APPENDIX D

PHASE I ENVIRONMENTAL SITE ASSESSMENT

TYPE OF SERVICES LOCATION CLIENT PROJECT NUMBER

DATE

Phase I Environmental Site Assessment 1580 South 10th Street San Jose, California Starbird Consulting, LLC 1117-1-1 April 30, 2019

ENVIRONMENTAL

I

Type of Services Location	Phase I Environmental Site Assessment 1580 South 10 th Street San Jose, California
Client Client Address	Starbird Consulting, LLC 115 South 14 th Street San Jose, California 95112
Project Number Date	1117-1-1 April 30, 2019

DRAFT

Prepared by

Stason I. Foster, P.E. Senior Project Engineer

Christopher J. Heiny, P.G. Principal Geologist

1259 Oakmead Parkway | Sunnyvale, CA 94085 **T** 408 245 4600 | **F** 408 245 4620

Table of Contents

SECTION 1: INTRODUCTION	1
1.1 PURPOSE	1
1.2 SCOPE OF WORK	1
1.3 ASSUMPTIONS	2
1.4 ENVIRONMENTAL PROFESSIONAL	2
SECTION 2: SITE DESCRIPTION	
2.1 LOCATION AND WWNERSHIP	
2.2 CURRENT/PROPOSED USE OF THE PROPERTY	3
2.3 SITE SAND ADJOINING PROPERTY USE	
SECTION 3: USER PROVIDED INFORMATION	
3.1 CHAIN OF TITLE	3
3.2 ENVIRONMENTAL LIENS OR ACTIVITY AND USE LIMITATIONS	4
3.3 SPECIALIZED KNOWLEDGE AND/OR COMMONLY KNOWN OR	
REASONABLY ASCERTAINABLE INFORMATION	4
SECTION 4: RECORDS REVIEW	4
4.1 STANDARD ENVIRONMENTAL RECORD SOURCES	4
4.1.1 On-Site Database Listings	
4.1.2 Nearby Spill Incidents	
4.2 ADDITIONAL ENVIRONMENTAL RECORD SOURCES	5
4.2.1 City and County Agency File Review	
SECTION 5: PHYSICAL SETTING	6
5.1 RECENT USGS TOPOGRAPHIC MAP	
5.2 HYDROGEOLOGY	6
SECTION 6: HISTORICAL USE INFORMATION	6
6.1 HISTORICAL SUMMARY OF SITE	6
6.2 HISTORICAL SUMMARY OF SITE VICINITY	7
SECTION 7: SITE RECONNAISSANCE	
7.1 METHODOLOGY AND LIMITING CONDITIONS	7
7.2 OBSERVATIONS	8
7.2.1 Site Photographs	9
SECTION 8: ENVIRONMENTAL QUESTIONNAIRE AND INTERVIEWS	.10
8.1 ENVIRONMENTAL QUESTIONNAIRE / OWNER INTERVIEW	.10
8.2 INTERVIEWS WITH PREVIOUS OWNERS AND OCCUPANTS	
SECTION 9: PRE-DEMOLITION HAZARDOUS MATERIAL SURVEY	10
9.1 ASBESTOS SURVEY	
9.1.1 Asbestos Survey Methods	.10
9.1.1 Asbestos Survey Methods 9.1.2 Asbestos Survey Results	.11
9.2 LEAD-BASED PAINT SURVEY	.11
9.3 OTHER REGULATED MATERIALS AND UNIVERSAL WASTE SURVEY	.12
9.4 RECOMMENDATIONS	.12
SECTION 10: FINDINGS, OPINIONS AND CONCLUSIONS (WITH	
RECOMMENDATIONS)	.13
10.1 HISTORICAL SITE USAGE	.14
10.2 CHEMICAL STORAGE AND USE	
10.3 SOIL QUALITY	.14
10.4 POTENTIAL ENVIRONMENTAL CONCERNS WITHIN THE SITE VICINITY	
10.5 IMPORTED SOIL	.14

10.6 ASBESTOS CONTAINING BUILDING MATERIALS (ACBMS)	14
10.7 LEAD-BASED PAINT	15
10.8 DATA GAPS	15
10.9 DATA FAILURES	15
10.10 RECOGNIZED ENVIRONMENTAL CONDITIONS	15
SECTION 11: LIMITATIONS	16

FIGURE 1 – VICINITY MAP FIGURE 2 – SITE PLAN

APPENDIX A – TERMS AND CONDITIONS APPENDIX B – DATABASE SEARCH REPORT APPENDIX C – HISTORICAL AERIAL PHOTOGRAPHS AND MAPS APPENDIX D – LOCAL STREET DIRECTORY SEARCH RESULTS APPENDIX E – PRE-DEMOLITION HAZARDOUS MATERIAL SURVEY

DRAFT

Type of Services Location

Phase I Environmental Site Assessment 1580 South 10th Street San Jose, California

SECTION 1: INTRODUCTION

This report presents the results of the Phase I Environmental Site Assessment (ESA) performed at 1580 South 10th Street in San Jose, California (Site) as shown on Figures 1 and 2. This work was performed for Starbird Consulting, LLC in accordance with our March 4, 2019 Agreement (Agreement).

1.1 PURPOSE

The scope of work presented in the Agreement was prepared in general accordance with ASTM E 1527-13 titled, "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process" (ASTM Standard). The ASTM Standard is in general compliance with the Environmental Protection Agency (EPA) rule titled, "Standards and Practices for All Appropriate Inquiries; Final Rule" (AAI Rule). The purpose of this Phase I ESA is to strive to identify, to the extent feasible pursuant to the scope of work presented in the Agreement, Recognized Environmental Conditions at the property.

As defined by ASTM E 1527-13, the term Recognized Environmental Condition means the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment. De minimis conditions are not Recognized Environmental Conditions.

Cornerstone Earth Group, Inc. (Cornerstone) understands that an expansion of the adjacent Solar4America Ice facility is planned that will include additional ice rinks, asphalt pavement parking lots and other improvements. The Site consists of a portion of the larger Solar4America Ice parcel and it will be incorporated into the planned expansion. We performed this Phase I ESA to support Starbird Consulting, LLC in evaluation of Recognized Environmental Conditions at the Site. This Phase I ESA is intended to reduce, but not eliminate, uncertainty regarding the potential for Recognized Environmental Conditions at the Site.

1.2 SCOPE OF WORK

As presented in our Agreement, the scope of work performed for this Phase I ESA included the following:

• A reconnaissance of the Site to note readily observable indications of significant hazardous materials releases to structures, soil or groundwater.

- Drive-by observation of adjoining properties to note readily apparent hazardous materials activities that have or could significantly impact the Site.
- Acquisition and review of a regulatory agency database report of public records for the general area of the Site to evaluate potential impacts to the Site from reported contamination incidents at nearby facilities.
- Review of readily available information on file at selected governmental agencies to help evaluate past and current Site use and hazardous materials management practices.
- Review of readily available maps and aerial photographs to help evaluate past and current Site uses.
- Interviews with persons reportedly knowledgeable of existing and prior Site uses.
- Preparation of a written report summarizing our findings and recommendations.

The limitations for the Phase I ESA are presented in Section 10; the terms and conditions of our Agreement are presented in Appendix A.

