (ICP) nalyte intimony irsenic aarium eryllium admium chromium obalt copper ead lolybdenum lickel	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2 1.1 105	J J B	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5 1.5 1.5	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32 0.20 0.16	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	
Aethod: 6010B - Metals (ICP) nalyte Antimony Arsenic Barium Beryllium Bardmium Chromium Cobalt Copper ead Nolybdenum lickel Belenium	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2 1.1 105 ND	J J B	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5 1.5 1.5 3.1	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32 0.20 0.16 0.46	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59 10/23/17 12:59	Dill
Aethod: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Lickel Selenium Silver	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2 1.1 105 ND	J J J	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5 1.5 1.5 3.1 0.75	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32 0.20 0.16 0.46 0.16	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59	Dil F
Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2 1.1 105 ND ND 0.61	J J J	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5 1.5 3.1 0.38 1.5 0.62 4.6 1.5 1.5 1.5 1.5 3.1 0.77 1.5	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32 0.20 0.16 0.46 0.16 0.45	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59	<u>Dil I</u>
Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Yanadium	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2 1.1 105 ND	J J J	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5 1.5 1.5 3.1 0.75	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32 0.20 0.16 0.46 0.16 0.45 0.21	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59	
Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Zanadium	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2 1.1 105 ND 0.61 56.4 89.7	J J J	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5 1.5 3.1 0.38 1.5 0.62 4.6 1.5 1.5 3.1 0.77 1.5 1.5 1.5	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32 0.20 0.16 0.46 0.16 0.45 0.21	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59	<u>Dil F</u>
DCB Decachlorobiphenyl Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Method: 7471A - Mercury (CV/ Analyte	Result 2.1 5.3 277 0.15 0.26 85.9 11.5 49.6 30.2 1.1 105 ND 0.61 56.4 89.7 AA)	J J J	RL 1.5 3.1 1.5 0.31 0.38 1.5 0.62 4.6 1.5 1.5 3.1 0.38 1.5 0.62 4.6 1.5 1.5 3.1 0.77 1.5 1.5 1.5	0.26 0.22 0.10 0.038 0.16 0.062 2.2 0.32 0.20 0.16 0.46 0.16 0.45 0.21	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 10/20/17 15:24 10/20/17 15:24	Analyzed 10/24/17 16:50 10/23/17 12:59 10/23/17 12:59	Dil F

Lab Sample ID: 720-82612-3

Matrix: Solid

5

6

Client Sample ID: WCB-3 Date Collected: 10/11/17 12:12

Date Received: 10/17/17 10:10

Analyte	anic Compounds (GC/M Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND	4.8	1.1	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Acetone	130	48	36	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Benzene	ND	4.8	0.62	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Dichlorobromomethane	ND	4.8	0.69	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Bromobenzene	ND	4.8	0.76	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Chlorobromomethane	ND	19	0.69	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Bromoform	ND	4.8	1.9	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Bromomethane	ND	9.6	0.76	ug/Kg		10/24/17 10:39	10/24/17 13:45	
P-Butanone (MEK)	ND	48	20	ug/Kg		10/24/17 10:39	10/24/17 13:45	
-Butylbenzene	ND	4.8	0.96	ug/Kg		10/24/17 10:39	10/24/17 13:45	
ec-Butylbenzene	ND	4.8	0.69	ug/Kg		10/24/17 10:39	10/24/17 13:45	
ert-Butylbenzene	ND	4.8	0.70	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Carbon disulfide	ND	4.8	1.9	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Carbon tetrachloride	ND	4.8		ug/Kg		10/24/17 10:39	10/24/17 13:45	
Chlorobenzene	ND	4.8		ug/Kg		10/24/17 10:39	10/24/17 13:45	
Chloroethane	ND	9.6		ug/Kg			10/24/17 13:45	
Chloroform	ND	4.8		ug/Kg			10/24/17 13:45	
chloromethane	ND	9.6		ug/Kg			10/24/17 13:45	
-Chlorotoluene	ND	4.8		ug/Kg			10/24/17 13:45	
-Chlorotoluene	ND	4.8		ug/Kg			10/24/17 13:45	
hlorodibromomethane	ND	4.8		ug/Kg			10/24/17 13:45	
,2-Dichlorobenzene	ND	4.8		ug/Kg			10/24/17 13:45	
,3-Dichlorobenzene	ND	4.8		ug/Kg			10/24/17 13:45	
,4-Dichlorobenzene	ND	4.8		ug/Kg			10/24/17 13:45	
,3-Dichloropropane	ND	4.8		ug/Kg			10/24/17 13:45	
,1-Dichloropropene	ND	4.8		ug/Kg			10/24/17 13:45	
,2-Dibromo-3-Chloropropane	ND	4.0 9.6		ug/Kg			10/24/17 13:45	
	ND	9.0 4.8					10/24/17 13:45	
thylene Dibromide	ND	4.0 9.6		ug/Kg			10/24/17 13:45	
Vibromomethane				ug/Kg				
Nichlorodifluoromethane	ND	9.6		ug/Kg			10/24/17 13:45	
,1-Dichloroethane	ND	4.8		ug/Kg			10/24/17 13:45	
,2-Dichloroethane	ND	4.8		ug/Kg			10/24/17 13:45	
,1-Dichloroethene	ND	4.8		ug/Kg			10/24/17 13:45	
is-1,2-Dichloroethene	ND	4.8		ug/Kg			10/24/17 13:45	
ans-1,2-Dichloroethene	ND	4.8		ug/Kg			10/24/17 13:45	
,2-Dichloropropane	ND	4.8		ug/Kg			10/24/17 13:45	
is-1,3-Dichloropropene	ND	4.8		ug/Kg			10/24/17 13:45	
ans-1,3-Dichloropropene	ND	4.8		ug/Kg			10/24/17 13:45	
thylbenzene	ND	4.8		ug/Kg			10/24/17 13:45	
lexachlorobutadiene	ND	4.8		ug/Kg			10/24/17 13:45	
-Hexanone	ND	48		ug/Kg			10/24/17 13:45	
opropylbenzene	ND	4.8	0.65	ug/Kg		10/24/17 10:39	10/24/17 13:45	
-Isopropyltoluene	ND	4.8		ug/Kg		10/24/17 10:39	10/24/17 13:45	
lethylene Chloride	11	9.6	3.8	ug/Kg		10/24/17 10:39	10/24/17 13:45	
-Methyl-2-pentanone (MIBK)	ND	48	9.6	ug/Kg		10/24/17 10:39	10/24/17 13:45	
laphthalene	ND	9.6	1.4	ug/Kg		10/24/17 10:39	10/24/17 13:45	
I-Propylbenzene	ND	4.8	0.63	ug/Kg		10/24/17 10:39	10/24/17 13:45	
Styrene	ND	4.8	0.60	ug/Kg		10/24/17 10:39	10/24/17 13:45	
,1,1,2-Tetrachloroethane	ND	4.8		ug/Kg		10/24/17 10:39	10/24/17 13:45	

RL

4.8

MDL Unit

0.72 ug/Kg

Client Sample ID: WCB-3 Date Collected: 10/11/17 12:12 Date Received: 10/17/17 10:10

1,1,2,2-Tetrachloroethane

Analyte

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

Lab Sample ID: 720-82612-3 Matrix: Solid

10/24/17 10:39 10/24/17 13:45

Analyzed

Prepared

D

6

Dil Fac

1

Tetrachloroethene	ND		4.8	0.64	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
Toluene	ND		4.8		ug/Kg		10/24/17 13:45		
1.2.3-Trichlorobenzene	ND		4.8		ug/Kg		10/24/17 13:45	1	
1,2,4-Trichlorobenzene	ND		4.8			10/24/17 10:39	10/24/17 13:45	1	
					ug/Kg			· · · · · · · .	ī
1,1,1-Trichloroethane	ND		4.8		ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
1,1,2-Trichloroethane	ND		4.8	0.67	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
Trichloroethene	ND		4.8	0.60	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
Trichlorofluoromethane	ND		4.8	0.54	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
1,2,3-Trichloropropane	ND		4.8	0.74	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.8	2.0	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
1,2,4-Trimethylbenzene	ND		4.8	1.6	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
1,3,5-Trimethylbenzene	ND		4.8	0.62	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
Vinyl acetate	ND		19	4.8	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
Vinyl chloride	ND		4.8	0.70	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
Xylenes, Total	ND		9.6	1.2	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	ī
2,2-Dichloropropane	ND		4.8	1.9	ug/Kg	10/24/17 10:39	10/24/17 13:45	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	88		45 - 131			10/24/17 10:39	10/24/17 13:45	1	
1,2-Dichloroethane-d4 (Surr)	111		60 - 140			10/24/17 10:39	10/24/17 13:45	1	
Toluene-d8 (Surr)	99		58 - 140			10/24/17 10:39	10/24/17 13:45	1	

Method: 8270C - Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.67	0.33	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Acenaphthylene	ND		0.67	0.056	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Acenaphthene	ND		0.67	0.038	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Fluorene	ND		0.67	0.040	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Phenanthrene	ND		0.67	0.33	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Anthracene	ND		0.67	0.043	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Fluoranthene	ND		0.67	0.073	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Pyrene	ND		0.67	0.038	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Benzo[a]anthracene	ND		3.3	0.18	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Chrysene	ND		0.67	0.33	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Benzo[b]fluoranthene	ND		0.67	0.095	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Benzo[a]pyrene	ND		0.67	0.066	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Benzo[k]fluoranthene	ND		0.67	0.14	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Indeno[1,2,3-cd]pyrene	ND		0.67	0.13	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Benzo[g,h,i]perylene	ND		0.67	0.20	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Dibenz(a,h)anthracene	ND		0.67	0.15	mg/Kg		10/23/17 09:04	10/23/17 22:57	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	23		21 - 98				10/23/17 09:04	10/23/17 22:57	2
2-Fluorobiphenyl	30		30 - 112				10/23/17 09:04	10/23/17 22:57	2
Terphenyl-d14	31	X	59 - 134				10/23/17 09:04	10/23/17 22:57	2
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	13.0		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-3

Date Collected: 10/11/17 12:12

Date Received: 10/17/17 10:10

2 3 4 5 6 7 8 9 10 11

Lab Sample ID: 720-82612-3 Matrix: Solid

Percent Solids: 87.0

Method: 8015B - Diesel Range Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	170		11	8.6	mg/Kg	<u>\$</u>	10/25/17 11:08	10/26/17 02:13	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0		0 - 1				10/25/17 11:08	10/26/17 02:13	10
p-Terphenyl	0	ХD	38 - 148				10/25/17 11:08	10/26/17 02:13	10
Method: 8082 - Polychlorinate	d Binhenvl	s (PCBs) h	v Gas Chro	matograj	ohv				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	F1	0.056	0.0020	mg/Kg	— 	10/23/17 09:12	-	1
PCB-1221	ND		0.056	0.0020	0 0	☆	10/23/17 09:12	10/23/17 19:38	1
PCB-1232	ND		0.056	0.0020	0 0	☆	10/23/17 09:12	10/23/17 19:38	1
PCB-1242	ND		0.056	0.0020		¢.	10/23/17 09:12	10/23/17 19:38	1
PCB-1248	ND		0.056	0.0020	0 0	₽		10/23/17 19:38	1
PCB-1254	ND		0.056	0.0020	mg/Kg	₽		10/23/17 19:38	1
PCB-1260	ND	F1	0.056	0.0059		¢	10/23/17 09:12	10/23/17 19:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		45 - 132				10/23/17 09:12		1
DCB Decachlorobiphenyl	61		42 - 146				10/23/17 09:12	10/23/17 19:38	1
Method: 6010B - Metals (ICP) Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Antimony	0.61	J	1.7	0.29	mg/Kg	 	10/20/17 15:24		4
Arsenic	4.8		3.5	0.29	mg/Kg	¢		10/23/17 13:05	4
Barium	365		1.7		mg/Kg	¢		10/23/17 13:05	4
Beryllium	0.42		0.35	0.11	mg/Kg	¢		10/23/17 13:05	4
Cadmium	0.25		0.43		mg/Kg	¢		10/23/17 13:05	4
Chromium	51.2	B	1.7		mg/Kg	¢.	10/20/17 15:24		4
Cobalt	8.6		0.69	0.069	mg/Kg	¢		10/23/17 13:05	4
Copper	37.9		5.2		mg/Kg	¢		10/23/17 13:05	4
Lead	18.3		1.7		mg/Kg	¢		10/23/17 13:05	4
Molybdenum	0.71	J	1.7		mg/Kg	¢		10/23/17 13:05	4
Nickel	56.4		1.7		mg/Kg	¢		10/23/17 13:05	4
Selenium	ND		3.5		mg/Kg	¢		10/23/17 13:05	4
Silver	ND		0.86		mg/Kg	¢		10/23/17 13:05	4
Thallium	0.50	J	1.7	0.50	mg/Kg	☆	10/20/17 15:24	10/23/17 13:05	4
Vanadium	42.9		1.7		mg/Kg	¢		10/23/17 13:05	4
	75.3		5.2	2.2	mg/Kg	¢	10/20/17 15:24	10/23/17 13:05	4
Zinc									
Zinc Method: 7471A - Mercury (CV/ Analyte	AA)	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 720-82612-4 Matrix: Solid

5

6

Date Collected: 10/11/17 11:34 Date Received: 10/17/17 10:10

Client Sample ID: WCB-4

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	4.7	1.1	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Acetone	ND	47	36	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Benzene	ND	4.7	0.61	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Dichlorobromomethane	ND	4.7	0.68	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Bromobenzene	ND	4.7	0.74	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Chlorobromomethane	ND	19	0.68	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Bromoform	ND	4.7	1.9	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Bromomethane	ND	9.4	0.74	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
2-Butanone (MEK)	ND	47	20	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
n-Butylbenzene	ND	4.7	0.94	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
sec-Butylbenzene	ND	4.7	0.68	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
tert-Butylbenzene	ND	4.7	0.68	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Carbon disulfide	ND	4.7	1.9	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Carbon tetrachloride	ND	4.7	0.58	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Chlorobenzene	ND	4.7	0.65	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Chloroethane	ND	9.4	0.53	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Chloroform	ND	4.7	0.62	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Chloromethane	ND	9.4	0.68	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
2-Chlorotoluene	ND	4.7	0.61	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
4-Chlorotoluene	ND	4.7	0.64	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Chlorodibromomethane	ND	4.7	0.67	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,2-Dichlorobenzene	ND	4.7	0.64	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,3-Dichlorobenzene	ND	4.7	0.68	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,4-Dichlorobenzene	ND	4.7	0.67	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,3-Dichloropropane	ND	4.7	0.68	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,1-Dichloropropene	ND	4.7	0.65	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,2-Dibromo-3-Chloropropane	ND	9.4	1.6	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Ethylene Dibromide	ND	4.7	1.3	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Dibromomethane	ND	9.4	0.81	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Dichlorodifluoromethane	ND	9.4	0.74	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,1-Dichloroethane	ND	4.7	0.64	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,2-Dichloroethane	ND	4.7	0.71	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,1-Dichloroethene	ND	4.7	0.58	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
cis-1,2-Dichloroethene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 14:13	1
rans-1,2-Dichloroethene	ND	4.7	0.70	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,2-Dichloropropane	ND	4.7	0.59	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
cis-1,3-Dichloropropene	ND	4.7	0.65	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
rans-1,3-Dichloropropene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Ethylbenzene	ND	4.7		ug/Kg			10/24/17 14:13	1
Hexachlorobutadiene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 14:13	1
2-Hexanone	ND	47		ug/Kg			10/24/17 14:13	1
sopropylbenzene	ND	4.7		ug/Kg		10/24/17 10:39	10/24/17 14:13	1
I-Isopropyltoluene	ND	4.7		ug/Kg			10/24/17 14:13	1
Methylene Chloride	5.5 J	9.4		ug/Kg			10/24/17 14:13	1
I-Methyl-2-pentanone (MIBK)	ND	47		ug/Kg			10/24/17 14:13	1
Naphthalene	ND	9.4		ug/Kg			10/24/17 14:13	
N-Propylbenzene	ND	4.7		ug/Kg			10/24/17 14:13	1
Styrene	ND	4.7		ug/Kg			10/24/17 14:13	1
1,1,1,2-Tetrachloroethane	ND	4.7		ug/Kg			10/24/17 14:13	

Client Sample ID: WCB-4 Date Collected: 10/11/17 11:34 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-4 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		4.7	0.70	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Tetrachloroethene	ND		4.7	0.63	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Toluene	ND		4.7	0.67	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,2,3-Trichlorobenzene	ND		4.7	0.69	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,2,4-Trichlorobenzene	ND		4.7	0.67	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,1,1-Trichloroethane	ND		4.7	0.57	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,1,2-Trichloroethane	ND		4.7	0.66	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Trichloroethene	ND		4.7	0.59	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Trichlorofluoromethane	ND		4.7	0.53	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,2,3-Trichloropropane	ND		4.7	0.72	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.7	2.0	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,2,4-Trimethylbenzene	ND		4.7	1.5	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
1,3,5-Trimethylbenzene	ND		4.7	0.61	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Vinyl acetate	ND		19	4.7	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Vinyl chloride	ND		4.7		ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Xylenes, Total	ND		9.4	1.1	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
2,2-Dichloropropane	ND		4.7	1.9	ug/Kg		10/24/17 10:39	10/24/17 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	108		45 - 131				10/24/17 10:39	10/24/17 14:13	1
1,2-Dichloroethane-d4 (Surr)	109		60 - 140				10/24/17 10:39	10/24/17 14:13	1
Toluene-d8 (Surr)	101		58 - 140				10/24/17 10:39	10/24/17 14:13	1