1.3 ASSUMPTIONS

In preparing this Phase I ESA, Cornerstone assumed that all information received from interviewed parties is true and accurate. In addition, we assumed that all records obtained by other parties, such as regulatory agency databases, maps, related documents and environmental reports prepared by others are accurate and complete. We also assumed that the boundaries of the Site, based on information provided by Starbird Consulting, LLC, are as shown on Figure 2. We have not independently verified the accuracy or completeness of any data received.

1.4 ENVIRONMENTAL PROFESSIONAL

This Phase I ESA was performed by Stason I. Foster, P.E. and Christopher J. Heiny, P.G., Environmental Professionals who meet the qualification requirements described in ASTM E 1527-13 and 40 CFR 312 § 312.10 based on professional licensing, education, training and experience to assess a property of the nature, history and setting of the Site.

SECTION 2: SITE DESCRIPTION

This section describes the Site as of the date of this Phase I ESA. The location of the Site is shown on Figures 1 and 2. Tables 1 through 3 summarize general characteristics of the Site and adjoining properties. The Site is described in more detail in Section 7, based on our on-Site observations.

2.1 LOCATION AND WWNERSHIP

Table 1 describes the physical location, and ownership of the property, based on information provided by Starbird Consulting, LLC.

Table 1. Location and Ownership

Assessor's Parcel No. (APN) Part of APN 477-38-003		
Reported Address/Location	1580 South 10th Street, San Jose, California	
Owner	City of San Jose	
Approximate Lot Size	Part of the 21 acre parcel	

2.2 CURRENT/PROPOSED USE OF THE PROPERTY

The current and proposed uses of the property are summarized in Table 2.

Table 2. Current and Proposed Uses

Current Use	San Jose Municipal Firing Range
Proposed Use	Solar4America Ice facility

2.3 SITE SAND ADJOINING PROPERTY USE

Land use in the general Site vicinity appears to be primarily commercial. Based on our Site vicinity reconnaissance, adjoining Site uses are summarized below in Table 3.

Table 3. Adjoining Property Uses

North	Solar4America Ice facility
South	Former railroad right-of-way
East	Solar4America Ice facility
West	Commercial buildings occupied by California Roofing
	Company and Start Auto Services

SECTION 3: USER PROVIDED INFORMATION

The ASTM standard defines the User as the party seeking to use a Phase I ESA to evaluate the presence of Recognized Environmental Conditions associated with a property. For the purpose of this Phase I ESA, the User is Starbird Consulting, LLC. The "All Appropriate Inquiries" Final Rule (40 CFR Part 312) requires specific tasks be performed by or on behalf of the party seeking to qualify for Landowner Liability Protection under CERCLA (*i.e.*, the User).

Per the ASTM standard, if the User has information that is material to Recognized Environmental Conditions, such information should be provided to the Environmental Professional. This information includes: 1) specialized knowledge or experience of the User, 2) commonly known or reasonably ascertainable information within the local community, and 3) knowledge that the purchase price of the Site is lower than the fair market value due to contamination. A search of title records for environmental liens and activity and use limitations also is required.

3.1 CHAIN OF TITLE

A chain-of-title was not provided for our review.

3.2 ENVIRONMENTAL LIENS OR ACTIVITY AND USE LIMITATIONS

An environmental lien is a financial instrument that may be used to recover past environmental cleanup costs. Activity and use limitations (AULs) include other environmental encumbrances, such as institutional and engineering controls. Institutional controls (ICs) are legal or regulatory restrictions on a property's use, while engineering controls (ECs) are physical mechanisms that restrict property access or use.

The regulatory agency database report described in Section 4.1 did not identify the Site as being in 1) US EPA databases that list properties subject to land use restrictions (*i.e.*, engineering and institutional controls) or Federal Superfund Liens or 2) lists maintained by the California Department of Toxic Substances Control (DTSC) of properties that are subject to AULs or environmental liens where the DTSC is a lien holder.

ASTM E 1527-13 categorizes the requirement to conduct a search for Environmental Liens and AULs as a User responsibility. A search of land title records for environmental liens and AULs was not within the scope of the current Phase I ESA.

3.3 SPECIALIZED KNOWLEDGE AND/OR COMMONLY KNOWN OR REASONABLY ASCERTAINABLE INFORMATION

Based on information provided by or discussions with Starbird Consulting, LLC, we understand that Starbird Consulting, LLC does not have specialized knowledge or experience, commonly known or reasonably ascertainable information regarding the Site, or other information that is material to Recognized Environmental Conditions.

SECTION 4: RECORDS REVIEW

4.1 STANDARD ENVIRONMENTAL RECORD SOURCES

Cornerstone conducted a review of federal, state and local regulatory agency databases provided by Environmental Data Resources (EDR) to evaluate the likelihood of contamination incidents at and near the Site. The database sources and the search distances are in general accordance with the requirements of ASTM E 1527-13. A list of the database sources reviewed, a description of the sources, and a radius map showing the location of reported facilities relative to the project Site are attached in Appendix B.

The purpose of the records review was to obtain reasonably available information to help identify Recognized Environmental Conditions. Accuracy and completeness of record information varies among information sources, including government sources. Record information is often inaccurate or incomplete. The Environmental Professional is not obligated to identify mistakes or insufficiencies or review every possible record that might exist with the Site. The customary practice is to review information from standard sources that is reasonably available within reasonable time and cost constraints.

4.1.1 On-Site Database Listings

San Jose Municipal Firing Range was identified at the Site address on a County database of facilities with permits to generate hazardous waste.

4.1.2 Nearby Spill Incidents

The southerly adjacent property, formerly a Union Pacific Railroad right-of-way, was identified as an open Cleanup Program Site (CPS) that is being overseen by the Santa Clara County Department of Environmental Health (DEH).

Based on our experience at the adjacent property and information obtained from the state Geotracker (http://geotracker.waterboards.ca.gov) database¹, several soil guality studies have been completed at the property. During these studies, soil samples were collected at depths of up to approximately 2¹/₂ feet on the adjacent property at locations near the property line shared with the on-Site firing range, including samples SS-10 and SS-11 collected in May 2015 and soil samples SS-1, SS-2, SS-3 and SS-4 collected in May 2018. Lead was detected at concentrations up to 940 milligrams per kilogram (mg/kg) in these soil samples collected from the upper approximately ½ foot of soil and exceeded the residential DTSC-SL² of 80 milligrams per kilogram (mg/kg) in five of these six shallow soil samples. Samples collected from depths of approximately 1 to 1¹/₂ feet at these six locations did not have lead concentrations detected above the DTSC-SL. Soluble lead was detected at concentrations up to 58 milligrams per liter (mg/L) in these samples; the Soluble Threshold Limit Concentration (STLC) for lead is 5 mg/L. The STLC is the soluble constituent concentrations at which a solid waste is considered hazardous per Title 22 California Code of Regulations and is pertinent when evaluating waste disposal options. Solid wastes that exceed the STLC threshold are also called non-RCRA (Resource Conservation and Recovery Act) or California hazardous wastes. However, analyses of these samples using the federal toxicity characteristic leaching procedure (TCLP) did not yield soluble lead concentrations above the federal TLCP threshold of 5 mg/L. The TCLP analysis is used to determine if the waste is considered hazardous under Title 40 of the Code of Federal Regulations (40CFR) Part 261. Solid wastes that exceed the TCLP threshold are referred to as RCRA hazardous waste. The on-Site firing range was identified as a possible source for the elevated lead concentrations.