Method: 8270C - Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

wethod: 8270C - Semivolati							• •		
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.67	0.33	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Acenaphthylene	ND		0.67	0.056	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Acenaphthene	ND		0.67	0.038	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Fluorene	ND		0.67	0.040	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Phenanthrene	ND		0.67	0.33	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Anthracene	ND		0.67	0.043	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Fluoranthene	ND		0.67	0.073	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Pyrene	ND		0.67	0.038	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Benzo[a]anthracene	ND		3.3	0.18	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Chrysene	ND		0.67	0.33	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Benzo[b]fluoranthene	ND		0.67	0.094	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Benzo[a]pyrene	ND		0.67	0.066	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Benzo[k]fluoranthene	ND		0.67	0.14	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Indeno[1,2,3-cd]pyrene	ND		0.67	0.13	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Benzo[g,h,i]perylene	ND		0.67	0.20	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Dibenz(a,h)anthracene	ND		0.67	0.15	mg/Kg		10/23/17 09:04	10/23/17 23:22	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	49		21 - 98				10/23/17 09:04	10/23/17 23:22	2
2-Fluorobiphenyl	65		30 - 112				10/23/17 09:04	10/23/17 23:22	2
Terphenyl-d14	67		59 - 134				10/23/17 09:04	10/23/17 23:22	2
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	27.7		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-4

Date Collected: 10/11/17 11:34

Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-4 Matrix: Solid

Percent Solids: 72.3

5

6

Method: 8015B - Diesel Range Analyte	-	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	65		4.1	3.1	mg/Kg	— <u>\$</u>	10/25/17 11:08	10/26/17 02:38	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0.1		0 - 1				10/25/17 11:08	10/26/17 02:38	
p-Terphenyl	90		38 - 148				10/25/17 11:08	10/26/17 02:38	3
Method: 8082 - Polychlorinate	d Biphenvl	s (PCBs) by	Gas Chro	matograr	ohv				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.067	0.0024	mg/Kg	<u> </u>	10/23/17 09:12	10/23/17 20:11	1
PCB-1221	ND		0.067	0.0024		¢	10/23/17 09:12	10/23/17 20:11	1
PCB-1232	ND		0.067	0.0024	mg/Kg	¢	10/23/17 09:12	10/23/17 20:11	1
PCB-1242	ND		0.067	0.0024	mg/Kg	¢.	10/23/17 09:12	10/23/17 20:11	1
PCB-1248	ND		0.067	0.0024	mg/Kg	¢	10/23/17 09:12	10/23/17 20:11	1
PCB-1254	ND		0.067	0.0024	mg/Kg	¢	10/23/17 09:12	10/23/17 20:11	1
PCB-1260	ND		0.067	0.0071	mg/Kg	¢	10/23/17 09:12	10/23/17 20:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	81		45 - 132				10/23/17 09:12	10/23/17 20:11	
DCB Decachlorobiphenyl	81		42 - 146				10/23/17 09:12	10/23/17 20:11	
Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	1.1	J	2.2	0.37	mg/Kg	- \\\	•	10/23/17 13:10	
Arsenic	21.5		4.5		mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	4
Barium	1090		2.2	0.32	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	
Beryllium	1.1		0.45	0.14	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	
Cadmium	ND		0.56	0.055	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	
Chromium	80.5	В	2.2	0.24	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	
Cobalt	29.1		0.89	0.089	mg/Kg	¢.	10/20/17 15:24	10/23/17 13:10	4
Copper	31.4		6.7	3.2	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	
Lead	12.2		5.6	1.2	mg/Kg	¢	10/20/17 15:24	10/23/17 17:07	10
Molybdenum	8.2		2.2	0.29	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	• • • • • • • •
Nickel	143		2.2	0.23	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	
Selenium	ND		11.2	1.7	mg/Kg	¢	10/20/17 15:24	10/23/17 17:07	1(
Silver	0.27	J	1.1	0.23	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	
Thallium	ND		5.6	1.6	mg/Kg	¢	10/20/17 15:24	10/24/17 15:28	10
Vanadium	86.2		2.2		mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	4
Zinc	59.8		6.7	2.8	mg/Kg	¢	10/20/17 15:24	10/23/17 13:10	4
Method: 7471A - Mercury (CVA	A)								
		Qualifier	RL		11	D	Bronorod	Apolyzod	Dil Fac
Analyte	Result	Quaimer	RL	MDL	Unit	U	Prepared	Analyzed	Dirra

Client: Woodard & Curran, Inc. Project/Site: SJC Hanger A

TestAmerica Job ID: 720-82612-1

Matrix: Solid

Percent Solids: 82.9

Lab Sample ID: 720-82612-5

Date Collected: 10/11/17 09:33 Date Received: 10/17/17 10:10

Client Sample ID: WCB-1 (0-6)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0024	0.00079	mg/Kg	\☆	10/23/17 09:08	10/24/17 05:33	1
Dieldrin	ND		0.0024	0.00044	mg/Kg	¢	10/23/17 09:08	10/24/17 05:33	1
Endrin aldehyde	ND		0.0024	0.00079	mg/Kg	₽	10/23/17 09:08	10/24/17 05:33	1
Endrin	ND		0.0024	0.00079	mg/Kg	¢	10/23/17 09:08	10/24/17 05:33	1
Endrin ketone	ND		0.0024	0.00047	mg/Kg	¢	10/23/17 09:08	10/24/17 05:33	1
Heptachlor	ND		0.0024	0.00097	mg/Kg	₽	10/23/17 09:08	10/24/17 05:33	1
Heptachlor epoxide	ND		0.0024	0.00048	mg/Kg	¢.	10/23/17 09:08	10/24/17 05:33	1
4,4'-DDT	ND		0.0024	0.00059	mg/Kg	₽	10/23/17 09:08	10/24/17 05:33	1
4,4'-DDE	ND		0.0024	0.00097	mg/Kg	₽	10/23/17 09:08	10/24/17 05:33	1
4,4'-DDD	ND		0.0024	0.00072	mg/Kg	¢	10/23/17 09:08	10/24/17 05:33	1
Endosulfan I	ND		0.0024	0.00097	mg/Kg	₽	10/23/17 09:08	10/24/17 05:33	1
Endosulfan II	ND		0.0024	0.00098	mg/Kg	₽	10/23/17 09:08	10/24/17 05:33	1
alpha-BHC	ND		0.0024	0.00059	mg/Kg	¢	10/23/17 09:08	10/24/17 05:33	1
beta-BHC	ND		0.0024	0.00098	mg/Kg	☆	10/23/17 09:08	10/24/17 05:33	1
gamma-BHC (Lindane)	ND		0.0024	0.00059	mg/Kg	₽	10/23/17 09:08	10/24/17 05:33	1
delta-BHC	ND		0.0024	0.00072	mg/Kg	¢	10/23/17 09:08	10/24/17 05:33	1
Endosulfan sulfate	ND		0.0024	0.00045	mg/Kg	₽	10/23/17 09:08	10/24/17 05:33	1
Methoxychlor	ND		0.0024	0.00054	mg/Kg	☆	10/23/17 09:08	10/24/17 05:33	1
Toxaphene	ND		0.047	0.0081	mg/Kg	¢	10/23/17 09:08	10/24/17 05:33	1
Chlordane (technical)	0.041	J	0.047	0.0034	mg/Kg	☆	10/23/17 09:08	10/24/17 05:33	1
alpha-Chlordane	0.0018	Јр	0.0024	0.00097	mg/Kg	☆	10/23/17 09:08	10/24/17 05:33	1
gamma-Chlordane	0.0023	J	0.0024	0.00097	mg/Kg	¢	10/23/17 09:08	10/24/17 05:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	105		21 - 145				10/23/17 09:08	10/24/17 05:33	1
DCB Decachlorobiphenyl	76		21 - 136				10/23/17 09:08	10/24/17 05:33	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.1		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-1 (12-18) Date Collected: 10/11/17 09:41 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-6 Matrix: Solid Percent Solids: 67.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	10
Aldrin	ND		0.0030	0.00099	mg/Kg	<u> </u>	10/23/17 09:08	10/24/17 05:49	1	
Dieldrin	0.023		0.0030	0.00055	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	6
Endrin aldehyde	ND		0.0030	0.00099	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
indrin	0.015		0.0030	0.00099	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
ndrin ketone	ND		0.0030	0.00059	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
leptachlor	ND		0.0030	0.0012	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	8
leptachlor epoxide	ND		0.0030	0.00061	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
,4'-DDT	0.020		0.0030	0.00074	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	9
,4'-DDE	0.39		0.0030	0.0012	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
,4'-DDD	0.11		0.0030	0.00090	mg/Kg	₿	10/23/17 09:08	10/24/17 05:49	1	
Indosulfan I	ND		0.0030	0.0012		☆	10/23/17 09:08	10/24/17 05:49	1	
ndosulfan II	ND		0.0030	0.0012	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
lpha-BHC	ND		0.0030	0.00074	mg/Kg	₿	10/23/17 09:08	10/24/17 05:49	1	
eta-BHC	ND		0.0030	0.0012	mg/Kg	₽	10/23/17 09:08	10/24/17 05:49	1	
amma-BHC (Lindane)	ND		0.0030	0.00074	mg/Kg	₽	10/23/17 09:08	10/24/17 05:49	1	
elta-BHC	ND		0.0030	0.00090	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
ndosulfan sulfate	ND		0.0030	0.00056	mg/Kg	₽	10/23/17 09:08	10/24/17 05:49	1	
lethoxychlor	ND		0.0030	0.00068	mg/Kg	☆	10/23/17 09:08	10/24/17 05:49	1	
oxaphene	ND		0.059	0.010	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
Chlordane (technical)	0.14		0.059	0.0043	mg/Kg	☆	10/23/17 09:08	10/24/17 05:49	1	
alpha-Chlordane	0.014	р	0.0030	0.0012	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
gamma-Chlordane	0.016	p	0.0030	0.0012	mg/Kg	¢	10/23/17 09:08	10/24/17 05:49	1	
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	106	p	21 - 145				10/23/17 09:08	10/24/17 05:49	1	
DCB Decachlorobiphenyl	70		21 - 136				10/23/17 09:08	10/24/17 05:49	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture	32.5		0.1	0.05	%			10/18/17 11:53	1	

Client Sample ID: WCB-1 (30-36) Date Collected: 10/11/17 09:52 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-7 Matrix: Solid Percent Solids: 72.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		0.0027	0.00090	mg/Kg	<u> </u>	10/23/17 09:08	10/24/17 06:06	1	
Dieldrin	0.012		0.0027	0.00050	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
Endrin aldehyde	ND		0.0027	0.00090	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
Endrin	0.0023	J	0.0027	0.00090	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
Endrin ketone	ND		0.0027	0.00054	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
Heptachlor	ND		0.0027	0.0011	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	8
Heptachlor epoxide	ND		0.0027	0.00055	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
4,4'-DDT	0.0015	Jр	0.0027	0.00067	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
4,4'-DDE	0.12		0.0027	0.0011	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
4,4'-DDD	0.047		0.0027	0.00082	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
Endosulfan I	ND		0.0027	0.0011	mg/Kg	₽	10/23/17 09:08	10/24/17 06:06	1	
Endosulfan II	ND		0.0027	0.0011	mg/Kg	₽	10/23/17 09:08	10/24/17 06:06	1	
alpha-BHC	ND		0.0027	0.00067	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
beta-BHC	ND		0.0027	0.0011	mg/Kg	☆	10/23/17 09:08	10/24/17 06:06	1	
gamma-BHC (Lindane)	ND		0.0027	0.00067	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
delta-BHC	ND		0.0027	0.00082	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
Endosulfan sulfate	ND		0.0027	0.00051	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
Methoxychlor	ND		0.0027	0.00062	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
Toxaphene	ND		0.054	0.0092	mg/Kg	¢.	10/23/17 09:08	10/24/17 06:06	1	
Chlordane (technical)	0.035	J	0.054	0.0039	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
alpha-Chlordane	0.0055		0.0027	0.0011	mg/Kg	¢	10/23/17 09:08	10/24/17 06:06	1	
gamma-Chlordane	0.0040	p	0.0027	0.0011	mg/Kg	¢.	10/23/17 09:08	10/24/17 06:06	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	101		21 - 145				10/23/17 09:08	10/24/17 06:06	1	
DCB Decachlorobiphenyl	78		21 - 136				10/23/17 09:08	10/24/17 06:06	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture	27.6		0.1	0.05	%			10/18/17 11:53	1	

Lab Sample ID: 720-82612-8 Matrix: Solid

Date Collected: 10/11/17 10:18 Date Received: 10/17/17 10:10

Client Sample ID: WCB-2 (0-6)

	Matrix: Solid
	Percent Solids: 75.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		0.0053	0.0018	mg/Kg	\ ₽	10/23/17 09:08	10/24/17 06:23	2	
Dieldrin	ND		0.0053	0.00097	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	6
Endrin aldehyde	ND		0.0053	0.0018	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
Endrin	ND		0.0053	0.0018	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
Endrin ketone	ND		0.0053	0.0011	mg/Kg	₽	10/23/17 09:08	10/24/17 06:23	2	
Heptachlor	ND		0.0053	0.0022	mg/Kg	₽	10/23/17 09:08	10/24/17 06:23	2	8
Heptachlor epoxide	ND		0.0053	0.0011	mg/Kg	¢.	10/23/17 09:08	10/24/17 06:23	2	
4,4'-DDT	ND		0.0053	0.0013	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
4,4'-DDE	0.0046	J	0.0053	0.0022	mg/Kg	₽	10/23/17 09:08	10/24/17 06:23	2	
4,4'-DDD	ND		0.0053	0.0016	mg/Kg	¢.	10/23/17 09:08	10/24/17 06:23	2	
Endosulfan I	ND		0.0053	0.0022	mg/Kg	₽	10/23/17 09:08	10/24/17 06:23	2	
Endosulfan II	ND		0.0053	0.0022	mg/Kg	₽	10/23/17 09:08	10/24/17 06:23	2	
alpha-BHC	ND		0.0053	0.0013	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
beta-BHC	ND		0.0053	0.0022	mg/Kg	₽	10/23/17 09:08	10/24/17 06:23	2	
gamma-BHC (Lindane)	ND		0.0053	0.0013	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
delta-BHC	ND		0.0053	0.0016	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
Endosulfan sulfate	ND		0.0053	0.0010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
Methoxychlor	ND		0.0053	0.0012	mg/Kg	₽	10/23/17 09:08	10/24/17 06:23	2	
Toxaphene	ND		0.11	0.018	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
Chlordane (technical)	ND		0.11	0.0076	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
alpha-Chlordane	ND		0.0053	0.0022	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
gamma-Chlordane	ND		0.0053	0.0022	mg/Kg	¢	10/23/17 09:08	10/24/17 06:23	2	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	97		21 - 145				10/23/17 09:08	10/24/17 06:23	2	
DCB Decachlorobiphenyl	56	p	21 - 136				10/23/17 09:08	10/24/17 06:23	2	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture	24.5		0.1	0.05	%			10/18/17 11:53	1	

Client Sample Results

Client: Woodard & Curran, Inc. Project/Site: SJC Hanger A

Client Sample ID: WCB-2 (12-18) Date Collected: 10/11/17 10:27 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-9 Matrix: Solid Percent Solids: 79.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	0.0039		0.0025	0.00082	mg/Kg	<u>Å</u>	10/23/17 09:08	10/24/17 06:40	1	
Dieldrin	0.15		0.0025	0.00045	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
Endrin aldehyde	ND		0.0025	0.00082	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	i.
Endrin	0.0061	р	0.0025	0.00082	mg/Kg	¢.	10/23/17 09:08	10/24/17 06:40	1	
Endrin ketone	ND		0.0025	0.00049	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
Heptachlor	ND		0.0025	0.0010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
Heptachlor epoxide	ND		0.0025	0.00050	mg/Kg	¢.	10/23/17 09:08	10/24/17 06:40	1	
4,4'-DDT	0.012	р	0.0025	0.00061	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
4,4'-DDE	0.24		0.0025	0.0010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
4,4'-DDD	0.29		0.0025	0.00075	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
Endosulfan I	ND		0.0025	0.0010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
Endosulfan II	ND		0.0025	0.0010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
alpha-BHC	ND		0.0025	0.00061	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
beta-BHC	ND		0.0025	0.0010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
gamma-BHC (Lindane)	ND		0.0025	0.00061	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
delta-BHC	ND		0.0025	0.00075	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	1
Endosulfan sulfate	ND		0.0025	0.00047	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
Methoxychlor	ND		0.0025	0.00057	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
Toxaphene	ND		0.049	0.0084	mg/Kg	¢.	10/23/17 09:08	10/24/17 06:40	1	
Chlordane (technical)	0.16		0.049	0.0036	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
alpha-Chlordane	0.034		0.0025	0.0010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
gamma-Chlordane	0.048		0.0025	0.0010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:40	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	95		21 - 145				10/23/17 09:08	10/24/17 06:40	1	
DCB Decachlorobiphenyl	62		21 - 136				10/23/17 09:08	10/24/17 06:40	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture	20.6		0.1	0.05	%			10/18/17 11:53	1	