Based on the information presented in the agency database report, no other off-Site spill incidents were reported that appear likely to significantly impact soil, soil vapor or groundwater beneath the Site. The potential for impact was based on our interpretation of the types of incidents, the locations of the reported incidents in relation to the Site and the assumed groundwater flow direction.

4.2 ADDITIONAL ENVIRONMENTAL RECORD SOURCES

The following additional sources of readily ascertainable public information for the Site also were reviewed during this Phase I ESA.

4.2.1 City and County Agency File Review

Cornerstone requested available files pertaining to 1580 South 10th Street at the following public agencies: the San Jose Building Department, San Jose Fire Department and the Santa Clara County Department of Environmental Health (DEH).

1580 South 10th Street

¹ Geotracker is a database and geographic information system (GIS) that provides online access to environmental data. It tracks regulatory data about leaking underground storage tank (LUST), Department of Defense, Site Cleanup Program and Landfill sites.

² Lead concentrations were compared to DTSC-Screening Levels (DTSC-SLs) (DTSC, Human and Ecological Risk Office [Hero] Note 3, June, 2018). DTSC-SLs are risk-based concentrations derived from standardized equations combining exposure information assumptions with toxicity data. Under most circumstances, the presence of a chemical in soil at concentrations below the corresponding screening level can be assumed not to pose a significant health risk.

The Building Department files contained a building permit from 1962 for construction of the Municipal Firing Range building. The Fire Department had no files pertaining to hazardous material use at the Site. DEH files included inspection reports dated between 2007 and 2014. The firing range is noted to have a permit to generate hazardous waste and reportedly collects lead and brass debris for recycling. Spent HEPA vacuum filters are disposed as hazardous waste.

SECTION 5: PHYSICAL SETTING

We reviewed readily available geologic and hydrogeologic information to evaluate the likelihood that chemicals of concern released on a nearby property could pose a significant threat to the Site and/or its intended use.

5.1 RECENT USGS TOPOGRAPHIC MAP

A USGS 7.5 minute topographic map was reviewed to evaluate the physical setting of the Site. The Site's elevation is approximately 110 feet above mean sea level; topography in the vicinity of the Site slopes downward gently to the northwest towards the San Francisco Bay.

5.2 HYDROGEOLOGY

Based on our experience and information presented in the California Geotracker database regarding nearby properties, the shallow ground water beneath the Site is likely present at depths of approximately 15 to 30 feet. Ground water likely flows toward the north.

SECTION 6: HISTORICAL USE INFORMATION

The objective of the review of historical use information is to develop a history of the previous uses of the Site and surrounding area in order to help identify the likelihood of past uses having led to Recognized Environmental Conditions at the property. The ASTM standard requires the identification of all obvious uses of the property from the present back to the property's first developed use, or back to 1940, whichever is earlier, using reasonably ascertainable standard historical sources.

6.1 HISTORICAL SUMMARY OF SITE

The historical sources reviewed are summarized below. The results of our review of these sources are summarized in Table 4.

- Historical Aerial Photographs: We reviewed aerial photographs dated 1939, 1948, 1954, 1956, 1968, 1971, 1974, 1980, 1982, 1984, 1988, 1990, 1992, 1994, 1997, 1998, 1999, 2005, 2006, 2009, and 2010 obtained from Environmental Data Resources, Inc. (EDR) of Shelton, Connecticut and Pacific Aerial Survey of Oakland, California; copies of aerial photographs reviewed are presented in Appendix C.
- Historical Topographic Maps: We reviewed USGS 15-minute and 7.5-minute historic topographic maps dated 1899, 1953, 1961, 1968, 1973, and 1980; copies of historic topographic maps reviewed are presented in Appendix C.

- **Historical Fire Insurance Maps:** We reviewed Sanborn fire insurance maps dated 1961 and 1966 obtained from EDR; copies of Sanborn maps are presented in Appendix C.
- Local Street Directories: We reviewed city directories obtained from EDR that were dated from 1922 to 2014 to obtain information pertaining to past Site occupants; the city directory summary is presented in Appendix D.

Date	Source	Comment	
1899 to 1961	Topographic Map	No structures or other features are depicted on-Site.	
1939 to 1956	Aerial Photographs	The Site appears to be undeveloped land.	
1961	Sanborn Map	The Site appears to be undeveloped land.	
1966	Sanborn Map	The existing building is depicted and noted to be occupied by the Municipal Firing Range.	
1966 to 2014	City directories	Occupant listed as the City of San Jose Municipal Firing Range. Santa Clara Valley Rifle Club also is listed on some directories.	
1968 to 1980	Topographic Maps	What appears to be the existing on-Site building is depicted.	
1968 to 2010	Aerial Photograph	The existing building and parking lot are shown, similar to the existing conditions.	

Table 4. Summary of Historical Source Information for Site

6.2 HISTORICAL SUMMARY OF SITE VICINITY

Based on our review of the information described in Section 6.1, the general Site vicinity historically consisted mainly of agricultural land (orchards and row crops) with widely spaced residences. Railroad track have been present to the south of the Site since at least the 1930s. In the 1940s, an increase in commercial development in the Site vicinity is apparent and South 10th Street was constructed adjacent to the Site. Further increases in nearby commercial development are apparent during subsequent decades, and a plant nursery appears to have operated on property to the north and west of the Site between at least 1968 and 1992.

SECTION 7: SITE RECONNAISSANCE

We performed a Site reconnaissance to evaluate current Site conditions and to attempt to identify Site Recognized Environmental Conditions. The results of the reconnaissance are discussed below. Additional Site observations are summarized in Table 5. Photographs of the Site are presented in Section 7.2.1.

7.1 METHODOLOGY AND LIMITING CONDITIONS

To observe current Site conditions (readily observable environmental conditions indicative of a significant release of hazardous materials), Cornerstone staff Stason I. Foster, P.E. visited the Site on March 27, 2019. The Site reconnaissance was conducted by walking representative areas of the Site, including the interior of the on-Site structure, the periphery of the structure and the Site periphery. Cornerstone staff only observed those areas that were reasonably accessible, safe, and did not require movement of equipment, materials or other objects. The interior area behind the rubber backstop at the down-range end of the building was not accessible during our visit. Physical obstructions that limited our ability to view the ground surface at the Site included the existing building and associated asphalt paved parking areas and vehicle drives (typical of developed properties).

7.2 OBSERVATIONS

At the time of our visit, the Site was developed with a single story concrete block building that was used as an indoor firing range. The building consisted of several firing lanes, a member seating area, restrooms and a target line with a rubber backstop that was positioned in front of an original steel plate backstop. Lead and brass debris from discharged ammunitions was observed to be collected within plastic buckets for off-Site recycling.

The building presumably is connected to the publically owned sanitary sewer system; no on-Site septic systems were obvious. Potable water appeared to be supplied by the local water service provider. On-Site storm water catch basins appeared to discharge via below ground piping to the City's storm water drainage system.