Client Sample ID: WCB-2 (30-36) Date Collected: 10/11/17 10:32 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-10 Matrix: Solid Percent Solids: 66.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	0.0042		0.0029	0.00099	mg/Kg	\ ☆	10/23/17 09:08	10/24/17 06:56	1
Dieldrin	0.022		0.0029	0.00055	mg/Kg	☆	10/23/17 09:08	10/24/17 06:56	1
Endrin aldehyde	ND		0.0029	0.00099	mg/Kg	₽	10/23/17 09:08	10/24/17 06:56	1
Endrin	ND		0.0029	0.00099	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
Endrin ketone	ND		0.0029	0.00059	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
Heptachlor	ND		0.0029	0.0012	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
Heptachlor epoxide	ND		0.0029	0.00060	mg/Kg	¢.	10/23/17 09:08	10/24/17 06:56	1
4,4'-DDT	0.27		0.0029	0.00074	mg/Kg	₽	10/23/17 09:08	10/24/17 06:56	1
4,4'-DDE	0.031		0.0029	0.0012	mg/Kg	☆	10/23/17 09:08	10/24/17 06:56	1
4,4'-DDD	0.17		0.0029	0.00090	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
Endosulfan I	ND		0.0029	0.0012	mg/Kg	₽	10/23/17 09:08	10/24/17 06:56	1
Endosulfan II	ND		0.0029	0.0012	mg/Kg	₽	10/23/17 09:08	10/24/17 06:56	1
alpha-BHC	ND		0.0029	0.00074	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
beta-BHC	ND		0.0029	0.0012	mg/Kg	☆	10/23/17 09:08	10/24/17 06:56	1
gamma-BHC (Lindane)	ND		0.0029	0.00074	mg/Kg	₽	10/23/17 09:08	10/24/17 06:56	1
delta-BHC	ND		0.0029	0.00090	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
Endosulfan sulfate	ND		0.0029	0.00056	mg/Kg	☆	10/23/17 09:08	10/24/17 06:56	1
Methoxychlor	ND		0.0029	0.00068	mg/Kg	☆	10/23/17 09:08	10/24/17 06:56	1
Toxaphene	ND		0.059	0.010	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
Chlordane (technical)	0.051	J	0.059	0.0043	mg/Kg	☆	10/23/17 09:08	10/24/17 06:56	1
alpha-Chlordane	0.0062	р	0.0029	0.0012	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
gamma-Chlordane	0.012		0.0029	0.0012	mg/Kg	¢	10/23/17 09:08	10/24/17 06:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	74		21 - 145				10/23/17 09:08	10/24/17 06:56	1
DCB Decachlorobiphenyl	64		21 - 136				10/23/17 09:08	10/24/17 06:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	33.3		0.1	0.05	%			10/18/17 11:53	1

Date Received: 10/17/17 10:10

Client Sample ID: WCB-3 (0-6) Date Collected: 10/11/17 10:54

Lab Sample ID: 720-82612-11 Matrix: Solid Percent Solids: 84.1

Method: 8081A - Organoo	chlorine Pesticid	les (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.012	0.0039	mg/Kg	☆	10/23/17 09:08	10/24/17 09:11	5
Dieldrin	0.0037	J	0.012	0.0021	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Endrin aldehyde	ND		0.012	0.0039	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Endrin	ND		0.012	0.0039	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Endrin ketone	ND		0.012	0.0023	mg/Kg	₽	10/23/17 09:08	10/24/17 09:11	5
Heptachlor	ND		0.012	0.0047	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Heptachlor epoxide	ND		0.012	0.0024	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
4,4'-DDT	ND		0.012	0.0029	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
4,4'-DDE	0.090		0.012	0.0047	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
4,4'-DDD	0.025		0.012	0.0035	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Endosulfan I	ND		0.012	0.0047	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Endosulfan II	ND		0.012	0.0048	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
alpha-BHC	ND		0.012	0.0029	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
beta-BHC	ND		0.012	0.0048	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
gamma-BHC (Lindane)	ND		0.012	0.0029	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
delta-BHC	ND		0.012	0.0035	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Endosulfan sulfate	ND		0.012	0.0022	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Methoxychlor	ND		0.012	0.0027	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Toxaphene	ND		0.23	0.039	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Chlordane (technical)	0.085	J	0.23	0.017	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
alpha-Chlordane	0.0047	Jр	0.012	0.0047	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
gamma-Chlordane	0.0059	J	0.012	0.0047	mg/Kg	¢	10/23/17 09:08	10/24/17 09:11	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103		21 - 145				10/23/17 09:08	10/24/17 09:11	5
DCB Decachlorobiphenyl	54	p	21 - 136				10/23/17 09:08	10/24/17 09:11	5
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.9		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-3 (12-18) Date Collected: 10/11/17 12:08 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-12 Matrix: Solid Percent Solids: 71.4

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.014	0.0046	mg/Kg		10/23/17 09:08	10/24/17 07:13	5
Dieldrin	0.022		0.014	0.0025	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
Endrin aldehyde	ND		0.014	0.0046	mg/Kg	☆	10/23/17 09:08	10/24/17 07:13	5
Endrin	ND		0.014	0.0046	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
Endrin ketone	ND		0.014	0.0027	mg/Kg	₽	10/23/17 09:08	10/24/17 07:13	5
Heptachlor	ND		0.014	0.0056	mg/Kg	₽	10/23/17 09:08	10/24/17 07:13	5
Heptachlor epoxide	ND		0.014	0.0028	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
4,4'-DDT	ND		0.014	0.0034	mg/Kg	☆	10/23/17 09:08	10/24/17 07:13	5
4,4'-DDE	0.19		0.014	0.0056	mg/Kg	₽	10/23/17 09:08	10/24/17 07:13	5
4,4'-DDD	0.10		0.014	0.0042	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
Endosulfan I	ND		0.014	0.0056	mg/Kg	☆	10/23/17 09:08	10/24/17 07:13	5
Endosulfan II	ND		0.014	0.0057	mg/Kg	₽	10/23/17 09:08	10/24/17 07:13	5
alpha-BHC	ND		0.014	0.0034	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
beta-BHC	ND		0.014	0.0057	mg/Kg	☆	10/23/17 09:08	10/24/17 07:13	5
gamma-BHC (Lindane)	ND		0.014	0.0034	mg/Kg	☆	10/23/17 09:08	10/24/17 07:13	5
delta-BHC	ND		0.014	0.0042	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
Endosulfan sulfate	ND		0.014	0.0026	mg/Kg	☆	10/23/17 09:08	10/24/17 07:13	5
Methoxychlor	ND		0.014	0.0031	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
Toxaphene	0.55		0.27	0.047	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
Chlordane (technical)	0.22	J	0.27	0.020	mg/Kg	☆	10/23/17 09:08	10/24/17 07:13	5
alpha-Chlordane	0.030	р	0.014	0.0056	mg/Kg	☆	10/23/17 09:08	10/24/17 07:13	5
gamma-Chlordane	0.038		0.014	0.0056	mg/Kg	¢	10/23/17 09:08	10/24/17 07:13	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	89		21 - 145				10/23/17 09:08	10/24/17 07:13	5
DCB Decachlorobiphenyl	79		21 - 136				10/23/17 09:08	10/24/17 07:13	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	28.6		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-3 (30-36) Date Collected: 10/11/17 12:13 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-13 Matrix: Solid Percent Solids: 71.7

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.028	0.0093	mg/Kg	₩ \[\]	10/23/17 09:08	10/24/17 10:22	10
Dieldrin	0.18		0.028	0.0051	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
Endrin aldehyde	ND		0.028	0.0093	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
Endrin	0.042		0.028	0.0093	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
Endrin ketone	ND		0.028	0.0055	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
Heptachlor	ND		0.028	0.011	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
Heptachlor epoxide	ND		0.028	0.0057	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
4,4'-DDT	0.090		0.028	0.0069	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
4,4'-DDE	2.6		0.028	0.011	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
4,4'-DDD	0.49		0.028	0.0084	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
Endosulfan I	ND		0.028	0.011	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
Endosulfan II	ND		0.028	0.011	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
alpha-BHC	ND		0.028	0.0069	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
beta-BHC	ND		0.028	0.011	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
gamma-BHC (Lindane)	ND		0.028	0.0069	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
delta-BHC	ND		0.028	0.0084	mg/Kg	¢	10/23/17 09:08	10/24/17 10:22	10
Endosulfan sulfate	ND		0.028	0.0052	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
Methoxychlor	ND		0.028	0.0064	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
Toxaphene	0.75		0.055	0.0094	mg/Kg	¢	10/23/17 09:08	10/24/17 07:30	1
Chlordane (technical)	0.61		0.55	0.040	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
alpha-Chlordane	0.15		0.028	0.011	mg/Kg	₽	10/23/17 09:08	10/24/17 10:22	10
gamma-Chlordane	0.11	p	0.028	0.011	mg/Kg	¢.	10/23/17 09:08	10/24/17 10:22	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		21 - 145				10/23/17 09:08	10/24/17 07:30	1
DCB Decachlorobiphenyl	59		21 - 136				10/23/17 09:08	10/24/17 07:30	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	28.3		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-4 (0-6) Date Collected: 10/11/17 11:18

Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-14 Matrix: Solid Percent Solids: 79.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.013	0.0042	mg/Kg	\ ↓	10/23/17 09:08	10/24/17 10:39	5
Dieldrin	0.038		0.013	0.0023	mg/Kg	₽	10/23/17 09:08	10/24/17 10:39	5
Endrin aldehyde	ND		0.013	0.0042	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
Endrin	0.093		0.013	0.0042	mg/Kg	¢.	10/23/17 09:08	10/24/17 10:39	5
Endrin ketone	ND		0.013	0.0025	mg/Kg	₽	10/23/17 09:08	10/24/17 10:39	5
Heptachlor	ND		0.013	0.0051	mg/Kg	₽	10/23/17 09:08	10/24/17 10:39	5
Heptachlor epoxide	ND		0.013	0.0026	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
4,4'-DDT	0.24		0.013	0.0031	mg/Kg	☆	10/23/17 09:08	10/24/17 10:39	5
4,4'-DDE	0.57		0.013	0.0051	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
4,4'-DDD	0.053		0.013	0.0038	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
Endosulfan I	ND		0.013	0.0051	mg/Kg	₽	10/23/17 09:08	10/24/17 10:39	5
Endosulfan II	ND		0.013	0.0052	mg/Kg	₽	10/23/17 09:08	10/24/17 10:39	5
alpha-BHC	ND		0.013	0.0031	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
beta-BHC	ND		0.013	0.0052	mg/Kg	₽	10/23/17 09:08	10/24/17 10:39	5
gamma-BHC (Lindane)	ND		0.013	0.0031	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
delta-BHC	ND		0.013	0.0038	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
Endosulfan sulfate	ND		0.013	0.0024	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
Methoxychlor	ND		0.013	0.0029	mg/Kg	₽	10/23/17 09:08	10/24/17 10:39	5
Toxaphene	0.35		0.050	0.0085	mg/Kg	¢	10/23/17 09:08	10/24/17 07:47	1
Chlordane (technical)	0.17	J	0.25	0.018	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
alpha-Chlordane	0.029		0.013	0.0051	mg/Kg	¢	10/23/17 09:08	10/24/17 10:39	5
gamma-Chlordane	0.026		0.013	0.0051	mg/Kg	¢.	10/23/17 09:08	10/24/17 10:39	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	72		21 - 145				10/23/17 09:08	10/24/17 07:47	1
DCB Decachlorobiphenyl	62	p	21 - 136				10/23/17 09:08	10/24/17 07:47	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	21.0		0.1	0.05	%			10/18/17 11:53	1

TestAmerica Pleasanton

Client Sample ID: WCB-4 (12-18) Date Collected: 10/11/17 11:26 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-15 Matrix: Solid Percent Solids: 80.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.012	0.0041	mg/Kg		10/23/17 09:08	10/24/17 10:57	5
Dieldrin	0.067		0.012	0.0023	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Endrin aldehyde	ND		0.012	0.0041	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Endrin	0.22		0.012	0.0041	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Endrin ketone	0.0054	Jр	0.012	0.0024	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Heptachlor	ND		0.012	0.0050	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Heptachlor epoxide	ND		0.012	0.0025	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
4,4'-DDT	0.35		0.012	0.0030	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
4,4'-DDE	1.1		0.012	0.0050	mg/Kg	₽	10/23/17 09:08	10/24/17 10:57	5
4,4'-DDD	0.10		0.012	0.0037	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Endosulfan I	ND		0.012	0.0050	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Endosulfan II	ND		0.012	0.0050	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
alpha-BHC	ND		0.012	0.0030	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
beta-BHC	ND		0.012	0.0050	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
gamma-BHC (Lindane)	ND		0.012	0.0030	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
delta-BHC	ND		0.012	0.0037	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Endosulfan sulfate	ND		0.012	0.0023	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Methoxychlor	ND		0.012	0.0028	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Toxaphene	1.5		0.049	0.0083	mg/Kg	¢	10/23/17 09:08	10/24/17 08:03	1
Chlordane (technical)	0.22	J	0.24	0.018	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
alpha-Chlordane	0.032	р	0.012	0.0050	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
gamma-Chlordane	0.037		0.012	0.0050	mg/Kg	¢	10/23/17 09:08	10/24/17 10:57	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	84		21 - 145				10/23/17 09:08	10/24/17 08:03	1
DCB Decachlorobiphenyl	78		21 - 136				10/23/17 09:08	10/24/17 08:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19.5		0.1	0.05	%			10/18/17 11:53	1

Client Sample ID: WCB-4 (30-36) Date Collected: 10/11/17 11:32 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-16 Matrix: Solid Percent Solids: 77.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		0.0026	0.00086	mg/Kg	\ ₽	10/23/17 09:08	10/24/17 08:20	1	1
Dieldrin	0.0024	J	0.0026	0.00047	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
Endrin aldehyde	ND		0.0026	0.00086	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	
Endrin	0.0022	Jр	0.0026	0.00086	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
Endrin ketone	ND		0.0026	0.00051	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	
Heptachlor	ND		0.0026	0.0011	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	
Heptachlor epoxide	ND		0.0026	0.00053	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
4,4'-DDT	0.0031		0.0026	0.00064	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	
4,4'-DDE	0.037		0.0026	0.0011	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	1
4,4'-DDD	0.0035		0.0026	0.00078	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
Endosulfan I	ND		0.0026	0.0011	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
Endosulfan II	ND		0.0026	0.0011	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	
alpha-BHC	ND		0.0026	0.00064	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
beta-BHC	ND		0.0026	0.0011	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	
gamma-BHC (Lindane)	ND		0.0026	0.00064	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	
delta-BHC	ND		0.0026	0.00078	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	1
Endosulfan sulfate	ND		0.0026	0.00049	mg/Kg	₽	10/23/17 09:08	10/24/17 08:20	1	
Methoxychlor	ND		0.0026	0.00059	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	Ì
Toxaphene	0.0092	J	0.051	0.0087	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
Chlordane (technical)	0.021	J	0.051	0.0037	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
alpha-Chlordane	0.0015	J	0.0026	0.0011	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
gamma-Chlordane	ND		0.0026	0.0011	mg/Kg	¢	10/23/17 09:08	10/24/17 08:20	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	87		21 - 145				10/23/17 09:08	10/24/17 08:20	1	
DCB Decachlorobiphenyl	72		21 - 136				10/23/17 09:08	10/24/17 08:20	1	
General Chemistry										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Moisture	22.6		0.1	0.05	%			10/18/17 11:53	1	

5

7

13

Method: 8260B - Volatile Organic Compounds (GC/MS)

Aatrix: Solid					Prep Type: Total/NA
			Pe	ercent Surro	ogate Recovery (Acceptance Limits)
		BFB	12DCE	TOL	
Lab Sample ID	Client Sample ID	(45-131)	(60-140)	(58-140)	
720-82612-1	WCB-1	99	105	106	
720-82612-2	WCB-2	96	109	101	
720-82612-3	WCB-3	88	111	99	
720-82612-4	WCB-4	108	109	101	
LCS 720-232644/5	Lab Control Sample	103	107	106	
LCSD 720-232644/6	Lab Control Sample Dup	88	106	106	
MB 720-232644/4	Method Blank	82	106	104	

Surrogate Legend

BFB = 4-Bromofluorobenzene

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270C - Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surrog	gate Recovery (Acceptance Limit
		NBZ	FBP	TPH	
_ab Sample ID	Client Sample ID	(21-98)	(30-112)	(59-134)	
20-82612-1	WCB-1	58	71	82	
20-82612-2	WCB-2	28	59	59	
20-82612-3	WCB-3	23	30	31 X	
0-82612-4	WCB-4	49	65	67	
S 720-232562/2-A	Lab Control Sample	61	72	84	
B 720-232562/1-A	Method Blank	60	70	77	

Surrogate Legend

NBZ = Nitrobenzene-d5

- FBP = 2-Fluorobiphenyl
- TPH = Terphenyl-d14

Method: 8015B - Diesel Range Organics (DRO) (GC) Matrix: Solid

Prep Type: Silica Gel Cleanup

			Percent Surrogate Recovery (Acceptance Limits)		
		NDA1	PTP1		
Lab Sample ID	Client Sample ID	(0-1)	(38-148)		
720-82612-1	WCB-1	0.06	73		
720-82612-2	WCB-2	0.08	56		
720-82612-3	WCB-3	0	0 X D		
720-82612-4	WCB-4	0.1	90		
LCS 720-232769/2-A	Lab Control Sample		83		
LCSD 720-232769/3-A	Lab Control Sample Dup		90		
MB 720-232769/1-A	Method Blank	0.001	88		

NDA = Capric Acid (Surr)

PTP = p-Terphenyl

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid				Prep Type: Total/NA
_			Percent	Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(21-145)	(21-136)	
720-82612-10	WCB-2 (30-36)	74	64	
720-82612-12	WCB-3 (12-18)	89	79	
LCS 720-232563/2-A	Lab Control Sample	92	104	
MB 720-232563/1-A	Method Blank	86	97	

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8081A - Organochlorine Pesticides (GC) Matrix: Solid

Matrix: Solid			-	Prep Type: Total/NA	
			Percent S	Surrogate Recovery (Acceptance Limits)	
		TCX2	DCB1		
Lab Sample ID	Client Sample ID	(21-145)	(21-136)		
720-82612-9	WCB-2 (12-18)	95	62		
720-82612-11	WCB-3 (0-6)	103	54 p		
720-82612-13	WCB-3 (30-36)	73	59		
720-82612-14	WCB-4 (0-6)	72	62 p		
Surrogate Legend	l				

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8081A - Organochlorine Pesticides (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) TCX1 DCB1 Lab Sample ID **Client Sample ID** (21-145)(21-136) 720-82612-5 WCB-1 (0-6) 76 105 WCB-1 (12-18) 720-82612-6 106 p 70 720-82612-7 WCB-1 (30-36) 101 78 720-82612-8 WCB-2 (0-6) 97 56 p 720-82612-15 WCB-4 (12-18) 84 78 720-82612-16 WCB-4 (30-36) 87 72

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) TCX1 DCB1 Lab Sample ID **Client Sample ID** (45-132) (42-146) 720-82612-1 WCB-1 79 92 720-82612-2 WCB-2 84 98 720-82612-3 WCB-3 99 61

D: 720-82612-1

7

Prep Type: Total/NA

Prep Type: Total/NA

5

7

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued) Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) TCX1 DCB1 Lab Sample ID **Client Sample ID** (45-132) (42-146) 720-82612-3 MS WCB-3 97 47 720-82612-3 MSD WCB-3 90 43 720-82612-4 WCB-4 81 81 LCS 720-232564/2-A 79 91 Lab Control Sample MB 720-232564/1-A Method Blank 85 97 Surrogate Legend TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Analysis Batch: 232644

Client Sample ID: Method Blank

Prep Type: Total/NA

{		3	

Method: 8260B - V	/olatile Organic Com	pounds (GC/MS)

Lab Sample ID: MB 720-232644/4 Matrix: Solid

	MB	MB						
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		5.0	1.2	ug/Kg		10/24/17 11:54	1
Acetone	ND		50	38	ug/Kg		10/24/17 11:54	1
Benzene	ND		5.0	0.65	ug/Kg		10/24/17 11:54	1
Dichlorobromomethane	ND		5.0	0.72	ug/Kg		10/24/17 11:54	1
Bromobenzene	ND		5.0	0.79	ug/Kg		10/24/17 11:54	1
Chlorobromomethane	ND		20	0.72	ug/Kg		10/24/17 11:54	1
Bromoform	ND		5.0	2.0	ug/Kg		10/24/17 11:54	1
Bromomethane	ND		10		ug/Kg		10/24/17 11:54	1
2-Butanone (MEK)	ND		50	21	ug/Kg		10/24/17 11:54	1
n-Butylbenzene	ND		5.0	1.0	ug/Kg		10/24/17 11:54	1
sec-Butylbenzene	ND		5.0		ug/Kg		10/24/17 11:54	1
tert-Butylbenzene	ND		5.0		ug/Kg		10/24/17 11:54	1
Carbon disulfide	ND		5.0		ug/Kg		10/24/17 11:54	1
Carbon tetrachloride	ND		5.0		ug/Kg		10/24/17 11:54	1
Chlorobenzene	ND		5.0		ug/Kg		10/24/17 11:54	1
Chloroethane	ND		10		ug/Kg		10/24/17 11:54	1
Chloroform	ND		5.0		ug/Kg		10/24/17 11:54	1
Chloromethane	ND		10		ug/Kg		10/24/17 11:54	1
2-Chlorotoluene	ND		5.0		ug/Kg		10/24/17 11:54	1
4-Chlorotoluene	ND		5.0		ug/Kg		10/24/17 11:54	1
Chlorodibromomethane	ND		5.0		ug/Kg		10/24/17 11:54	1
1,2-Dichlorobenzene	ND		5.0		ug/Kg		10/24/17 11:54	
1,3-Dichlorobenzene	ND		5.0		ug/Kg		10/24/17 11:54	1
1,4-Dichlorobenzene	ND		5.0		ug/Kg		10/24/17 11:54	1
1,3-Dichloropropane	ND		5.0		ug/Kg		10/24/17 11:54	
1,1-Dichloropropene	ND		5.0		ug/Kg		10/24/17 11:54	1
1,2-Dibromo-3-Chloropropane	ND		10		ug/Kg		10/24/17 11:54	1
Ethylene Dibromide	ND		5.0		ug/Kg		10/24/17 11:54	
Dibromomethane	ND		10		ug/Kg		10/24/17 11:54	1
Dichlorodifluoromethane	ND		10		ug/Kg		10/24/17 11:54	1
1,1-Dichloroethane	ND		5.0		ug/Kg		10/24/17 11:54	
1.2-Dichloroethane	ND		5.0		ug/Kg		10/24/17 11:54	1
1.1-Dichloroethene	ND		5.0		ug/Kg		10/24/17 11:54	1
cis-1,2-Dichloroethene	ND		5.0		ug/Kg		10/24/17 11:54	
trans-1,2-Dichloroethene	ND		5.0		ug/Kg		10/24/17 11:54	1
1,2-Dichloropropane	ND		5.0		ug/Kg		10/24/17 11:54	1
cis-1,3-Dichloropropene	ND		5.0		ug/Kg		10/24/17 11:54	
trans-1,3-Dichloropropene	ND		5.0		ug/Kg ug/Kg		10/24/17 11:54	1
Ethylbenzene	ND		5.0		ug/Kg ug/Kg		10/24/17 11:54	1
Hexachlorobutadiene	ND		5.0		ug/Kg ug/Kg		10/24/17 11:54	· · · · · · · 1
2-Hexanone	ND		50		ug/Kg ug/Kg		10/24/17 11:54	1
Isopropylbenzene	ND		5.0		ug/Kg ug/Kg		10/24/17 11:54	1
4-Isopropyltoluene	ND		5.0 5.0		ug/Kg ug/Kg		10/24/17 11:54	1
Methylene Chloride	ND							1
•			10 50		ug/Kg		10/24/17 11:54	
4-Methyl-2-pentanone (MIBK)	ND		50 10		ug/Kg		10/24/17 11:54	1
Naphthalene	ND		10 5 0		ug/Kg		10/24/17 11:54	1
N-Propylbenzene	ND ND		5.0 5.0		ug/Kg ug/Kg		10/24/17 11:54	1

RL

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

20

5.0

10

5.0

MDL Unit

0.75

0.67

0.71

0.71

0.61

0.70

0.63

0.56

0.77

1.6 ug/Kg

0.76 ug/Kg

0.74 ug/Kg

2.1 ug/Kg

0.65 ug/Kg

5.0 ug/Kg

0.73 ug/Kg

1.2 ug/Kg

2.0 ug/Kg

D

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

Result Qualifier

Analysis Batch: 232644

1,1,1,2-Tetrachloroethane

1.1.2.2-Tetrachloroethane

1.2.3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

1,1,2-Trichloro-1,2,2-trifluoroethane

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

2,2-Dichloropropane

Tetrachloroethene

Matrix: Solid

Analvte

Toluene

Lab Sample ID: MB 720-232644/4

Client Sample ID: Method Blank

Analyzed

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

10/24/17 11:54

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

2 3 4

4 5 6 7 8

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

	N/D							
Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac	
4-Bromofluorobenzene	82		45 - 131		1	10/24/17 11:54	1	
1,2-Dichloroethane-d4 (Surr)	106		60 - 140		1	10/24/17 11:54	1	
Toluene-d8 (Surr)	104		58 - 140		1	10/24/17 11:54	1	

Lab Sample ID: LCS 720-232644/5 Matrix: Solid Analysis Batch: 232644

Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit D %Rec Limits Methyl tert-butyl ether 50.0 55.5 70 - 144 ug/Kg 111 250 Acetone 271 108 30 - 162 ug/Kg Benzene 50.0 50.6 ug/Kg 101 70 - 130 Dichlorobromomethane 50.0 55.8 ug/Kg 112 70 - 140 Bromobenzene 50.0 52.0 ug/Kg 104 70 - 130 Chlorobromomethane 50.0 55.6 ug/Kg 111 70 - 130 Bromoform 50.0 55.6 ug/Kg 111 59 - 158 Bromomethane 50.0 52.8 106 59 - 132 ug/Kg 2-Butanone (MEK) 250 261 ug/Kg 105 59 - 159 n-Butylbenzene 50.0 51.0 102 70 - 142 ug/Kg sec-Butylbenzene 50.0 50.7 ug/Kg 101 70 - 136 tert-Butylbenzene 50.0 50.9 ug/Kg 102 70 - 130 Carbon disulfide 50.0 49.7 99 60 - 140 ug/Kg Carbon tetrachloride 50.0 55.1 ug/Kg 110 70 - 142 103 Chlorobenzene 50.0 51.4 ug/Kg 70 - 130 Chloroethane 50.0 50.1 ug/Kg 100 65 - 130 106 Chloroform 50.0 53 1 77 - 127 ug/Kg Chloromethane 50.0 48.4 ug/Kg 97 55 - 140 2-Chlorotoluene 50.0 49.9 ug/Kg 100 70 - 138

5

8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-232644/5 Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 232644	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Chlorotoluene	50.0	50.8		ug/Kg		102	70 - 136
Chlorodibromomethane	50.0	60.2		ug/Kg		120	70 - 146
1,2-Dichlorobenzene	50.0	51.7		ug/Kg		103	70 - 130
1,3-Dichlorobenzene	50.0	51.9		ug/Kg		104	70 - 131
1,4-Dichlorobenzene	50.0	51.3		ug/Kg		103	70 - 130
1,3-Dichloropropane	50.0	54.2		ug/Kg		108	70 - 140
1,1-Dichloropropene	50.0	52.7		ug/Kg		105	70 - 130
1,2-Dibromo-3-Chloropropane	50.0	53.6		ug/Kg		107	60 - 145
Ethylene Dibromide	50.0	57.5		ug/Kg		115	70 - 140
Dibromomethane	50.0	56.8		ug/Kg		114	70 - 139
Dichlorodifluoromethane	50.0	50.8		ug/Kg		102	37 - 158
I,1-Dichloroethane	50.0	51.2		ug/Kg		102	70 ₋ 130
1,2-Dichloroethane	50.0	54.9		ug/Kg		110	70 - 130
I,1-Dichloroethene	50.0	51.6		ug/Kg		103	74 - 122
sis-1,2-Dichloroethene	50.0	52.4		ug/Kg		105	70 ₋ 138
rans-1,2-Dichloroethene	50.0	51.4		ug/Kg		103	67 - 130
,2-Dichloropropane	50.0	52.8		ug/Kg		106	73 - 127
sis-1,3-Dichloropropene	50.0	55.0		ug/Kg		110	68 ₋ 147
rans-1,3-Dichloropropene	50.0	56.6		ug/Kg		113	70 - 155
Ethylbenzene	50.0	50.7		ug/Kg		101	80 - 137
lexachlorobutadiene	50.0	53.2		ug/Kg		106	70 - 132
-Hexanone	250	278		ug/Kg		111	62 - 158
sopropylbenzene	50.0	53.1		ug/Kg		106	70 ₋ 130
-Isopropyltoluene	50.0	50.8		ug/Kg		102	70 ₋ 133
Nethylene Chloride	50.0	51.2		ug/Kg		102	70 - 134
-Methyl-2-pentanone (MIBK)	250	278		ug/Kg		111	60 - 160
Naphthalene	50.0	54.8		ug/Kg		110	60 ₋ 147
- N-Propylbenzene	50.0	50.4		ug/Kg		101	70 - 130
Styrene	50.0	54.2		ug/Kg		108	70 - 130
,1,1,2-Tetrachloroethane	50.0	53.9		ug/Kg		108	70 ₋ 130
,1,2,2-Tetrachloroethane	50.0	52.8		ug/Kg		106	70 - 146
etrachloroethene	50.0	55.3		ug/Kg		111	70 - 132
oluene	50.0	50.2		ug/Kg		100	75 - 120
,2,3-Trichlorobenzene	50.0	55.1		ug/Kg		110	60 - 140
,2,4-Trichlorobenzene	50.0	55.2		ug/Kg		110	60 - 140
,1,1-Trichloroethane	50.0	53.1		ug/Kg		106	70 - 130
,1,2-Trichloroethane	50.0	54.8		ug/Kg		110	70 - 130
	50.0	53.5		ug/Kg		107	70 - 133
richlorofluoromethane	50.0	55.0		ug/Kg		110	60 - 140
,2,3-Trichloropropane	50.0	54.8		ug/Kg		110	70 - 146
,1,2-Trichloro-1,2,2-trifluoroetha	50.0	54.0		ug/Kg		108	60 - 140
ie							
I,2,4-Trimethylbenzene	50.0	49.1		ug/Kg		98	70 - 130
,3,5-Trimethylbenzene	50.0	50.0		ug/Kg		100	70 - 131
/inyl acetate	50.0	54.2		ug/Kg		108	38 - 176
/inyl chloride	50.0	50.4		ug/Kg		101	58 - 125
n-Xylene & p-Xylene	50.0	51.1		ug/Kg		102	70 - 146
o-Xylene	50.0	50.8		ug/Kg		102	70 - 140

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-232644/5

Client Sample ID: Lab Control Sample Prep Type: Total/NA %Rec.

8

Matrix: Solid Analysis Batch: 232644									Prep Ty	ce: Tot	al/NA
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
2,2-Dichloropropane			50.0	51.7		ug/Kg		103	70 - 162		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	103		45 - 131								
1,2-Dichloroethane-d4 (Surr)	107		60 - 140								
Toluene-d8 (Surr)	106		58 - 140								
Lab Sample ID: LCSD 72	0-232644/6				c	Client Sa	mple	ID: Lat	o Control	Sample	e Dup
Matrix: Solid							· ·		Prep Ty		
Analysis Batch: 232644											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether			50.0	53.1		ug/Kg		106	70 - 144	4	20
Acetone			250	266		ug/Kg		106	30 - 162	2	30

, ,			00				
Acetone	250	266	ug/Kg	106	30 - 162	2	30
Benzene	50.0	51.0	ug/Kg	102	70 - 130	1	20
Dichlorobromomethane	50.0	57.0	ug/Kg	114	70 - 140	2	20
Bromobenzene	50.0	52.5	ug/Kg	105	70 - 130	1	20
Chlorobromomethane	50.0	54.3	ug/Kg	109	70 - 130	2	20
Bromoform	50.0	54.1	ug/Kg	108	59 - 158	3	20
Bromomethane	50.0	52.9	ug/Kg	106	59 - 132	0	20
2-Butanone (MEK)	250	259	ug/Kg	103	59 - 159	1	20
n-Butylbenzene	50.0	50.4	ug/Kg	101	70 - 142	1	20
sec-Butylbenzene	50.0	51.0	ug/Kg	102	70 - 136	1	20
tert-Butylbenzene	50.0	51.6	ug/Kg	103	70 - 130	1	20
Carbon disulfide	50.0	45.8	ug/Kg	92	60 - 140	8	20
Carbon tetrachloride	50.0	55.9	ug/Kg	112	70 - 142	1	20
Chlorobenzene	50.0	51.6	ug/Kg	103	70 - 130	0	20
Chloroethane	50.0	50.4	ug/Kg	101	65 - 130	1	20
Chloroform	50.0	51.5	ug/Kg	103	77 - 127	3	20
Chloromethane	50.0	50.5	ug/Kg	101	55 - 140	4	20
2-Chlorotoluene	50.0	49.9	ug/Kg	100	70 ₋ 138	0	20
4-Chlorotoluene	50.0	50.7	ug/Kg	101	70 - 136	0	20
Chlorodibromomethane	50.0	60.5	ug/Kg	121	70 - 146	1	20
1,2-Dichlorobenzene	50.0	51.8	ug/Kg	104	70 - 130	0	20
1,3-Dichlorobenzene	50.0	52.6	ug/Kg	105	70 - 131	1	20
1,4-Dichlorobenzene	50.0	52.2	ug/Kg	104	70 - 130	2	20
1,3-Dichloropropane	50.0	54.4	ug/Kg	109	70 - 140	0	20
1,1-Dichloropropene	50.0	53.1	ug/Kg	106	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	50.0	55.5	ug/Kg	111	60 - 145	3	20
Ethylene Dibromide	50.0	58.5	ug/Kg	117	70 - 140	2	20
Dibromomethane	50.0	56.1	ug/Kg	112	70 - 139	1	20
Dichlorodifluoromethane	50.0	51.2	ug/Kg	102	37 - 158	1	20
1,1-Dichloroethane	50.0	48.6	ug/Kg	97	70 - 130	5	20
1,2-Dichloroethane	50.0	54.8	ug/Kg	110	70 - 130	0	20
1,1-Dichloroethene	50.0	50.2	ug/Kg	100	74 - 122	3	20
cis-1,2-Dichloroethene	50.0	49.9	ug/Kg	100	70 ₋ 138	5	20
trans-1,2-Dichloroethene	50.0	48.7	ug/Kg	97	67 - 130	5	20
1,2-Dichloropropane	50.0	52.4	ug/Kg	105	73 - 127	1	20

Toluene-d8 (Surr)