	2 mm m to
General Observation	Comments
Aboveground Storage Tanks	Not Observed
Agricultural Wells	Not Observed
Air Emission Control Systems	Not Observed
Boilers	Not Observed
Burning Areas	Not Observed
Chemical Mixing Areas	Not Observed
Chemical Storage Areas	Not Observed
Clean Rooms	Not Observed
Drainage Ditches	Not Observed
Elevators	Not Observed
Emergency Generators	Not Observed
Equipment Maintenance Areas	Not Observed
Fill Placement	Not Observed
Groundwater Monitoring Wells	Not Observed
High Power Transmission Lines	Not Observed
Hoods and Ducting	Not Observed
Hydraulic Lifts	Not Observed
Incinerator	Not Observed
Petroleum Pipelines	Not Observed
Petroleum Wells	Not Observed
Ponds or Streams	Not Observed
Railroad Lines	Not Observed
Row Crops or Orchards	Not Observed
Stockpiles of Soil or Debris	Not Observed
Sumps or Clarifiers	Not Observed
Transformers	Not Observed
Underground Storage Tanks	Not Observed
Vehicle Maintenance Areas	Not Observed
Vehicle Wash Areas	Not Observed
Wastewater Neutralization Systems	Not Observed

Table 5. Summary of Readily Observable Site Features

The comment "Not Observed" does not warrant that these features are not present on-Site; it only indicates that these features were not readily observed during the Site visit.

7.2.1 Site Photographs

Photograph 1. View of the on-Site building looking east.

Photograph 3. Interior of firing range.

Photograph 5. Restrooms and seating area.

Photograph 2. View of the on-Site building looking southwest.

Photograph 4. Interior of firing range.

Photograph 6. Collected lead and brass debris.

SECTION 8: ENVIRONMENTAL QUESTIONNAIRE AND INTERVIEWS

8.1 ENVIRONMENTAL QUESTIONNAIRE / OWNER INTERVIEW

To help obtain information on current and historical Site use and use/storage of hazardous materials on-Site, we provided an environmental questionnaire for completion by the Site owner. The completed questionnaire was not returned to us as of the date of this report.

8.2 INTERVIEWS WITH PREVIOUS OWNERS AND OCCUPANTS

Contact information for previous Site owners and occupants was not provided to us. Therefore, interviews with previous Site owners and occupants could not be performed.

SECTION 9: PRE-DEMOLITION HAZARDOUS MATERIAL SURVEY

Cornerstone's contractor, Millennium Consulting Associates (Millennium), conducted a predemolition hazardous building material survey on March 27 and 29, 2019. The survey was performed by Mr. Brad Wallenberg (Certified Asbestos Consultant [CAC] No. 17-5872 and California Department of Health [CDPH] Sampling Technician No. 25916) and Mr. Aaron Alvarez (Asbestos Hazard Emergency Response Act [AHERA] Building Inspector No. 02505).

The purpose of the survey was to evaluate the location, condition, and quantity of any hazardous materials, including asbestos containing materials (ACM), lead-based paint, and other regulated materials (ORMs), such as polychlorinated biphenyl [PCB] calking, mercury light fixtures, PCB-containing ballasts, and oils and refrigerants in HVAC systems.

The Pre-Demolition Building Materials Survey report is included in Appendix E. The sample locations, laboratory reports, and data tables are also included in Appendix E. A summary of the survey is presented below.

9.1 ASBESTOS SURVEY

The ACM survey of the building was performed in accordance with the listed criteria in California Occupational Safety and Health Administration (Cal OSHA) standard 8 California Code of Regulations (CCR) 1529, OSHA standard 29 Code of Federal Regulations (CFR) 1926.1101 and Environmental Protection Agency (EPA) standard 40 CFR Section 61.145 Subpart M (NESHAP regulation standard for demolition/renovation), including the analysis of bulk samples via polarized light microscopy (PLM) methodology.

9.1.1 Asbestos Survey Methods

On November 18, 2015, Cornerstone staff conducted a visual survey of the structure at the Site proposed to be demolished and collected bulk samples of building materials that were suspected to contain asbestos.

Survey procedures included the visual observation and identification of building materials suspected of containing asbestos, characterization of friability, and bulk sample collection. The condition of each material was noted and any suspect Regulated Asbestos Containing Materials (RACM) were identified. RACM includes asbestos-containing surface materials, certain friable asbestos, and thermal insulating materials. Samples that appeared to be of the same type of

materials were placed into homogeneous sample groups. Samples were then collected from each of the homogeneous sample groups identified. The homogeneous areas were Each sample was placed into an air-tight plastic bag, sealed, labeled with a sample number, and logged onto a chain-of-custody form.

The samples were analayzed by Emlab P&K (Emlab) in Irvine, California. Emlab is accredited by the National Institute of Standards and Technology's National Voluntary Laboratory Accreditation Program (NVLAP) for the analyzes of asbestos in bulk samples by EPA Method 600/M4-82-020.

9.1.2 Asbestos Survey Results

Twenty-nine bulk samples were collected from the structure for asbestos analysis. Asbestos was detected above laboratory reporting limits in four of the samples submitted to the laboratory for testing. Building materials reported to contain asbestos are described below:

Interior:

 Joint compound (2% chrysotile) and associated drywall (non-detect) limited to the restrooms has been reported via composite 400 Point Count analysis to contain <0.25% asbestos by weight - estimated to be approximately 500 square feet. See recommendations.

Exterior and Roof:

- Exterior White Paint on Cinder Block (0.25% chrysotile) throughout the building exterior has been reported via 400 Point Count analysis to contain 0.25% asbestos by weight estimated to be approximately 2,500 square feet.
- Gray/black Roofing Mastic (5% chrysotile). Material was observed to be located on the rooftop along the parapet walls, HVAC curbing, and throughout the Main Roofing Field – estimated at 100 square feet.

The summarized inventory of materials assumed to contain asbestos (until inspected/sampled for confirmation) is described as below:

- Boiler components (suspect gaskets, linings, etc.) estimated at 50 square feet
- Fire doors located throughout building estimated at 3,318 square feet
- Any hidden vapor barriers (none physically observed at the time)
- Any hidden suspect asbestos TSI (none physically observed at the time)

Please refer to the complete report in Appendix E.

9.2 LEAD-BASED PAINT SURVEY

A limited Lead Based Paint survey of the building was conducted. Paint chip samples were collected from exposed surfaces and submitted to Emlab for analysis. Emlab is accredited by the California A2HA Laboratory Accreditation Program. The samples were analyzed for total lead by Flame Atomic Absorption (EPA Method 3050B/7000B).

Nine paint chip samples were analyzed for total lead content. As presented in the report included in Appendix E, the following samples contained lead above the laboratory detection limit:

- Brown Paint Wooden Roof Overhang Exterior 760 parts per million (ppm)
- White Paint Cinder Block Exterior 1,800 ppm
- Black Rubberized Wall Bulletproof Wall of Firing Range Interior 220,000 ppm
- Grey Paint Concrete Floor Interior 22,000 ppm
- Blue Paint Concrete Floor Interior 23,000 ppm
- White Caulking Concrete Floor Interior 2,500 ppm
- Red Paint Concrete Floor Interior 15,000 ppm
- White/Blue Paint Drywall Restrooms 1,900 ppm

Please refer to the complete report in Appendix E for a complete discussion of the results.