5

8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-232644/6
Matrix: Solid

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 232644									Flep Type. Total/NA				
Analysis Batch: 232644			Spike		LCSD				%Rec.		RPD		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
cis-1,3-Dichloropropene			50.0	55.0	Quanner	ug/Kg		110	68 - 147		20		
trans-1,3-Dichloropropene			50.0	56.6		ug/Kg		113	70 - 155	0	20		
Ethylbenzene			50.0	49.9		ug/Kg		100	80 - 137	2	20		
Hexachlorobutadiene			50.0	53.6		ug/Kg		107	70 - 132	1	20		
2-Hexanone			250	283		ug/Kg		113	62 - 158	2	20		
Isopropylbenzene			50.0	45.8		ug/Kg		92	70 - 130	15	20		
4-Isopropyltoluene			50.0	51.6		ug/Kg		103	70 - 133	2	20		
Methylene Chloride			50.0	48.3		ug/Kg		97	70 - 134	6	20		
4-Methyl-2-pentanone (MIBK)			250	279		ug/Kg		112	60 - 160	0	20		
Naphthalene			50.0	54.8		ug/Kg		110	60 - 147	0	20		
N-Propylbenzene			50.0	50.2		ug/Kg		100	70 - 130	0	20		
Styrene			50.0	46.3		ug/Kg		93	70 - 130	16	20		
1,1,1,2-Tetrachloroethane			50.0	54.1		ug/Kg		108	70 - 130	0	20		
1,1,2,2-Tetrachloroethane			50.0	51.9		ug/Kg		104	70 - 146	2	20		
Tetrachloroethene			50.0	55.8		ug/Kg		112	70 - 132	1	20		
Toluene			50.0	52.3		ug/Kg		105	75 - 120	4	20		
1,2,3-Trichlorobenzene			50.0	55.6		ug/Kg		111	60 - 140	1	20		
1,2,4-Trichlorobenzene			50.0	54.4		ug/Kg		109	60 - 140	1	20		
1,1,1-Trichloroethane			50.0	54.4		ug/Kg		109	70 - 130	2	20		
1,1,2-Trichloroethane			50.0	55.5		ug/Kg		111	70 - 130	1	20		
Trichloroethene			50.0	53.7		ug/Kg		107	70 - 133	0	20		
Trichlorofluoromethane			50.0	55.1		ug/Kg		110	60 - 140	0	20		
1,2,3-Trichloropropane			50.0	55.4		ug/Kg		111	70 ₋ 146	1	20		
1,1,2-Trichloro-1,2,2-trifluoroetha			50.0	52.5		ug/Kg		105	60 - 140	3	20		
ne													
1,2,4-Trimethylbenzene			50.0	49.2		ug/Kg		98	70 - 130	0	20		
1,3,5-Trimethylbenzene			50.0	50.7		ug/Kg		101	70 - 131	1	20		
Vinyl acetate			50.0	50.6		ug/Kg		101	38 - 176	7	20		
Vinyl chloride			50.0	51.8		ug/Kg		104	58 - 125	3	20		
m-Xylene & p-Xylene			50.0	49.9		ug/Kg		100	70 - 146	2	20		
o-Xylene			50.0	43.5		ug/Kg		87	70 - 140	15	20		
2,2-Dichloropropane			50.0	53.6		ug/Kg		107	70 - 162	4	20		
	LCSD	LCSD											
Surrogate	%Recovery	Qualifier	Limits										
4-Bromofluorobenzene	88		45 - 131										
1,2-Dichloroethane-d4 (Surr)	106		60 - 140										

Method: 8270C - Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

58 - 140

106

Lab Sample ID: MB 720-232562/1 Matrix: Solid Analysis Batch: 232632		МВ					i i	le ID: Methoo Prep Type: To Prep Batch: 3	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.067	0.033	mg/Kg		10/23/17 09:04	10/23/17 21:39	1
Acenaphthylene	ND		0.067	0.0056	mg/Kg		10/23/17 09:04	10/23/17 21:39	1
Acenaphthene	ND		0.067	0.0038	mg/Kg		10/23/17 09:04	10/23/17 21:39	1

Method: 8270C - Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

RL

0.067

0.067

0.067

0.067

0.067

0.33

0.067

0.067

0.067

0.067

0.067

0.067

0.067

Limits

21 - 98

30 - 112

59 - 134

MDL Unit

0.0040 mg/Kg

0.033 mg/Kg

0.0073 mg/Kg

0.0038 mg/Kg

0.018 mg/Kg

0.033 mg/Kg

0.0095 mg/Kg

0.0066 mg/Kg

0.014 mg/Kg

0.013 mg/Kg

0.020 mg/Kg

0.015 mg/Kg

mg/Kg

0.0043

MB MB

ND

60

70

77

%Recovery

MB MB

Qualifier

Result Qualifier

Analysis Batch: 232632

Lab Sample ID: MB 720-232562/1-A

(Continued)

Matrix: Solid

Analyte

Fluorene

Phenanthrene

Anthracene

Pyrene

Chrysene

Surrogate

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

Fluoranthene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Benzo[g,h,i]perylene

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

Benzo[a]pyrene

Client Sample ID: Method Blank

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

D

Prepared

10/23/17 09:04

Prepared

10/23/17 09:04

Prep Type: Total/NA

Prep Batch: 232562

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

Analyzed

10/23/17 21:39

1 2 3 4 5 6 7 8

Dil Fac	
1	

Lab Sample ID: LCS 720-232562/2-A Matrix: Solid

Analysis Batch: 232632

LCS LCS Spike %Rec. Analyte Added **Result Qualifier** Unit %Rec Limits D Naphthalene 1.33 0.952 71 44 - 110 mg/Kg Acenaphthylene 1.33 1.02 mg/Kg 77 53 - 102 Acenaphthene 1.33 1.02 mg/Kg 77 53 - 103 Fluorene 1.33 80 1.07 mg/Kg 54 - 103 Phenanthrene 1.33 1.09 mg/Kg 82 57 - 106 55 - 105 81 Anthracene 1.33 1.09 mg/Kg 1.33 Fluoranthene 1.07 mg/Kg 80 56 - 104 1.33 86 Pyrene mg/Kg 52 - 115 1.15 1.33 81 55 - 103 Benzo[a]anthracene 1.07 mg/Kg 82 Chrysene 1.33 1.10 mg/Kg 58 - 103 Benzo[b]fluoranthene 1.33 86 57 - 109 1 15 mg/Kg Benzo[a]pyrene 1.33 mg/Kg 83 57 - 1061.10 Benzo[k]fluoranthene 1.33 1.12 84 55 - 110 mg/Kg Indeno[1,2,3-cd]pyrene 1.33 1.02 77 56 - 108 mg/Kg 77 Benzo[g,h,i]perylene 1.33 1.03 mg/Kg 56 - 115 Dibenz(a,h)anthracene 1.33 1.02 76 57 - 106 mg/Kg

	LCS L	.CS	
Surrogate	%Recovery G	Qualifier	Limits
Nitrobenzene-d5	61		21 - 98
2-Fluorobiphenyl	72		30 - 112
Terphenyl-d14	84		59 - 134

Client Sample ID: Lab Control Sample

10/23/17 09:04 10/23/17 21:39

10/23/17 09:04 10/23/17 21:39

Prep Type: Total/NA Prep Batch: 232562

Analyzed

10/23/17 21:39

QC Sample Results

TestAmerica Job ID: 720-82612-1

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 720-23 Matrix: Solid Analysis Batch: 232753	2769/1-A							C			ele ID: Me Silica C Prep Ba	Gel Cl	eanup
	M	в мв											
Analyte	Resu	It Qualifier	RL		MDL			D	Р	repared	Analyz	ed	Dil Fac
Diesel Range Organics [C10-C28]	N	<u> </u>	1.0		0.75	mg/K	g	_ 1	0/2	5/17 11:08	10/26/17 (00:40	1
	М	B MB											
Surrogate		v Qualifier	Limits						Pi	repared	Analyz	ed	Dil Fac
Capric Acid (Surr)		· · · · · · · · · · · · · · · · · · ·	01					1		5/17 11:08	-		1
p-Terphenyl		8	38 - 148								10/26/17		1
	·	•						•					•
Lab Sample ID: LCS 720-23	32769/2-A						Clie	ent S	Sar	nple ID:	Lab Con	trol S	ample
Matrix: Solid											: Silica C		
Analysis Batch: 232753											Prep Ba		
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Diesel Range Organics [C10-C28]			83.3	65.1			mg/Kg		_	78	36 - 112		
	LCS L	25											
Surrogate	%Recovery Q		Limits										
p-Terphenyl	83		38 - 148										
p · · · · p········													
Lab Sample ID: LCSD 720-	232769/3-A					С	lient S	amp	le	ID: Lab	Control S	Sampl	e Dup
Matrix: Solid											: Silica (
Analysis Batch: 232753											Prep Ba		
			Spike	LCSD	LCSI	D					%Rec.		RPD
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Diesel Range Organics			83.3	69.7			mg/Kg		_	84	36 - 112	7	35
[C10-C28]							-						
	LCSD LO	CSD											
Surrogate	%Recovery Q		Limits										
p-Terphenyl	90		38 - 148										

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 720-232563/1-A Matrix: Solid Analysis Batch: 232637	ИВ МВ						le ID: Method Prep Type: To Prep Batch: 2	otal/NA
	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	0.0020	0.00067	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
Dieldrin	ND	0.0020	0.00037	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
Endrin aldehyde	ND	0.0020	0.00067	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
Endrin	ND	0.0020	0.00067	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
Endrin ketone	ND	0.0020	0.00040	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
Heptachlor	ND	0.0020	0.00082	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
Heptachlor epoxide	ND	0.0020	0.00041	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
4,4'-DDT	ND	0.0020	0.00050	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
4,4'-DDE	ND	0.0020	0.00082	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
4,4'-DDD	ND	0.0020	0.00061	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
Endosulfan I	ND	0.0020	0.00082	mg/Kg		10/23/17 09:08	10/24/17 04:09	1
Endosulfan II	ND	0.0020	0.00083	mg/Kg		10/23/17 09:08	10/24/17 04:09	1

RL

0.0020

0.0020

0.0020

0.0020

0.0020

0.0020

0.040

0.040

0.0020

0.0020

Limits

21 - 145

21 - 136

MDL Unit

0.00050 mg/Kg

0.00083 mg/Kg

0.00050 mg/Kg

0.00061 mg/Kg

0.00038 mg/Kg

0.00046 mg/Kg

0.0068 mg/Kg

0.0029 mg/Kg

0.00082 mg/Kg

0.00082 mg/Kg

D

Prepared

10/23/17 09:08

Prepared

Analysis Batch: 232637

Matrix: Solid

gamma-BHC (Lindane)

Endosulfan sulfate

Chlordane (technical)

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

alpha-Chlordane

gamma-Chlordane

Analyte

alpha-BHC

beta-BHC

delta-BHC

Methoxychlor

Toxaphene

Surrogate

Lab Sample ID: MB 720-232563/1-A

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

MB MB

ND

86

97

%Recovery

MB MB

Qualifier

Result Qualifier

Client Sample ID: Method Blank

10/23/17 09:08 10/24/17 04:09

10/23/17 09:08 10/24/17 04:09

10/23/17 09:08 10/24/17 04:09

10/23/17 09:08 10/24/17 04:09

10/23/17 09:08 10/24/17 04:09

10/23/17 09:08 10/24/17 04:09

10/23/17 09:08 10/24/17 04:09

10/23/17 09:08 10/24/17 04:09

10/23/17 09:08 10/24/17 04:09

 10/23/17
 09:08
 10/24/17
 04:09

 10/23/17
 09:08
 10/24/17
 04:09

Prep Type: Total/NA

Prep Batch: 232563

Dil Fac

1

1

1

1

1

1

1

1

1

1

Analyzed

10/24/17 04:09

Analyzed

2 3 4 5 6

8	
9	

Dil Fac	
1	
1	
ample	

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Lab Sample ID: LCS 720-232563/2-A Matrix: Solid Analysis Batch: 232637

Analysis Batch: 23263	7	Spike	LCS LCS			Prep Batch: 232563 %Rec.
Analyte		Added	Result Quali	ifier Unit	D %Rec	Limits
Aldrin		0.0167	0.0153	mg/Kg	92	65 - 120
Dieldrin		0.0167	0.0169	mg/Kg	101	72 - 120
Endrin aldehyde		0.0167	0.0179	mg/Kg	107	68 - 120
Endrin		0.0167	0.0176	mg/Kg	105	68 - 120
Endrin ketone		0.0167	0.0180	mg/Kg	108	75 - 136
Heptachlor		0.0167	0.0160	mg/Kg	96	69 - 120
Heptachlor epoxide		0.0167	0.0170	mg/Kg	102	68 - 120
4,4'-DDT		0.0167	0.0175	mg/Kg	105	63 - 127
4,4'-DDE		0.0167	0.0187	mg/Kg	112	76 - 126
4,4'-DDD		0.0167	0.0198	mg/Kg	119	75 - 128
Endosulfan I		0.0167	0.0167	mg/Kg	100	62 - 120
Endosulfan II		0.0167	0.0172	mg/Kg	103	65 - 120
alpha-BHC		0.0167	0.0144	mg/Kg	86	46 - 122
beta-BHC		0.0167	0.0173	mg/Kg	104	78 - 136
gamma-BHC (Lindane)		0.0167	0.0160	mg/Kg	96	72 - 120
delta-BHC		0.0167	0.0138	mg/Kg	83	43 - 125
Endosulfan sulfate		0.0167	0.0171	mg/Kg	102	72 - 121
Methoxychlor		0.0167	0.0166	mg/Kg	99	71 - 132
alpha-Chlordane		0.0167	0.0169	mg/Kg	101	70 - 120
gamma-Chlordane		0.0167	0.0169	mg/Kg	101	68 - 120
	LCS LCS					
Surrogate	%Recovery Qualifier	Limits				

Currogato	<i>/////////////////////////////////////</i>	quanner	2000
Tetrachloro-m-xylene	92		21 - 145
DCB Decachlorobiphenyl	104		21 - 136

8

9

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 720-23 Matrix: Solid Analysis Batch: 232558	32564/1-A	мп	мв						Clie		ble ID: Method Prep Type: To Prep Batch: 3	otal/NA
Analyte	Re		MB Qualifier	RL		MDL	Unit	D	Р	repared	Analyzed	Dil Fac
PCB-1016		ND	quamor	0.050			mg/Kg			•	10/23/17 19:38	1
PCB-1221		ND		0.050			mg/Kg				10/23/17 19:38	1
PCB-1232		ND		0.050			mg/Kg		10/2	3/17 09:12	10/23/17 19:38	1
PCB-1242		ND		0.050			mg/Kg				10/23/17 19:38	1
PCB-1248		ND		0.050			mg/Kg		10/2	3/17 09:12	10/23/17 19:38	1
PCB-1254		ND		0.050			mg/Kg		10/2	3/17 09:12	10/23/17 19:38	1
PCB-1260		ND		0.050			mg/Kg		10/2	3/17 09:12	10/23/17 19:38	1
		ΜВ	МВ									
Surrogate	%Reco	very	Qualifier	Limits					P	repared	Analyzed	Dil Fac
Tetrachloro-m-xylene		85		45 - 132					10/2	23/17 09:12	10/23/17 19:38	1
DCB Decachlorobiphenyl		97		42 - 146					10/2	23/17 09:12	10/23/17 19:38	1
Lab Sample ID: LCS 720-2	232564/2-A							Clien	t Sa	mple ID:	Lab Control S	Sample
Matrix: Solid											Prep Type: To	
Analysis Batch: 232558											Prep Batch:	
				Spike	LCS						%Rec.	
Analyte				Added	Result		alifier	Unit	D		Limits	
PCB-1016				0.133	0.117			mg/Kg		87	65 - 121	
PCB-1260				0.133	0.118			mg/Kg		89	68 - 127	
	LCS	LCS	;									
Surrogate	%Recovery	Qua	lifier	Limits								
To face a la face and a second a second	79			45 - 132								
Tetrachloro-m-xylene												

Matrix: Solid Analysis Batch: 232559

Analysis Batch: 232559	Sample	Sample	Spike	MS	MS				Prep Bate %Rec.	ch: 232564
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND	F1	0.149	0.220	F1	mg/Kg	\	148	69 - 120	
PCB-1260	ND	F1	0.149	0.124		mg/Kg	¢	84	73 - 114	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							

e an egute	,,	Quanto	
Tetrachloro-m-xylene	97		45 - 132
DCB Decachlorobiphenyl	47		42 - 146

43

Lab Sample ID: 720-82612-3 MSD Matrix: Solid Analysis Batch: 232559

DCB Decachlorobiphenyl

Analysis Batch: 232559									Prep Ba		
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND	F1	0.149	0.197	F1	mg/Kg	¢	133	69 - 120	11	20
PCB-1260	ND	F1	0.149	0.107	F1	mg/Kg	☆	72	73 - 114	14	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	90		45 - 132								

Client Sample ID: WCB-3

Prep Type: Total/NA

Prep Type: Total/NA

42 - 146

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-232501/1-A Matrix: Solid Analysis Batch: 232603

Analysis Batch: 232603								Prep Batch:	232501	
	МВ	МВ								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Antimony	ND		0.50	0.083	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Arsenic	ND		1.0	0.085	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Barium	ND		0.50	0.071	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Beryllium	ND		0.10	0.033	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	Ē
Cadmium	ND		0.13	0.012	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Chromium	0.0764	J	0.50	0.053	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	ī
Cobalt	ND		0.20	0.020	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Copper	ND		1.5	0.71	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	1
Lead	ND		0.50	0.11	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Molybdenum	ND		0.50	0.064	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Nickel	ND		0.50	0.051	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Selenium	ND		1.0	0.15	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Silver	ND		0.25	0.051	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Thallium	ND		0.50	0.15	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Vanadium	ND		0.50	0.068	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	
Zinc	ND		1.5	0.64	mg/Kg		10/20/17 15:24	10/23/17 10:52	1	

Lab Sample ID: LCS 720-232501/2-A Matrix: Solid Analysis Batch: 232603

Analysis Datch. 202000	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	50.0	46.65		mg/Kg		93	80 - 120
Arsenic	50.0	48.01		mg/Kg		96	80 - 120
Barium	50.0	48.64		mg/Kg		97	80 - 120
Beryllium	50.0	49.20		mg/Kg		98	80 - 120
Cadmium	50.0	49.54		mg/Kg		99	80 - 120
Chromium	50.0	49.36		mg/Kg		99	80 - 120
Cobalt	50.0	48.95		mg/Kg		98	80 - 120
Copper	50.0	47.75		mg/Kg		96	80 - 120
Lead	50.0	49.33		mg/Kg		99	80 - 120
Molybdenum	50.0	52.16		mg/Kg		104	80 - 120
Nickel	50.0	50.11		mg/Kg		100	80 - 120
Selenium	50.0	46.87		mg/Kg		94	80 - 120
Silver	25.0	24.63		mg/Kg		99	80 - 120
Thallium	50.0	51.88		mg/Kg		104	80 - 120
Vanadium	50.0	47.52		mg/Kg		95	80 - 120
Zinc	50.0	48.26		mg/Kg		97	80 - 120

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 720-232410/1- Matrix: Solid Analysis Batch: 232438		МВ					i i	le ID: Method Prep Type: To Prep Batch:	otal/NA
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.017	0.0025	mg/Kg		10/19/17 10:05	10/19/17 13:16	1

Client Sample ID: Method Blank

Prep Type: Total/NA

10 11 12 13

8

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 232501

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 720-232410/2-A Matrix: Solid Analysis Batch: 232438	Spike	LCS	LCS	Client	t Sample ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 232410 %Rec.
Analyte	Added 0.833	Result 0.801	Qualifier	Unit mg/Kg	D %Rec 96	Limits

Method: Moisture - Percent Moisture

_ab Sample ID: 720-82612-1 DU Matrix: Solid Analysis Batch: 232337							Client Sample Prep Type		
Analysis Daton. 202007	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Moisture	23.6		23.8		%			0.5	20

QC Association Summary

TestAmerica Job ID: 720-82612-1

GC/MS VOA

Analysis Batch: 232644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	8260B	232666
720-82612-2	WCB-2	Total/NA	Solid	8260B	232666
720-82612-3	WCB-3	Total/NA	Solid	8260B	232666
720-82612-4	WCB-4	Total/NA	Solid	8260B	232666
MB 720-232644/4	Method Blank	Total/NA	Solid	8260B	
LCS 720-232644/5	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 720-232644/6	Lab Control Sample Dup	Total/NA	Solid	8260B	
Prep Batch: 232666					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	5030B	
720-82612-2	WCB-2	Total/NA	Solid	5030B	

Total/NA

Total/NA

Solid

Solid

5030B

5030B

GC/MS Semi VOA

WCB-3

WCB-4

720-82612-3

720-82612-4

Prep Batch: 232562

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	3546	
720-82612-2	WCB-2	Total/NA	Solid	3546	
720-82612-3	WCB-3	Total/NA	Solid	3546	
720-82612-4	WCB-4	Total/NA	Solid	3546	
MB 720-232562/1-A	Method Blank	Total/NA	Solid	3546	
LCS 720-232562/2-A	Lab Control Sample	Total/NA	Solid	3546	

Analysis Batch: 232632

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	8270C	232562
720-82612-2	WCB-2	Total/NA	Solid	8270C	232562
720-82612-3	WCB-3	Total/NA	Solid	8270C	232562
720-82612-4	WCB-4	Total/NA	Solid	8270C	232562
MB 720-232562/1-A	Method Blank	Total/NA	Solid	8270C	232562
LCS 720-232562/2-A	Lab Control Sample	Total/NA	Solid	8270C	232562

GC Semi VOA

Analysis Batch: 232558

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	8082	232564
720-82612-2	WCB-2	Total/NA	Solid	8082	232564
720-82612-4	WCB-4	Total/NA	Solid	8082	232564
MB 720-232564/1-A	Method Blank	Total/NA	Solid	8082	232564
LCS 720-232564/2-A	Lab Control Sample	Total/NA	Solid	8082	232564

Analysis Batch: 232559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-3	WCB-3	Total/NA	Solid	8082	232564
720-82612-3 MS	WCB-3	Total/NA	Solid	8082	232564
720-82612-3 MSD	WCB-3	Total/NA	Solid	8082	232564

GC Semi VOA (Continued)

Prep Batch: 232563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-5	WCB-1 (0-6)	Total/NA	Solid	3546	
720-82612-6	WCB-1 (12-18)	Total/NA	Solid	3546	
720-82612-7	WCB-1 (30-36)	Total/NA	Solid	3546	
720-82612-8	WCB-2 (0-6)	Total/NA	Solid	3546	
720-82612-9	WCB-2 (12-18)	Total/NA	Solid	3546	
720-82612-10	WCB-2 (30-36)	Total/NA	Solid	3546	
720-82612-11	WCB-3 (0-6)	Total/NA	Solid	3546	
720-82612-12	WCB-3 (12-18)	Total/NA	Solid	3546	
720-82612-13	WCB-3 (30-36)	Total/NA	Solid	3546	
720-82612-14	WCB-4 (0-6)	Total/NA	Solid	3546	
720-82612-15	WCB-4 (12-18)	Total/NA	Solid	3546	
720-82612-16	WCB-4 (30-36)	Total/NA	Solid	3546	
MB 720-232563/1-A	Method Blank	Total/NA	Solid	3546	
LCS 720-232563/2-A	Lab Control Sample	Total/NA	Solid	3546	

Prep Batch: 232564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	3546	1
720-82612-2	WCB-2	Total/NA	Solid	3546	
720-82612-3	WCB-3	Total/NA	Solid	3546	
720-82612-4	WCB-4	Total/NA	Solid	3546	
MB 720-232564/1-A	Method Blank	Total/NA	Solid	3546	
LCS 720-232564/2-A	Lab Control Sample	Total/NA	Solid	3546	
720-82612-3 MS	WCB-3	Total/NA	Solid	3546	
720-82612-3 MSD	WCB-3	Total/NA	Solid	3546	

Analysis Batch: 232637

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-5	WCB-1 (0-6)	Total/NA	Solid	8081A	232563
720-82612-6	WCB-1 (12-18)	Total/NA	Solid	8081A	232563
720-82612-7	WCB-1 (30-36)	Total/NA	Solid	8081A	232563
720-82612-8	WCB-2 (0-6)	Total/NA	Solid	8081A	232563
720-82612-9	WCB-2 (12-18)	Total/NA	Solid	8081A	232563
720-82612-10	WCB-2 (30-36)	Total/NA	Solid	8081A	232563
720-82612-11	WCB-3 (0-6)	Total/NA	Solid	8081A	232563
720-82612-12	WCB-3 (12-18)	Total/NA	Solid	8081A	232563
720-82612-13	WCB-3 (30-36)	Total/NA	Solid	8081A	232563
720-82612-14	WCB-4 (0-6)	Total/NA	Solid	8081A	232563
720-82612-15	WCB-4 (12-18)	Total/NA	Solid	8081A	232563
720-82612-16	WCB-4 (30-36)	Total/NA	Solid	8081A	232563
MB 720-232563/1-A	Method Blank	Total/NA	Solid	8081A	232563
LCS 720-232563/2-A	Lab Control Sample	Total/NA	Solid	8081A	232563

Analysis Batch: 232638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-13	WCB-3 (30-36)	Total/NA	Solid	8081A	232563
720-82612-14	WCB-4 (0-6)	Total/NA	Solid	8081A	232563
720-82612-15	WCB-4 (12-18)	Total/NA	Solid	8081A	232563

GC Semi VOA (Continued)

Analysis Batch: 232753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-232769/1-A	Method Blank	Silica Gel Cleanup	Solid	8015B	232769
LCS 720-232769/2-A	Lab Control Sample	Silica Gel Cleanup	Solid	8015B	232769
LCSD 720-232769/3-A	Lab Control Sample Dup	Silica Gel Cleanup	Solid	8015B	232769

QC Association Summary

Analysis Batch: 232757

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Silica Gel Cleanup	Solid	8015B	232769
720-82612-2	WCB-2	Silica Gel Cleanup	Solid	8015B	232769
720-82612-3	WCB-3	Silica Gel Cleanup	Solid	8015B	232769
720-82612-4	WCB-4	Silica Gel Cleanup	Solid	8015B	232769

Prep Batch: 232769

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Silica Gel Cleanup	Solid	3546	
720-82612-2	WCB-2	Silica Gel Cleanup	Solid	3546	
720-82612-3	WCB-3	Silica Gel Cleanup	Solid	3546	
720-82612-4	WCB-4	Silica Gel Cleanup	Solid	3546	
MB 720-232769/1-A	Method Blank	Silica Gel Cleanup	Solid	3546	
LCS 720-232769/2-A	Lab Control Sample	Silica Gel Cleanup	Solid	3546	
LCSD 720-232769/3-A	Lab Control Sample Dup	Silica Gel Cleanup	Solid	3546	

Metals

Prep Batch: 232410

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	7471A	
720-82612-2	WCB-2	Total/NA	Solid	7471A	
720-82612-3	WCB-3	Total/NA	Solid	7471A	
720-82612-4	WCB-4	Total/NA	Solid	7471A	
MB 720-232410/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 720-232410/2-A	Lab Control Sample	Total/NA	Solid	7471A	

Analysis Batch: 232438

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	7471A	232410
720-82612-2	WCB-2	Total/NA	Solid	7471A	232410
720-82612-3	WCB-3	Total/NA	Solid	7471A	232410
720-82612-4	WCB-4	Total/NA	Solid	7471A	232410
MB 720-232410/1-A	Method Blank	Total/NA	Solid	7471A	232410
LCS 720-232410/2-A	Lab Control Sample	Total/NA	Solid	7471A	232410

Prep Batch: 232501

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82612-1	WCB-1	Total/NA	Solid	3050B	
720-82612-2	WCB-2	Total/NA	Solid	3050B	
720-82612-3	WCB-3	Total/NA	Solid	3050B	
720-82612-4	WCB-4	Total/NA	Solid	3050B	
MB 720-232501/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 720-232501/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Metals (Continued) Analysis Batch: 232603

720-82612-9

720-82612-10

720-82612-11

720-82612-12

720-82612-13

720-82612-14

720-82612-15

720-82612-16

720-82612-1 DU

WCB-2 (12-18)

WCB-2 (30-36)

WCB-3 (12-18)

WCB-3 (30-36)

WCB-4 (12-18)

WCB-4 (30-36)

WCB-1

WCB-4 (0-6)

WCB-3 (0-6)

9 10 11 12

13 14

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
720-82612-1	WCB-1	Total/NA	Solid	6010B	23250
720-82612-2	WCB-2	Total/NA	Solid	6010B	23250
720-82612-3	WCB-3	Total/NA	Solid	6010B	23250
720-82612-4	WCB-4	Total/NA	Solid	6010B	23250
MB 720-232501/1-A	Method Blank	Total/NA	Solid	6010B	23250
LCS 720-232501/2-A	Lab Control Sample	Total/NA	Solid	6010B	23250
nalysis Batch: 232	633				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-82612-4	WCB-4	Total/NA	Solid	6010B	23250
Analysis Batch: 232	703				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-82612-4	WCB-4	Total/NA	Solid	6010B	23250
Analysis Batch: 232	716				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-82612-2	WCB-2	Total/NA	Solid	6010B	23250
General Chemist	ry				
Analysis Batch: 232	337				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
720-82612-1	WCB-1	Total/NA	Solid	Moisture	
720-82612-2	WCB-2	Total/NA	Solid	Moisture	
720-82612-3	WCB-3	Total/NA	Solid	Moisture	
720-82612-4	WCB-4	Total/NA	Solid	Moisture	
720-82612-5	WCB-1 (0-6)	Total/NA	Solid	Moisture	
700 00040 0	WCB-1 (12-18)	Total/NA	Solid	Moisture	
720-82612-6					
720-82612-6 720-82612-7	WCB-1 (30-36)	Total/NA	Solid	Moisture	

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Moisture

Moisture

Moisture

Moisture

Moisture

Moisture

Moisture

Moisture

Moisture

Client Sample ID: WCB-1

Date Collected: 10/11/17 09:57

Lab Sample ID: 720-82612-1 Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			232666	10/24/17 10:39	AMC	TAL PLS
Total/NA	Analysis	8260B		1	232644	10/24/17 12:49	JRM	TAL PLS
Total/NA	Prep	3546			232562	10/23/17 09:04	CAL	TAL PLS
Fotal/NA	Analysis	8270C		2	232632	10/23/17 22:05	MQL	TAL PLS
Total/NA	Analysis	Moisture		1	232337	10/18/17 11:53	TNL	TAL PLS

Client Sample ID: WCB-1 Date Collected: 10/11/17 09:57 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-1 Matrix: Solid

Lab Sample ID: 720-82612-2

Lab Sample ID: 720-82612-2

Matrix: Solid

Matrix: Solid

Percent Solids: 81.3

Percent Solids: 76.4

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Silica Gel Cleanup	Prep	3546			232769	10/25/17 11:08	CAL	TAL PLS
Silica Gel Cleanup	Analysis	8015B		1	232757	10/26/17 01:25	JZT	TAL PLS
Total/NA	Prep	3546			232564	10/23/17 09:12	CAL	TAL PLS
Total/NA	Analysis	8082		1	232558	10/23/17 21:18	JZT	TAL PLS
Total/NA	Prep	3050B			232501	10/20/17 15:24	AAP	TAL PLS
Total/NA	Analysis	6010B		4	232603	10/23/17 12:54	BKR	TAL PLS
Total/NA	Prep	7471A			232410	10/19/17 10:05	AJS	TAL PLS
Total/NA	Analysis	7471A		1	232438	10/19/17 14:04	ASB	TAL PLS

Client Sample ID: WCB-2

Date Collected: 10/11/17 10:34 Date Received: 10/17/17 10:10

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			232666	10/24/17 10:39	AMC	TAL PLS
Total/NA	Analysis	8260B		1	232644	10/24/17 13:17	JRM	TAL PLS
Total/NA	Prep	3546			232562	10/23/17 09:04	CAL	TAL PLS
Total/NA	Analysis	8270C		2	232632	10/23/17 22:31	MQL	TAL PLS
Total/NA	Analysis	Moisture		1	232337	10/18/17 11:53	TNL	TAL PLS

Client Sample ID: WCB-2 Date Collected: 10/11/17 10:34 Date Received: 10/17/17 10:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Silica Gel Cleanup	Prep	3546			232769	10/25/17 11:08	CAL	TAL PLS
Silica Gel Cleanup	Analysis	8015B		2	232757	10/26/17 01:49	JZT	TAL PLS
Total/NA	Prep	3546			232564	10/23/17 09:12	CAL	TAL PLS
Total/NA	Analysis	8082		1	232558	10/23/17 21:01	JZT	TAL PLS
Total/NA	Prep	3050B			232501	10/20/17 15:24	AAP	TAL PLS
Total/NA	Analysis	6010B		4	232603	10/23/17 12:59	BKR	TAL PLS
Total/NA	Prep	3050B			232501	10/20/17 15:24	AAP	TAL PLS

TestAmerica Pleasanton

Client Sample ID: WCB-2

Date Collected: 10/11/17 10:34

Lab Sample ID: 720-82612-3

Lab Sample ID: 720-82612-3

Matrix: Solid

Matrix: Solid

Percent Solids: 87.0

10

Lab Sample ID: 720-82612-2 Matrix: Solid Percent Solids: 81.3

Date Received: 10/17/17 10:10									Solids: 81.3
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	6010B		4	232716	10/24/17 16:50	CAM	TAL PLS	
Total/NA	Prep	7471A			232410	10/19/17 10:05	AJS	TAL PLS	
Total/NA	Analysis	7471A		1	232438	10/19/17 14:11	ASB	TAL PLS	

Client Sample ID: WCB-3 Date Collected: 10/11/17 12:12 Date Received: 10/17/17 10:10

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			232666	10/24/17 10:39	AMC	TAL PLS
Total/NA	Analysis	8260B		1	232644	10/24/17 13:45	JRM	TAL PLS
Total/NA	Prep	3546			232562	10/23/17 09:04	CAL	TAL PLS
Total/NA	Analysis	8270C		2	232632	10/23/17 22:57	MQL	TAL PLS
Total/NA	Analysis	Moisture		1	232337	10/18/17 11:53	TNL	TAL PLS

Client Sample ID: WCB-3 Date Collected: 10/11/17 12:12 Date Received: 10/17/17 10:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Silica Gel Cleanup	Prep	3546			232769	10/25/17 11:08	CAL	TAL PLS
Silica Gel Cleanup	Analysis	8015B		10	232757	10/26/17 02:13	JZT	TAL PLS
Total/NA	Prep	3546			232564	10/23/17 09:12	CAL	TAL PLS
Total/NA	Analysis	8082		1	232559	10/23/17 19:38	JZT	TAL PLS
Total/NA	Prep	3050B			232501	10/20/17 15:24	AAP	TAL PLS
Total/NA	Analysis	6010B		4	232603	10/23/17 13:05	BKR	TAL PLS
Total/NA	Prep	7471A			232410	10/19/17 10:05	AJS	TAL PLS
Total/NA	Analysis	7471A		1	232438	10/19/17 14:13	ASB	TAL PLS

Client Sample ID: WCB-4 Date Collected: 10/11/17 11:34 Date Received: 10/17/17 10:10

Lab Sample ID: 7	20-82612-4
-	Matrix: Solid

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5030B			232666	10/24/17 10:39	AMC	TAL PLS
Total/NA	Analysis	8260B		1	232644	10/24/17 14:13	JRM	TAL PLS
Total/NA	Prep	3546			232562	10/23/17 09:04	CAL	TAL PLS
Total/NA	Analysis	8270C		2	232632	10/23/17 23:22	MQL	TAL PLS
Total/NA	Analysis	Moisture		1	232337	10/18/17 11:53	TNL	TAL PLS

Lab Sample ID: 720-82612-4 Matrix: Solid 72.3

Client Sample ID: WCB-4
Date Collected: 10/11/17 11:34
Date Received: 10/17/17 10:10