9.3 OTHER REGULATED MATERIALS AND UNIVERSAL WASTE SURVEY

A visual inventory and reconnaissance of lighting and heating systems in the building for mercury and/or PCB containing devices (fluorescent light ballasts, fluorescent light tubes and thermostats) was performed. The survey also included a visual inventory of low level radioactive containing materials and components containing ozone depleting chemicals where observed to be present.

As discussed in the report in Appendix E, Millennium observed the following:

- The accessible interior lights were observed to contain non-PCB ballasts. However, the internally-mounted ballasts could not be visually assessed. As such, these ballasts should be considered to contain PCBs until determined otherwise.
- Prior to demolition, the HVAC system should be field verified for the presence of regulated chlorofluorocarbons (CFCs).
- PCBs were not detected in the bulk samples analyzed. However, the laboratory reporting limit was 50 ppm. A PCB-material is defined as containing concentrations greater than 50 ppm.

9.4 RECOMMENDATIONS

Below are the recommendations provided by Millennium in their report dated April 22, 2019. The recommendations presented below are those of Millennium based on the results of their hazardous building materials survey. Please refer to the complete report in Appendix E for further details.

Relative to the amount of drywall/joint compound samples collected, only one sample resulted in detectable asbestos (joint compound). For the inspection, due to all drywall systems considered as homogenous, all drywall is considered as having asbestos-containing joint compound in the restrooms. However, supplemental sampling can be performed to re- assess and re-define homogeneous areas. It is recommended that supplemental drywall sampling be performed to narrow down homogenous drywall systems with asbestos- containing joint compound.

- PCB sampling analysis yielded results of material concentrations less than the laboratory reporting limit. However, due to sample matrix complications and processing, reporting limits set by the laboratory were greater than 50 ppm (definition of PCB-containing material). As of the date of this report, Millennium has requested additional analysis of the samples in order to reduce the reporting limit to the recommended concentration of 50 ppm. Millennium will issue an addendum once results are received to further define and characterize the suspect PCB-containing materials.
- All RACM, Category I and Category II non-friable asbestos-containing materials listed in Table 1 of the Report in Appendix E that will be affected by the planned demolition activities shall be removed prior to demolition of the subject buildings in compliance with the asbestos National Emissions Standards for Hazardous Air Pollutants (NESHAP), and Cal-OSHA Asbestos in the Construction Industry Standard, 8 CCR 1529. This will require the use of wet methods, prompt cleanup of the ACM, and placement in a leak-proof container, and perimeter air monitoring. If the contractor does not have a negative exposure assessment (for Class jobs where one is allowed), contractor employees will need to wear appropriate PPE, including respiratory protection.
- The Pre-demolition Survey identified lead containing components or paint coating systems above the minimum laboratory reporting limit of 32 ppm. Work practices and handling are subject to 8 CCR 1532.1 (Lead in construction). Disposal shall be performed in accordance with DTSC and SW-846 standards.
- Due to high levels of lead containing dust found via lead wipes and continued lead dust generated onsite, it is recommended that the floors be cleaned via wet methods and/or HEPA vacuum to limit the amount of dust tracked off site more frequently. In addition, a sticky mat placed at the entrance would also prevent lead dust from being distributed outside or offsite.
- ORMs identified in the building will need to be removed prior to demolition of the building and recycled/disposed in conformance with applicable laws and regulations by an appropriately trained contractor.
- Demolition of the building will be subject to Federal National Emission Standards for Hazardous Air Pollutants (NESHAP). NESHAP demolition permitting will require notification to the Bay Area Air Quality Management District for demolition of the building. A copy of the Bay Area Air Quality Management district (BAAQMD) Demolition Notification form must be submitted online before demolition work can commence. The local building department should also be contacted to determine if a building demolition permit will be required.

SECTION 10: FINDINGS, OPINIONS AND CONCLUSIONS (WITH RECOMMENDATIONS)

Cornerstone performed this Phase I ESA in general accordance with ASTM E1527-13 to support Starbird Consulting, LLC in evaluation of Recognized Environmental Conditions. Our findings, opinions and conclusions are summarized below.

10.1 HISTORICAL SITE USAGE

Based on the information obtained during this study, the Site appears to have been undeveloped land until construction of the existing firing range building in 1962. The building has been used as an indoor firing range since its construction.

10.2 CHEMICAL STORAGE AND USE

Lead and brass debris from discharged ammunitions is collected within plastic buckets for off-Site recycling. Spent HEPA vacuum filters are disposed as hazardous waste. No other hazardous materials were observed on-Site during our visit.

10.3 SOIL QUALITY

Analyses of soil samples previously collected on the southerly adjacent property at locations near the property line shared with the on-Site firing range detected lead concentrations at up to 940 mg/kg, which exceed the DTSC-SL of 80 mg/kg. Soluble lead levels were detected at up to 58 mg/L, which exceed the STLC of 5 mg/L. The on-Site firing range was identified as a possible source for the elevated lead concentrations. To further evaluate potential impacts from the firing range, we recommend that on-Site soil quality be evaluated. If elevated contaminant concentrations are identified, mitigation or soil management measures may be required during the planned construction/earthwork activities.

Building plans dated in 1961 and 1962 provided by the City depict an interior sand pit at the down-range (east) end of the building below the original steel plate backstop. The sand pit is shown to have been underlain partially by the concrete building footing and partially by baserock and compacted fill. The recommended soil sampling should include evaluation of the sand pit area.

10.4 POTENTIAL ENVIRONMENTAL CONCERNS WITHIN THE SITE VICINITY

Based on the information obtained during this study, no hazardous material spill incidents have been reported in the Site vicinity that would be likely to significantly impact the Site. However, as is typical to many commercial areas, several facilities in the vicinity were reported as hazardous materials users. If leaks or spills occur at these facilities, contamination could impact the Site, depending upon the location of the property, the magnitude of the release, and the effectiveness of cleanup efforts.

10.5 IMPORTED SOIL

If the planned development will require importing soil for Site grading, we recommend documenting the source and quality of imported soil. The DTSC's October 2001 Clean Fill Advisory provides useful guidance on evaluating imported fill.

10.6 ASBESTOS CONTAINING BUILDING MATERIALS (ACBMS)

Due to the age of the on-Site structure, building materials may contain asbestos. An asbestos building material survey was conducted on March 26, 2019; however, the results from this survey were not available as of the date of this report. This report will be updated once those results are available.

10.7 LEAD-BASED PAINT

A lead-based paint survey was conducted on March 26, 2019; however, the results from this survey were not available as of the date of this report. This report will be updated once those results are available.

10.8 DATA GAPS

ASTM Standard Designation E 1527-13 requires the Environmental Professional to comment on significant data gaps that affect our ability to identify Recognized Environmental Conditions. A data gap is a lack of or inability to obtain information required by ASTM Standard Designation E 1527-13 despite good faith efforts by the Environmental Professional to gather such information. A data gap by itself is not inherently significant; it only becomes significant if it raises reasonable concerns. The following data gaps were identified:

 Contact information for the former occupants and owners of the Site was not provided to us. Thus, former occupants and owners were not interviewed during this study. Additionally, the environmental questionnaire provided for completion by the Site owner was not returned to us as of the date of this report. The general environmental setting of the Site appears to have been established based on the information reviewed from other data sources. We do not consider these data gaps to be significant.