Prep Type

Total/NA

Silica Gel Cleanup

Silica Gel Cleanup

Batch

Туре

Prep

Prep

Prep

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Batch

3546

8015B

3546

8082

3050B

6010B

3050B

6010B

3050B

6010B

7471A

7471A

Method

Run

				Percent Solids:
Dilution	Batch	Prepared		
Factor	Number	or Analyzed	Analyst	Lab
	232769	10/25/17 11:08	CAL	TAL PLS
3	232757	10/26/17 02:38	JZT	TAL PLS
	232564	10/23/17 09:12	CAL	TAL PLS
1	232558	10/23/17 20:11	JZT	TAL PLS
	232501	10/20/17 15:24	AAP	TAL PLS
4	232603	10/23/17 13:10	BKR	TAL PLS

232501 10/20/17 15:24 AAP

232633 10/23/17 17:07 CAM

232501 10/20/17 15:24 AAP

232703 10/24/17 15:28 BKR

232410 10/19/17 10:05 AJS

232438 10/19/17 14:15 ASB

Client Sample ID: WCB-1 (0-6)
Date Collected: 10/11/17 09:33
Date Received: 10/17/17 10:10

—	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	232337	10/18/17 11:53	TNL	TAL PLS

10

10

1

Client Sample ID: WCB-1 (0-6) Date Collected: 10/11/17 09:33 Date Received: 10/17/17 10:10

Lab Sample ID: 720-82612-5
Matrix: Solid
Percent Solids: 82.9

TAL PLS

TAL PLS

TAL PLS

TAL PLS

TAL PLS

TAL PLS

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			232563	10/23/17 09:08	CAL	TAL PLS
Total/NA	Analysis	8081A		1	232637	10/24/17 05:33	JZT	TAL PLS

Client Sam	ple ID: WC	B-1 (12-18)					Lab S	ample ID	720-82612-6
Date Collecte	d: 10/11/17 0	9:41							Matrix: Solid
Date Receive	d: 10/17/17 1	0:10							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	232337	10/18/17 11:53	TNL	TAL PLS	

Client Sample ID: WCB-1 (12-18) Date Collected: 10/11/17 09:41 Date Received: 10/17/17 10:10

	Batch	Batch	Dura	Dilution	Batch	Prepared	Awalisat	Lab
Prep Type	Туре	Method	Run	Factor	Number		Analyst	Lab
Total/NA	Prep	3546			232563	10/23/17 09:08	CAL	TAL PLS
Total/NA	Analysis	8081A		1	232637	10/24/17 05:49	JZT	TAL PLS

TestAmerica Pleasanton

Lab Sample ID: 720-82612-6

Matrix: Solid

Percent Solids: 67.5

Lab Sample ID: 720-82612-5 Matrix: Solid

lient: Woodai	rd & Curran, I	Inc.	L	ab Chro			Test/	America Job	ID: 720-82612-1
roject/Site: S	JC Hanger A								
		B-1 (30-36)					Lab S	Sample ID:	720-82612-7
ate Collecte ate Receive									Matrix: Solid
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	232337	10/18/17 11:53	TNL	TAL PLS	
Client Sam	ple ID: WC	B-1 (30-36)					Lab S	Sample ID:	720-82612-7
Date Collecte								Boro	Matrix: Solid ent Solids: 72.4
				Dilution	Batab	Dranavad		Feice	<u>3111 301105. 72.4</u>
Prep Type	Batch	Batch Method	Run	Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Type Prep	3546	Kuli		232563	10/23/17 09:08		TAL PLS	
Total/NA	Analysis	8081A		1		10/24/17 06:06		TAL PLS	
	Anaiysis	0001A		I	202001	10/27/17 00.00	J <u></u>		
Client Sam							Lab S	Sample ID:	720-82612-8
Date Collecte									Matrix: Solid
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре		_			•		1	
		Method	Run	Factor	Number	or Analvzed	Analvst	Lab	
Total/NA	Analysis	Moisture	<u>Run</u>	1	Number 232337	or Analyzed 10/18/17 11:53	Analyst TNL	TAL PLS	720-82612-8
	Analysis ple ID: WC d: 10/11/17 1	Moisture B-2 (0-6) 0:18	<u>Kun</u>			•	TNL	TAL PLS	720-82612-8 Matrix: Solid ent Solids: 75.5
Total/NA Client Sam Date Collecte Date Received	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch	Moisture B-2 (0-6) 0:18 0:10 Batch		Dilution	232337 Batch	10/18/17 11:53 Prepared	TNL Lab S	TAL PLS	Matrix: Solid
Total/NA Client Samp Date Collecter Date Received Prep Type	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type	Moisture B-2 (0-6) 0:18 0:10 Batch Method	Run	1	232337 Batch Number	10/18/17 11:53 Prepared or Analyzed	TNL Lab S	TAL PLS Sample ID: Perce	Matrix: Solid
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546		Dilution Factor	232337 Batch Number 232563	10/18/17 11:53 Prepared or Analyzed 10/23/17 09:08	TNL Lab S Analyst CAL	TAL PLS Sample ID: Perce	Matrix: Solid
Total/NA Client Samp Date Collecter Date Received Prep Type	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type	Moisture B-2 (0-6) 0:18 0:10 Batch Method		Dilution	232337 Batch Number 232563	10/18/17 11:53 Prepared or Analyzed	TNL Lab S Analyst CAL	TAL PLS Sample ID: Perce	Matrix: Solid
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Total/NA Client Sam	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18)		Dilution Factor	232337 Batch Number 232563	10/18/17 11:53 Prepared or Analyzed 10/23/17 09:08	Analyst CAL JZT	TAL PLS Sample ID: Perce Lab TAL PLS TAL PLS	Matrix: Solid ent Solids: 75.5 720-82612-9
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27		Dilution Factor	232337 Batch Number 232563	10/18/17 11:53 Prepared or Analyzed 10/23/17 09:08	Analyst CAL JZT	TAL PLS Sample ID: Perce Lab TAL PLS TAL PLS	Matrix: Solid ent Solids: 75.5
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27		Dilution Factor	232337 Batch Number 232563	10/18/17 11:53 Prepared or Analyzed 10/23/17 09:08	Analyst CAL JZT	TAL PLS Sample ID: Perce Lab TAL PLS TAL PLS	Matrix: Solid ent Solids: 75.5 720-82612-9
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27 0:10		Dilution Factor 2	232337 Batch Number 232563 232637	Prepared or Analyzed 10/23/17 09:08 10/24/17 06:23	Analyst CAL JZT	TAL PLS Sample ID: Perce Lab TAL PLS TAL PLS	Matrix: Solid ent Solids: 75.5 720-82612-9
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Total/NA Client Sam Date Collecter Date Collecter Date Received Prep Type	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27 0:10 Batch Method	Run	Dilution Factor 2 Dilution Factor	232337 Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 06:23 Prepared or Analyzed	Analyst CAL JZT Lab S Analyst	TAL PLS Sample ID: Perce Lab TAL PLS TAL PLS Sample ID: Lab	Matrix: Solid ent Solids: 75.5 720-82612-9
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27 0:10 Batch Method 0:27 0:10 Batch Method Moisture	Run	Dilution Factor 2 Dilution	232337 Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 06:23	TNL Lab S Analyst CAL JZT Lab S Analyst TNL	TAL PLS Sample ID: Perco Lab TAL PLS TAL PLS Sample ID: Lab TAL PLS	Matrix: Solid ent Solids: 75.5 720-82612-9 Matrix: Solid
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis ple ID: WC	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27 0:10 Batch Method Moisture B-2 (12-18) B-2 (12-18)	Run	Dilution Factor 2 Dilution Factor	232337 Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 06:23 Prepared or Analyzed	TNL Lab S Analyst CAL JZT Lab S Analyst TNL	TAL PLS Sample ID: Perco Lab TAL PLS TAL PLS Sample ID: Lab TAL PLS	Matrix: Solid ent Solids: 75.5 720-82612-9
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC Analysis	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27 0:10 Batch Method Moisture B-2 (12-18) 0:27 0:10	Run	Dilution Factor 2 Dilution Factor	232337 Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 06:23 Prepared or Analyzed	TNL Lab S Analyst CAL JZT Lab S Analyst TNL	TAL PLS Sample ID: Perce Lab TAL PLS TAL PLS Sample ID: Sample ID: Sample ID:	Matrix: Solid ent Solids: 75.5 720-82612-9 Matrix: Solid 720-82612-9
Total/NA Client Samp Date Collecter Date Received Total/NA Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter Date Collecter Date Collecter Chient Samp Date Collecter Client Samp Clie	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC Analysis	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27 0:10 Batch Method Moisture B-2 (12-18) 0:27 0:10	Run	Dilution Factor 2 Dilution Factor	232337 Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 06:23 Prepared or Analyzed	TNL Lab S Analyst CAL JZT Lab S Analyst TNL	TAL PLS Sample ID: Perce Lab TAL PLS TAL PLS Sample ID: Sample ID: Sample ID:	Matrix: Solid ent Solids: 75.5 720-82612-9 Matrix: Solid 720-82612-9 Matrix: Solid
Total/NA Client Samp Date Collecter Date Received Total/NA Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter Date Collecter Date Collecter Chient Samp Date Collecter Client Samp Clie	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27 0:10 Batch Method 0:27 0:10 Batch Method 0:27 0:10	Run	Dilution Factor 2 Dilution Factor 1	232337 Batch Number 232563 232637 3232637 Batch Number Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 06:23 Prepared or Analyzed 0/24/17 10/18/17 11:53	TNL Lab S Analyst CAL JZT Lab S Analyst Analyst	TAL PLS Sample ID: Perce Lab TAL PLS TAL PLS Sample ID: Sample ID: Sample ID:	Matrix: Solid ent Solids: 75.5 720-82612-9 Matrix: Solid 720-82612-9 Matrix: Solid
Total/NA Client Samp Date Collecter Date Received Total/NA Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter Date Collecter Date Received	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis	Moisture B-2 (0-6) 0:18 0:10 Batch Method 3546 8081A B-2 (12-18) 0:27 0:10 Batch Method Moisture B-2 (12-18) 0:27 0:10 Batch Method Moisture	Run	1 Dilution Factor 2 Dilution Factor 1 Dilution Factor 1	232337 Batch Number 232563 232637 232637 Batch Number 232337 Batch Number 232563	10/18/17 11:53 Prepared or Analyzed 10/23/17 09:08 10/24/17 06:23 Prepared or Analyzed 10/18/17 11:53	TNL Lab S Analyst CAL JZT Lab S Analyst TNL Lab S Analyst CAL	TAL PLS Sample ID: Perce Lab TAL PLS Sample ID: Cab TAL PLS Sample ID: Cab TAL PLS Cample ID: C	Matrix: Solid ent Solids: 75.5 720-82612-9 Matrix: Solid 720-82612-9 Matrix: Solid

lient Sam	pie ID: WC	B-2 (30-36)					Lab Sa	mple ID	: 720-82612-1
ate Collecte									Matrix: Sol
	Batch	Batch		Dilution	Batch	Branarad			
Prep Type		Method	Run	Factor	Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Type Analysis	Moisture			232337	10/18/17 11:53	Analyst TNL	TAL PLS	-
	Analysis	Moisture		I	202007	10/10/17 11:55		TALTES	
Client Sam	ple ID: WC	B-2 (30-36)					Lab Sa	mple ID:	720-82612-1
Date Collecte	d: 10/11/17 1	0:32							Matrix: Sol
Date Received	d: 10/17/17 1	0:10						Per	cent Solids: 66
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3546			232563	10/23/17 09:08	CAL	TAL PLS	-
Total/NA	Analysis	8081A		1	232637	10/24/17 06:56	JZT	TAL PLS	
Client Sam	-						Lab Sa	imple ID	720-82612-1
Date Collecte									Matrix: Sol
Date Received	d: 10/17/17 1	0:10							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
1100 1300	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					40/40/47 44 50	TNL	TAL PLS	-
Total/NA	Analysis			1	232337	10/18/17 11:53			
Total/NA Client Samp Date Collected	Analysis ple ID: WC d: 10/11/17 1	B-3 (0-6) 0:54		1	232337	10/18/17 11:53		imple ID	Matrix: Sol
Total/NA Client Sam	Analysis ple ID: WC d: 10/11/17 1	B-3 (0-6) 0:54		Dilution	232337 Batch	Prepared		imple ID	Matrix: Sol
Total/NA Client Sam	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1	B-3 (0-6) 0:54 0:10	Run					imple ID	Matrix: Sol
Total/NA Client Sam Date Collecte Date Received	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch	B-3 (0-6) 0:54 0:10 Batch	Run	Dilution	Batch	Prepared	Lab Sa	Imple ID Per	Matrix: Sol
Total/NA Client Sam Date Collecte Date Received Prep Type	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type	B-3 (0-6) 0:54 0:10 Batch Method	Run	Dilution	Batch Number 232563	Prepared or Analyzed	Lab Sa Analyst CAL	Per	Matrix: Sol
Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A	Run	Dilution Factor	Batch Number 232563	Prepared or Analyzed 10/23/17 09:08	Lab Sa Analyst CAL JZT	EXAMPLE ID Per Lab TAL PLS TAL PLS	: 720-82612-1 Matrix: Sol cent Solids: 84
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Total/NA Client Sam	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18)	Run	Dilution Factor	Batch Number 232563	Prepared or Analyzed 10/23/17 09:08	Lab Sa Analyst CAL JZT	EXAMPLE ID Per Lab TAL PLS TAL PLS	Matrix: Sol cent Solids: 84
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Total/NA Client Sam Date Collecter	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08	Run	Dilution Factor	Batch Number 232563	Prepared or Analyzed 10/23/17 09:08	Lab Sa Analyst CAL JZT	EXAMPLE ID Per Lab TAL PLS TAL PLS	Matrix: Sol cent Solids: 84
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Total/NA Client Sam Date Collecter	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10	Run	Dilution Factor	Batch Number 232563 232637	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11	Lab Sa Analyst CAL JZT	EXAMPLE ID Per Lab TAL PLS TAL PLS	Matrix: Sol cent Solids: 84
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Total/NA Client Sam Date Collecter Date Received	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch		Dilution Factor 5 Dilution	Batch Number 232563 232637 Batch	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared	Lab Sa Analyst CAL JZT Lab Sa	Lab TAL PLS TAL PLS	Matrix: Sol cent Solids: 84
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecter Date Received Prep Type	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch Method	Run	Dilution Factor 5 Dilution Factor	Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared or Analyzed	Lab Sa Analyst CAL JZT Lab Sa Analyst	Lab TAL PLS TAL PLS TAL PLS	Matrix: Sol cent Solids: 84
Total/NA Client Sam Date Collecter Date Received Prep Type Total/NA Total/NA Client Sam Date Collecter Date Collecter Date Received	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch		Dilution Factor 5 Dilution	Batch Number 232563 232637 Batch	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared	Lab Sa Analyst CAL JZT Lab Sa Analyst	Lab TAL PLS TAL PLS	Matrix: Sol cent Solids: 84
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch Method		Dilution Factor 5 Dilution Factor	Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared or Analyzed	Lab Sa Analyst CAL JZT Lab Sa Analyst TNL	Lab TAL PLS TAL PLS TAL PLS	Matrix: Sol cent Solids: 84 720-82612-1 Matrix: Sol
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp Client Samp	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis ple ID: WC	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch Method Moisture B-3 (12-18)		Dilution Factor 5 Dilution Factor	Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared or Analyzed	Lab Sa Analyst CAL JZT Lab Sa Analyst TNL	Lab TAL PLS TAL PLS TAL PLS	Matrix: Sol cent Solids: 84 720-82612-1 Matrix: Sol
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter Date Collecter Date Received	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC Analysis	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch Method Moisture B-3 (12-18) 2:08		Dilution Factor 5 Dilution Factor	Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared or Analyzed	Lab Sa Analyst CAL JZT Lab Sa Analyst TNL	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Sol cent Solids: 84 720-82612-1 Matrix: Sol
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected C	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC Analysis	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch Method Moisture B-3 (12-18) 2:08		Dilution Factor 5 Dilution Factor	Batch Number 232563 232637 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared or Analyzed 10/18/17 11:53	Lab Sa Analyst CAL JZT Lab Sa Analyst TNL	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Sol cent Solids: 84 720-82612-1 Matrix: Sol
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter Date Collecter	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC d: 10/11/17 1 Batch ti 10/17/17 1 Batch	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch Method Moisture B-3 (12-18) 2:08 0:10 B-3 (12-18) 2:08 0:10	Run	Dilution Factor 5 Dilution Factor 1 Dilution	Batch Number 232563 232637 Batch Number 232337 Batch	Prepared 0r Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared 0r Analyzed 10/18/17 11:53 Prepared	Lab Sa Analyst CAL JZT Lab Sa Analyst TNL Lab Sa	Lab TAL PLS TAL PLS TAL PLS IMPIE ID TAL PLS	Matrix: Sol cent Solids: 84 720-82612-1 Matrix: Sol
Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Total/NA Client Samp Date Collecter Date Received Prep Type Total/NA Client Samp Date Collecter Date Collecter Date Collecter Date Received Prep Type Total/NA	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC d: 10/11/17 1 Batch Type	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch Method Moisture B-3 (12-18) 2:08 0:10 Batch Method Moisture		Dilution Factor 5 Dilution Factor 1	Batch Number 232563 232637 Batch Number 232337 Batch Number	Prepared or Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared or Analyzed 10/18/17 11:53 Prepared or Analyzed	Lab Sa Analyst CAL JZT Lab Sa Analyst Analyst	Lab TAL PLS TAL PLS TAL PLS IMPIE ID TAL PLS	Matrix: Sol cent Solids: 84 720-82612-1 Matrix: Sol
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Collected Collected Date Received	Analysis ple ID: WC d: 10/11/17 1 d: 10/17/17 1 Batch Type Prep Analysis ple ID: WC d: 10/11/17 1 Batch Type Analysis ple ID: WC d: 10/11/17 1 Batch ti 10/17/17 1 Batch	B-3 (0-6) 0:54 0:10 Batch Method 3546 8081A B-3 (12-18) 2:08 0:10 Batch Method Moisture B-3 (12-18) 2:08 0:10 B-3 (12-18) 2:08 0:10	Run	Dilution Factor 5 Dilution Factor 1 Dilution	Batch Number 232563 232637 Batch Number 232337 Batch Number 232563	Prepared 0r Analyzed 10/23/17 09:08 10/24/17 09:11 Prepared 0r Analyzed 10/18/17 11:53 Prepared	Lab Sa Analyst CAL JZT Lab Sa Analyst TNL Lab Sa Analyst CAL	Lab TAL PLS TAL PLS TAL PLS IMPIE ID TAL PLS	Matrix: Sol