10.9 DATA FAILURES

As described by ASTM Standard Designation E 1527-13, a data failure occurs when all of the standard historical sources that are reasonably ascertainable and likely to be useful have been reviewed and yet the historical research objectives have not been met. Data failures are not uncommon when attempting to identify the use of a Site at five year intervals back to the first use or to 1940 (whichever is earlier). ASTM Standard Designation E 1527-13 requires the Environmental Professional to comment on the significance of data failures and whether the data failure affects our ability to identify Recognized Environmental Conditions. A data failure by itself is not inherently significant; it only becomes significant if it raises reasonable concerns. No significant data failures were identified during this Phase I ESA.

10.10 RECOGNIZED ENVIRONMENTAL CONDITIONS

Cornerstone has performed a Phase I ESA in general conformance with the scope and limitations of ASTM E 1527-13 of 1580 South 10th Street, San Jose, California. This assessment identified the following Recognized Environmental Conditions³.

 Based on the elevated lead concentrations previously identified in soil on the southerly adjacent property, there is a potential that use of the Site as a firing range has resulted in impacts to on-Site soil quality. If elevated contaminant concentrations are present, mitigation or soil management measures may be required during the planned construction/earthwork activities.

³ The presence or likely presence of hazardous substances or petroleum products on the Site: 1) due to any release to the environment; 2) under conditions indicative of a release to the environment; or 3) under conditions that pose a material threat of a future release to the environment.

SECTION 11: LIMITATIONS

Cornerstone performed this Phase I ESA to support Starbird Consulting, LLC in evaluation of Recognized Environmental Conditions associated with the Site. Starbird Consulting, LLC understands that no Phase I ESA can wholly eliminate uncertainty regarding the potential for Recognized Environmental Conditions to be present at the Site. This Phase I ESA is intended to reduce, but not eliminate, uncertainty regarding the potential for Recognized Environmental Conditions, LLC understands that the extent of information obtained is based on the reasonable limits of time and budgetary constraints.

Findings, opinions, conclusions and recommendations presented in this report are based on readily available information, conditions readily observed at the time of the Site visit, and/or information readily identified by the interviews and/or the records review process. Phase I ESAs are inherently limited because findings are developed based on information obtained from a non-intrusive Site evaluation. Cornerstone does not accept liability for deficiencies, errors, or misstatements that have resulted from inaccuracies in the publicly available information or from interviews of persons knowledgeable of Site use. In addition, publicly available information and field observations often cannot affirm the presence of Recognized Environmental Conditions; there is a possibility that such conditions exist. If a greater degree of confidence is desired, soil, groundwater, soil vapor and/or air samples should be collected by Cornerstone and analyzed by a state-certified laboratory to establish a more reliable assessment of environmental conditions.

Cornerstone acquired an environmental database of selected publicly available information for the general area of the Site. Cornerstone cannot verify the accuracy or completeness of the database report, nor is Cornerstone obligated to identify mistakes or insufficiencies in the information provided (ASTM E 1527-13, Section 8.1.3). Due to inadequate address information, the environmental database may have mapped several facilities inaccurately or could not map the facilities. Releases from these facilities, if nearby, could impact the Site.

Starbird Consulting, LLC may have provided Cornerstone environmental documents prepared by others. Starbird Consulting, LLC understands that Cornerstone reviewed and relied on the information presented in these reports and cannot be responsible for their accuracy.

This report, an instrument of professional service, was prepared for the sole use of Starbird Consulting, LLC and may not be reproduced or distributed without written authorization from Cornerstone. It is valid for 180 days. An electronic transmission of this report may also have been issued. While Cornerstone has taken precautions to produce a complete and secure electronic transmission, please check the electronic transmission against the hard copy version for conformity.

Cornerstone makes no warranty, expressed or implied, except that our services have been performed in accordance with the environmental principles generally accepted at this time and location.

APPENDIX A – TERMS AND CONDITIONS

APPENDIX B – DATABASE SEARCH REPORT

APPENDIX C – HISTORICAL AERIAL PHOTOGRAPHS AND TOPOGRAPHIC MAPS

APPENDIX D – LOCAL STREET DIRECTORY SEARCH RESULTS

APPENDIX E – PRE-DEMOLITION HAZARDOUS BUILDING MATERIALS SURVEY REPORT (MILLENNIUM, 2019)

Corporate Offices: 401 Roland Way, Ste. 250 Oakland, CA 94621 Phone: 925.808.6700 Fax: 925.808.6708 <u>mm.mecaenviro.com</u>

September 12, 2019

Cornerstone Earth Group, Inc. 1259 Oakmead Parkway Sunnyvale, CA 94085

Attention: Christopher J. Heiny Principal Geologist

Subject: Pre-Demolition Hazardous Material Survey- UPDATED SEP 2019 1580 S 10th Street, San Jose, CA 95112 Millennium Project No. 3100.2004

Sent by e-mail: cheiny@cornerstoneearth.com

Dear Mr. Heiny:

Millennium Consulting Associates (Millennium) performed a Limited Hazardous Material Pre-Demolition Survey to support the planned demolition of the property located at: 1580 S. 10th Street in San Jose, CA 95112. Findings, conclusions, and recommendations developed from the pre-demolition survey are presented in this updated report.

If you have comments or questions regarding this report, please do not hesitate to contact the undersigned at 925-808-6700.

Sincerely,

Prepared May 6, 2019 by:

Brad Wallenberg, CAC 17-5872, CDPH I/A 25916 Assistant Project Manager

Revised September 12, 2019 by:

Sarah Anderson-Flores Industrial Hygiene Project Manager

Reviewed by:

Ramil Arcia, CAC 10-4613, CDPH IA/PM 17756 Director of Building Sciences

EXECUTIVE SUMMARY

Cornerstone Earth Group, Inc. (Owners Representative) intends to demolish the building located at 1580 S. 10th Street in San Jose, CA.

The demolition of the building will be subject to removal of hazardous materials covered under the Bay Area Air Quality Management District, Regulation XI, Rule 2 pertaining to the California NESHAP Regulation. To comply with NESHAP, a demolition-level hazardous material survey was conducted by Millennium under contract to Cornerstone Earth Group (CEG).

The pre-demolition hazardous materials survey included the following elements:

- Inspecting and sampling the structure for Regulated Asbestos Containing Material (RACM), Category I and Category II non-friable asbestos-containing materials for compliance with the federal NESHAP regulation and applicable federal and state Occupational Safety and Health Administration (OSHA)regulations,
- Evaluating and sampling building materials, building components and paint coating systems for lead for initial waste characterization purposes
- Collecting Lead wipe bulk samples on horizontal surfaces where lead dust may have accumulated to inspect for lead dust hazards.
- Inspecting the building for the presence of Other Regulated Materials (ORMs: including Fluorescent light fixtures which may contain mercury and PCB-containing devices; Low Level Radioactive Materials (tritium containing exit signs) and Ozone Depleting Chemicals (compressor oils and refrigerants), and bulk PCB-containing materials (i.e. concrete caulking) that may require removal prior to demolition and special handling and/or waste profiling to determine appropriate disposal requirements for demolition generated waste streams prior to disposal.