Date Collected: 10/11/17 12:13

Date Received: 10/17/17 10:10

Client Sample ID: WCB-3 (30-36)

Lab Sample ID: 720-82612-13

5 10

Matrix: Solid

Prep Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	232337	10/18/17 11:53	-	TAL PLS	
Client Som		P 2 (20 26)					Lah Sa	male ID:	700 00640 40
	•	B-3 (30-36)					Lap Sa	imple iD:	720-82612-13
Date Collecte								Dem	Matrix: Solic
Jate Receive	d: 10/17/17 1	0:10						Per	cent Solids: 71.7
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3546			232563	10/23/17 09:08	CAL	TAL PLS	
Total/NA	Analysis	8081A		1	232637	10/24/17 07:30	JZT	TAL PLS	
Total/NA	Prep	3546			232563	10/23/17 09:08	CAL	TAL PLS	
Total/NA	Analysis	8081A		10		10/24/17 10:22		TAL PLS	
_	· · · · · · · · · · · · · · · · · · ·								
Client Sam	ple ID: WC	B-4 (0-6)					Lab Sa	mple ID:	720-82612-14
	d: 10/11/17 1							•	Matrix: Solid
	d: 10/17/17 1								
_	Batch	Batch		Dilution	Batch	Prepared			
Dren Turne		Method	Dum			•	Analyst	Lab	
Prep Type Total/NA	Type Analysis	Moisture	Run		232337	or Analyzed	Analyst TNL	TAL PLS	
	ple ID: WC						Lab Sa	imple ID:	720-82612-14 Matrix: Solid
Date Collecte								Per	cent Solids: 79.0
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3546			232563	10/23/17 09:08	CAL	TAL PLS	
Total/NA	Analysis	8081A		1	232637	10/24/17 07:47	JZT	TAL PLS	
Total/NA	Prep	3546			232563	10/23/17 09:08	CAL	TAL PLS	
Total/NA	Analysis	8081A		5	232638	10/24/17 10:39	JZT	TAL PLS	
Client Sam		B-4 (12-18)					l ah Sa	mplo ID:	720-82612-15
	ed: 10/11/17 1								Matrix: Solic
	d: 10/17/17 1								
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1 _	232337	10/18/17 11:53	TNL	TAL PLS	
							l ah Sa		
Client Sam	nle ID· WC	B_4 (12_18)							720-82612-14
	ple ID: WC	• •						imple iD.	
Date Collecte	d: 10/11/17 1	1:26							Matrix: Solid
Date Collecte	d: 10/11/17 1 d: 10/17/17 1	1:26 0:10							Matrix: Solic
Date Collecte Date Receive	ed: 10/11/17 1 d: 10/17/17 1 Batch	1:26 0:10 Batch		Dilution	Batch	Prepared		Pere	Matrix: Solic
Client Sam Date Collecte Date Receive Terep Type Total/NA	d: 10/11/17 1 d: 10/17/17 1	1:26 0:10	Run	Dilution	Number	Prepared or Analyzed 10/23/17 09:08	Analyst		720-82612-15 Matrix: Solic cent Solids: 80.5

Lab Chronicle

lient Sam	ple ID: WC	B-4 (12-18)					Lab Sa	mple ID:	720-82612-15
	d: 10/11/17 1							-	Matrix: Solid
Date Receive	d: 10/17/17 1	0:10						Per	cent Solids: 80.5
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8081A		1	232637	10/24/17 08:03	JZT	TAL PLS	
Total/NA	Prep	3546			232563	10/23/17 09:08	CAL	TAL PLS	
Total/NA	Analysis	8081A		5	232638	10/24/17 10:57	JZT	TAL PLS	
Date Collecte	d: 10/11/17 1								Matrix: Solid
Date Collecte	d: 10/11/17 1	1:32		Dilution	Batch	Prepared			
Date Collecte	d: 10/11/17 1 d: 10/17/17 1	1:32 0:10	Run	Dilution Factor	Batch Number		Analyst	Lab	
Date Collecte Date Receive	d: 10/11/17 1 d: 10/17/17 1 Batch	1:32 0:10 Batch	Run			Prepared		•	
Date Collecte Date Receive Prep Type Total/NA Client Sam	d: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis	1:32 0:10 Batch Method Moisture B-4 (30-36)	Run	Factor	Number	Prepared or Analyzed 10/18/17 11:53	Analyst TNL	Lab TAL PLS	Matrix: Solid
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	d: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis ple ID: WC d: 10/11/17 1	1:32 0:10 Batch Method Moisture B-4 (30-36) 1:32	Run	Factor	Number	Prepared or Analyzed 10/18/17 11:53	Analyst TNL	Lab TAL PLS	720-82612-16 Matrix: Solid
Date Collecte Date Receive Prep Type Total/NA Client Sam	d: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis ple ID: WC d: 10/11/17 1	1:32 0:10 Batch Method Moisture B-4 (30-36) 1:32	Run	Factor	Number	Prepared or Analyzed 10/18/17 11:53	Analyst TNL	Lab TAL PLS	Matrix: Solid
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	d: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis ple ID: WC d: 10/11/17 1	1:32 0:10 Batch Method Moisture B-4 (30-36) 1:32	Run	Factor	Number	Prepared or Analyzed 10/18/17 11:53	Analyst TNL	Lab TAL PLS	Matrix: Solid 720-82612-16 Matrix: Solid
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	ed: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis ple ID: WC ed: 10/11/17 1 d: 10/17/17 1	1:32 0:10 Batch Method Moisture B-4 (30-36) 1:32 0:10	Run Run	Factor 1	Number 232337	Prepared or Analyzed 10/18/17 11:53	Analyst TNL	Lab TAL PLS	Matrix: Solid 720-82612-16 Matrix: Solid
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received	ed: 10/11/17 1 d: 10/17/17 1 Batch Type Analysis ple ID: WC ed: 10/11/17 1 d: 10/17/17 10 Batch	1:32 0:10 Batch Method Moisture B-4 (30-36) 1:32 0:10 Batch		Dilution	Number 232337 Batch	Prepared or Analyzed 10/18/17 11:53 Prepared	Analyst TNL	Lab TAL PLS ample ID: Per	Matrix: Solid 720-82612-16 Matrix: Solid

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Laboratory: TestAmerica Pleasanton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2496	01-31-18

Laboratory: TestAmerica Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New Hampshire	NELAP	1	2973	09-11-18

Method Summary

Client: Woodard & Curran, Inc. Project/Site: SJC Hanger A

Nethod	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS
3270C	Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	SW846	TAL PLS
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL PLS
3081A	Organochlorine Pesticides (GC)	SW846	TAL PLS
3082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL PLS
6010B	Metals (ICP)	SW846	TAL PLS
'471A	Mercury (CVAA)	SW846	TAL PLS
/loisture	Percent Moisture	EPA	TAL PLS

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Matrix

Solid

Client: Woodard & Curran, Inc. Project/Site: SJC Hanger A

Client Sample ID

WCB-1

WCB-2

WCB-3

WCB-4

WCB-1 (0-6)

WCB-1 (12-18)

WCB-1 (30-36)

WCB-2 (12-18)

WCB-2 (30-36)

WCB-3 (12-18)

WCB-3 (30-36)

WCB-4 (12-18)

WCB-4 (30-36)

WCB-4 (0-6)

WCB-3 (0-6)

WCB-2 (0-6)

Lab Sample ID

720-82612-1

720-82612-2

720-82612-3

720-82612-4

720-82612-5

720-82612-6

720-82612-7

720-82612-8

720-82612-9

720-82612-10

720-82612-11

720-82612-12

720-82612-13

720-82612-14

720-82612-15

720-82612-16

TestAmerica Job ID: 720-82

arian Jah ID.	700 00040 4	1
erica Job ID:	720-82612-1	2
Collected	Received	3
10/11/17 09:57	10/17/17 10:10	Λ
10/11/17 10:34	10/17/17 10:10	4
10/11/17 12:12	10/17/17 10:10	E
10/11/17 11:34	10/17/17 10:10	Ð
10/11/17 09:33	10/17/17 10:10	0
10/11/17 09:41	10/17/17 10:10	0
10/11/17 09:52	10/17/17 10:10	_
10/11/17 10:18	10/17/17 10:10	
10/11/17 10:27	10/17/17 10:10	
10/11/17 10:32	10/17/17 10:10	8
10/11/17 10:54	10/17/17 10:10	
10/11/17 12:08	10/17/17 10:10	9
10/11/17 12:13	10/17/17 10:10	
10/11/17 11:18	10/17/17 10:10	10
10/11/17 11:26	10/17/17 10:10	
10/11/17 11:32	10/17/17 10:10	11
		12
		13

									t		54	÷	£.	Ś	r	3	۴.,۰	M 7.4													
Custody Seals Intact ∆ Yes ∆ No	103/	Kalinquisted by	Keinquished by i lift. L.	Empty Kit Relinquished by	11, 111, IV, Oth	ě	Possible Hazard Identification	WCB-3 (0-6)	WCB-2 (30-36)	WCB-2 (12-18)	WCB-2 (0-6)	WCB-1 (30-36)	WCB-1 (12-18)	WCB-1 (0-6)	WCB-4	WCB-3	WCB-2	WCB-1		Sample Identification	Site	Project Name SJC Hangar A	steinglass@woodardcuttan.com	Phone 207-756-2319	State, Zip ME, 04101	Portland	Address 41 Hutchins Drive	Company Woodard & Curran, Inc	Jedd Steinglass	Client Information	TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991
						Poison B														-											
1	Date/Time / //	Date/Time/3/	Date/Time			n B Unknown		10/11/17	10/11/17	10/11/17	10/11/17	10/11/17	10/11/17	10/11/17	10/11/17	10/11/17	10/11/17	10/11/17		Sample Date	SSOW#	Project # 231054	WO #	PO #		TAT Requested (days): Standard 5-Day	Due Date Requested		Phone	Sampler George Valenzuela	
		1	17	Date				11.5tom	10:52mm	1:276m	102150.2	4:52mm	fi-110in	9:33cm	11:3-401	12:12.014	D: Yhur	Va Ch		Sample						days): ay	sted			zuela	Chai
	1.2	5	Ö			Radiological		τ ^ι λ	ŝ	ŝ	7	12	3	Š	Ϋ́.	Pin	14 m	3	Ļ	103 (0											n of
			orn			ological		ഒ	G	G	G	۵ ا	ြ	G	0	0	0	0	Inseiva	Sample Type (C≔comp, G≔grab)											Cus
	Company	Company	Company					Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Fleseivalion, Code:	Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=Alr)									'n	La	Chain of Custody Record
		4	Į.	Time			-	z	z	Z	z	z	z	z	z	z	z	z	R	Field Filtered	Include Antice station	and the second	Contract and	(0)	an airte	-			E-Mail	Lab PM	Rec
8	Receiv	Re	Re	ē	Special Instructions/QC Requirements		Sample Disposal	z	z	z		z	z	z	v ×	Z ×	z ×	z ×	P	VOCs Standar		a stawno			1						ord
Cooler Te	ceived	Received b	Received by		il Instr	Return To Cl	le Dis						<u> </u>		×	×	×	×		TPH DRO with	Silica (leanu	p 8018	5B							. 1
Temperatu	5		\mathbb{K}^{*}		uction	7700	posal								×	×	×	×	ŝ	PCBs 8082											5
ure(s) '	F		1		15/QC	lient	(A fee								×	×	×	×		CA CAM 17 To		aís 601	10B / 7	471A				Ana			0
C and o	=		[<u>}</u> \ '	Ċ,	Requ		e may	-	×	×	×	×	×	×	×	×	×	×	┢	SVOC ABN 82		ides	- Stan	dard Lis	st 8081			Analysis			•
re(s) "C and Other Rem	ξ	\`\	-		lireme		8	×				Ê	Ê	ĥ																	S.
Ð	19	K				8	asses					ļ		 		Į		J						· · · · · · · · · · · · · · · · · · ·				Requested		Carrie	õ
To In	Γ.		K	Nethod	Extract	Disposal By Lab	sed if						A Internet	pojsi			15 CI	928	50-	Z 								ted		r Track	2612
14.		Date/Time	Date/Time	Method of Shipment	Extract and RUN TCLP for any single metal that exceeds 20X rule	Lab	assessed if samples a																							racking No(s)	12
N		114	N		ICLP		are ret													-											
1	\vec{L}_{1}		Ľ		for an	Archive For	ained		د	·			·		∾.	N	Ň	Ń	2	Total Numbe	_				 n m O	ດຫຼ	P P	qor	99	<u> </u>	* 53 marca
	$ \mathcal{L} $		V.		y sing	For ,	retained longer													S	Other	L-EDA	1 - ice J - DI Water K - FDTA	- Amet	E - Natric Acid E - NaHSO4	- NaOł	- HCI	ю#	Page Page 1 of 2	30-100	lest/
	0101	CYLU	181		le met		er than													pecial			iter	G - Amehlar H - Ascorbic Acid	Acıd 104	√ vetate	Preservation Codes:		of 2	COC No 480-103376-24505	N K
	0				al that		~													Instr		7			τQσ	0 Z 3	Codes:			4505	5-
$[\sim]$	1 1	Colubad	Com		ехсе	Months	month)													uction		- Other	- MCAA	- H2SC TSP D	- Na2O - Na2S	- None - AsNat	Неург			-	Щ ~
5	5	/-	石	/	∍ds 20	Š														pecial Instructions/Note:		- other (specify)	JI 0	4 orfecah	5 8 6	22	Ď				
2	لاب ا	/		Ĭ	IX rule				1											ē		<i>ش</i> ہ		S - H2SO4 T - TSP Dorfecahydrate							1904S
17	ل م ا			Ш		L							L	L			L		L	1	L									L	- v]

													8	ゴシッチ ト シンシンシンシン
10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	-	Chain of Custody Record	of Cust	ody R	ecord	ي	5	~	ရှိ	S S S S S S S S S S S S S S S S S S S	Ĵ	ų	- 155 entre	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler George Valenzuela	uela		Lab PM					Carr	Carrier Tracking Noisi	1g Noisi		0.4	COC No 480-103376-24505 1
Clert Contact Jedd Steinglass	Phone			E-Mail							1	:	जू ज	Page 2 of 2
Company Woodard & Curran, Inc							An	Analysis I	Requested	sted			5	Job #
Address 41 Hutchins Drive	Due Date Requested	ted										_		្ត
City Portland	TAT Requested (days). Standard 5-Day	lays). IV												
State, Zip ME, 04101								t 8081/					mo	D - Nitric Acid P - Na2O4S E - NaHSO4 O - Na2SO3
Phone 207-756-2319	PO #				») -		11A	urd List					 ະດາ	1
Email Isteingtass@woodardcurran.com	WO #				10)		B174	Standa						
Project Name SJC Hangar A	Project # 231054				is.et		s 6010	des -						K - ED FA W - pH 4-5 L - EDA Z - other (specify)
Sie	SSOW#				SD (Y		ai Meta		•					Other
			Sample Type	Matrix (W=wator,	Filtered rm MS/N Standard	RO with \$	17 Tot	ABN 827 ochlorine			·····		Number	
Sample Identification	Sample Date	Sample Time	e p	£.	Perio	трн р	PCBs CA CA						Total	Special Instructions/Note:
		X	Preservation Code:		-K-								X	
	10/11/17	12.58 Mm	6	Solid	z	<u> </u>		×						and any "Provention of the Annual
(5 WCB-3 (30-36)	10/11/17	12:4300	G	Solid	z			×				ļ	-	
(4 WCB-4 (0-6)	10/11/17	11:18:00	٥ ١	Solid	z			×		<u> </u>				
rS WCB-4 (12-18)	10/11/17	Wilbam	G	Solid	z		 	×					-1	
16 WCB-4 (30-36)	10/11/17	11:32 G.M.	G	Solid	z z			×						
												_		
													-	
Possible Hazard Identification	Poison B Unknown		Radiological	1000	Samp	Sample Disposal (A f	sal (A fee o Client	ee may	may be assessed if samples	ssed if s	sample. ah	s are re	tained long Archive For	are retained longer than 1 month)
요	-				Specia	Special Instructions/QC Requirements	tions/QC	Require	ments	ents Extract and RUN TCLP	and RU	N TCLP	for an	gle metal that
Empty Kit Relinquished by		Date			Time					Method o	Method of Shipment	ent		
Reingushed by		0 17/71	pin	Company	Re	Received by	\sum	2.2		*	Date/Time	101	1/2	Alfredhand 1 261 L
Relinquished by	10/13/	17/5	3			Received by	\mathbf{H}	Ĺ	\square				4	(> XU Company
Clistory Saale Intert Cristory Seal No.	11/11	3/11/2	600	123		9	3 [3	· · ·	E	19	Date	<i></i>	7	17 1010 mp/c 3
														7 6 71

10/27/2017

ρà

Client: Woodard & Curran, Inc.

Login Number: 82612 List Number: 1 Creator: Alcantara, Michael A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-82612-1

List Source: TestAmerica Pleasanton