SUMMARY OF FINDINGS

Millennium conducted the pre-demolition survey on March 27, 2019 and March 29, 2019. Reasonable efforts were made to access all areas and locate conditions/materials representative of the building. The summarized presentation of findings is presented in the tables below. Table 1 summarizes the positive results of the asbestos survey. Table 2 summarizes the bulk lead sampling form building materials. Table 3 summarizes the bulk lead wipe sampling results for the inspection of lead-dust hazards. Table 4 summarizes bulk PCB sampling results. Analytical laboratory reports for the hazardous material surveys are included in Appendix B, C, and D.

Table 1 – Positive Results Summary of Asbestos Survey						
Sample Nos.	Material Type	Material Location	Asbestos Content	EPA Category	OSHA Class	Quantity
02A, 8-01	Beige Coating with	Exterior North East Corner of Building	< 0.25%	N/A	ACCM, Unclassified	2500 sf
02B, 8-02	Paint on Cinder Block	Exterior North West Corner of Building	<0.25%	N/A	ACCM, Unclassified	2300 \$1
03A	Grey/Black	South Vent of Roof on HVAC Units	5%	Ι	Π	50 of
03B	Roofing Mastic	South East Vent of Roof on HVAC Units	NAPS (5%)	Ι	II	50 sf
	Joint Compound on Drywall	North Wall of	2%	Potentially Friable ACM	Π	600 sf
08A	Composite Joint Compound and Drywall	South Restroom	<0.25%	N/A	II	000 SI
14A	Black	East Parapet Wall of Perimeter of Northern Main Roof	5%	Ι	п	150 sf
14B	Roofing Mastic	East Parapet Wall of Perimeter of Northern Main Roof	NAPS (5%)	Ι	II	
Notes: Materials described above have been observed. Any homogeneous materials discovered in the building shall be assumed to be asbestos-containing until tested to prove otherwise, with the corresponding quantities.						

Material Description	Material Location	Bulk Sample Result (ppm)	Method Reporting Limit of Detection (ppm)
Brown Paint	Exterior Roof Overhang	760	38
White Paint	Exterior Cinder Block	1,800	38
Rubber Bullet Wall Panel	Interior Wall	220,000	44
Grey Paint	Concrete Floor Interior	22,000	37
Blue Paint	Concrete Floor Interior	23,000	34
White Caulking	Concrete Floor Interior	2,500	32
Red Paint	Concrete Floor Interior	15,000	37
White/Blue Paint	Drywall Interior	1,900	39

Table 3 –Lead Wipe Survey Summary of Results				
Material Location	Lead Wipe Sample Result (ug/ft ²)	EPA Lead Dust Hazard Levels – Floor (ug/ft ²)		
Floor Adjacent to Rubber Wall	37,000	40		
Floor Adjacent to Restrooms	29,000	40		
Floor at Entryway 52,000 40				
Result \geq 40 ug/ft ² = lead-dust hazard				

Table 4 – PCB Survey				
Material Description	Location	PCB Concentration (ppm)	Reporting Limit (ppm) (see recommendations for limitations)	
PCB 1 – Concrete Caulking	Concrete Foundation	<lod< td=""><td>0.50</td></lod<>	0.50	

ORM RELATED FINDINGS

UNIVERSAL WASTES

The following ORMS and/or Universal Wastes were observed or suspected to be present:

• Mercury-containing Devices:

- 1. Fluorescent Lighting Fixtures The interior of the building was observed to contain multiple ceiling mounted fluorescent lighting fixtures throughout the building. For demolition purposes, each fluorescent light fixture (typically 4' long) is assumed to contain two light tubes.
- PCB-containing Device and Materials
 - 1. Fluorescent lighting fixtures The interior of the building was observed to contain multiple ceiling mounted fluorescent light fixtures throughout. For demolition purposes, each fluorescent light fixture is assumed to contain one ballast. Observed lighting fixtures in the storage warehouse were observed to have non-PCB containing ballasts. All other internally mounted ballasts that were not able to be observed should be considered to contain PCB's until removed from the light fixture and verified to be non-PCB containing.
 - 2. PCB Bulk Material Suspect PCB bulk materials were observed in concrete foundation caulking. The collected sample was reported by the laboratory to be below the limit of detection. (See recommendations for limitations). An addendum to this report specifically regarding supplemental PCB surveying in accordance with the Bay Area Stormwater Management Agencies Association protocol for PCB surveys required for demolition permits has been submitted upon the issuance of this updated report and is available for reference.
- Low Level Radioactive Materials (tritium containing exit signs)
 - 1. Exit Signs The building was observed not to contain tritium containing exit signs.
- Ozone Depleting Chemicals (compressor oils and refrigerants)
 - 1. HVAC System The exterior of the building is equipped with external roof mounted air conditioning units. HVAC units must be field verified for the possibility of containing liquids and refrigerants, such as R-22 refrigerant known to contain hydrochloroflourocarbons (HCFCs).

TABLE OF CONTENTS

<u>SECTION</u> <u>PAG</u>	Ē
EXECUTIVE SUMMARY	J
1.0 INTRODUCTION	1
1.1 PROJECT LOCATION AND UNDERSTANDING	1
1.2 SITE DESCRIPTION AND KEY FEATURES	
1.3 SITE DEMOLITION AND REGULATORY REQUIREMENTS	
1.4 PRE-RENOVATION HAZARDOUS MATERIALS SURVEY SCOPE OF WORK	
1.5 REPORT ORGANIZATION	
2.0 HAZARDOUS MATERIAL SURVEY	4
2.1 ACM SURVEY OVERVIEW	4
2.2 SURVEY AREAS FOUND OR ASSUMED TO CONTAIN ASBESTOS	5
2.3 SURVEY AREAS NOT SAMPLED FOR ASBESTOS CONTAINING MATERIALS	5
2.4 SURVEY AREAS FOUND NOT TO CONTAIN ASBESTOS	5
2.5 LEAD SURVEY OVERVIEW AND ASSESSMENT METHODOLOGY	
2.6 LEAD SURVEY FINDINGS	
2.7 OTHER HAZARDOUS MATERIALS	7
2.8 SURVEY FINDINGS – ORMS AND UNIVERSAL WASTES	7
3.0 REGULATORY CONSIDERATIONS	9
3.1 WORKER PROTECTION AND WASTE DEFINITIONS FOR ASBESTOS	9
3.2 WORKER PROTECTION AND WASTE DEFINITIONS OF LEAD (IN PAINT AND	D
CONSTRUCTION MATERIALS)	9
4.0 CONCLUSIONS AND RECOMMENDATIONS	
4.1 CONCLUSIONS	
4.2 RECOMMENDATIONS 1	
5.0 LIMITING CONDITIONS	3

LIST OF TABLES

<u>Title</u>

Table 1 – Asbestos Bulk Analyses Results	 11-V
Table 2 – Lead Bulk Sample Results	
Table 3 – Lead Bulk Wipe Sample Results	ii-v
Table 4 – PCB Bulk Sample Results	 11-V

List of Appendices

Table No.

Appendix A	Sample Location Drawings
	Asbestos Analytical Laboratory Reports
11	Lead Analytical Laboratory Reports
11	PCB Analytical Laboratory Reports

ACRONYM GUIDE

ACM	Asbestos-Containing Material
ACCM	Asbestos-Containing Construction Material
Cal OSHA	California Occupational Safety and Health Administration
CCR	California Code of Regulations
CDPH	California Department of Public Health
CFR	Code of Federal Regulations
CPSC	Consumer Product Safety Commission
DOSH	California Department of Safety and Health
EPA	Environmental Protection Agency
HSG	Homogeneous Sampling Group
HUD	U.S. Department of Housing and Urban Development
HVAC	Heating Ventilation and Air Conditioning
LBP	Lead-Based Paint
NEA	Negative Exposure Assessment
NESHAP	National Emission Standards for Hazardous Air Pollutants
PLM	Polarized Light Microscopy
ppm	Parts per million
PQL	Practical Quantification Limit
RACM	Regulated Asbestos Containing Material
RFT	Resilient Floor Tile
STLC	Soluble Threshold Limit Concentration
	(California soluble metal waste characterization)
TSI	Thermal System Insulation
TCLP	Toxic Characteristic Leaching Potential
	(federal soluble metal waste characterization: RCRA and Non-RCRA
TTLC	Total Threshold Limit Concentration
	(California total metal waste characterization)

1.0 INTRODUCTION

1.1 Project Location and Understanding

Cornerstone Earth Group, Inc. (Owners Representative) intends to demolish the property located at 1580 S. 10th Street in San Jose, CA 95112.

The demolition of the building will be subject to removal of hazardous materials covered under the Bay Area Air Quality Management District, Regulation XI, Rule 2 pertaining to the California NESHAP Regulation. To comply with NESHAP, a demolition-level hazardous material survey was conducted by Millennium under contract to Cornerstone Earth Group (CEG).

1.2 Site Description and Key Features

1580 S. 10th Street is located in San Jose, CA. The site occupies approximately 3,000 square feet and consists of one structure. The building consists of a storage room, two restrooms, and the main roof. The site is constructed on a concrete slab foundation with concrete walls and asphaltic rolled on roofing. The structure has no windows. The building consists of the following systems:

Interior

- Flooring: exposed concrete, resilient floor tiles with mastic attached to concrete and cove base molding limited to restrooms. No vapor or moisture barrier was found in the building.
- Walls: Drywall partition walls, concrete walls.
- Ceiling: Acoustical ceiling tiles, gypsum board limited to restrooms.

Exterior:

• Painted cinder block exterior walls.

The site contains numerous ceiling mounted fluorescent light fixtures. The observed light fixtures in the storage/warehouse area each contain two tube lights and a single ballast. Based on observation, the building was observed to contain an externally roof mounted AC systems that was not observed to contain R-22 refrigerant.

1.3 Site Demolition and Regulatory Requirements

The demolition of the building will be subject to removal of hazardous materials and demolition permitting under the federal NESHAP regulation. To comply with the NESHAP regulation and Bay Area Air Quality Management District regulations, a demolition-level hazardous material survey was conducted by Millennium under contract to Cornerstone Earth Group. The pre-demolition hazardous materials survey included the following elements:

• Inspecting and sampling the structure for Regulated Asbestos Containing Material (RACM), Category I and Category II non-friable asbestos-containing materials that will be affected by the planned renovation and/or demolition activities for compliance with the federal NESHAP regulation and applicable federal and state Occupational Safety and Health Administration (OSHA) regulations,

- Evaluating and sampling building materials, building components and paint coating systems for lead for initial inspection purposes
- Collecting Lead wipe bulk samples on horizontal surfaces where lead dust may have accumulated to inspect for lead dust hazards.
- Inspecting the structure for the presence of Other Regulated Materials (ORMs) and Universal Wastes that may require removal prior to demolition and special handling and/or waste profiling to determine appropriate disposal requirements for demolition generated waste streams.

The scope of the pre-demolition survey did not include performing a mold survey.

1.4 Pre-Renovation Hazardous Materials Survey Scope of Work

Millennium Consulting Associates (Millennium) was requested by Cornerstone Earth Group, Inc. to perform a pre-demolition Hazardous Material Survey for Asbestos-Containing Materials (ACMs) and Lead based paint (LBP) and/or Lead containing paint (LCP) within the building located at 1580 S. 10th Street in San Jose, CA 95112. Millennium performed the following scope of services in conformance with Millennium's proposal dated December 17, 2018:

- 1. <u>Review of Available Documents</u> No documentation regarding construction of the surveyed buildings or previous surveys were available.
- <u>ACM Survey</u> An ACM survey of the building was performed in accordance with the listed criteria in California Occupational Safety and Health Administration (Cal OSHA) standard 8 California Code of Regulations (CCR) 1529, OSHA standard 29 Code of Federal Regulations (CFR) 1926.1101 and Environmental Protection Agency (EPA) standard 40 CFR Section 61.145 Subpart M (NESHAP regulation standard for demolition/renovation), including the analysis of bulk samples via polarized light microscopy (PLM) methodology.

The ACM survey was limited to exterior and interior areas of the building that is scheduled for demolition. The survey excluded inaccessible areas such as underground utilities, crawl spaces, hard lid plenums, lobby area flooring, and security sensitive/prohibited areas such as Pandora offices and tenant engineer offices.

- Lead Based Paint Survey A limited Lead Based Paint survey of the building was conducted. The survey of proposed areas of demolition was conducted by utilizing paint chip sampling methodology. The survey excluded full waste characterization for lead, including sampling and analysis of full depth samples for total lead (TTLC) and soluble lead (STLC and TCLP).
- 4. <u>Other Regulated Materials (ORM) and Universal Waste Survey</u> A visual inventory and reconnaissance of lighting and heating systems in the building for mercury and/or PCB containing devices (fluorescent light ballasts, fluorescent light tubes and thermostats) was performed. The survey also included a visual inventory of low level radioactive containing materials and components containing ozone depleting chemicals where observed to be present.

5. <u>Written Report</u> - A written report was prepared detailing the survey information including description of the samples and sample locations, analytical results in tabular form, condition of surfaces identified, interpretation of results, and recommendations.

1.5 Report Organization

The Pre-demolition Survey Report is organized into five (5) sections. Section 1 defines the scope for the pre-demolition survey. Section 2 summarizes information known about the construction materials observed in structures that were subject to the survey and the results of the ACM, Lead Paint, and Other Regulated Materials (ORM) survey and analyses of bulk samples. Section 3 discusses regulatory considerations. Section 4 presents conclusions and recommendations developed as part of the Pre-demolition survey. Section 5 presents limitations.

Figures and Tables referenced in the report are presented in the tabbed Figures and Tables section of the report. The Asbestos test result, Bulk Paint Chip and lead wipe results are tabulated in Tables 1, 2, and 3 respectively. An inventory of observed ORMs is tabulated in Table 4. Copies of sample location maps are presented in Appendix A. Asbestos, lead and PCB analytical results are presented in Appendix B, C, and D, respectively.

2.0 HAZARDOUS MATERIAL SURVEY

The specific areas that were surveyed are detailed in the following sections. Reasonable efforts were made to access all areas and locate conditions/materials representative of the site. The general site access was made available by Cornerstone Earth Group, Inc.

Survey activities were managed by Jack McCubbin, Certified Asbestos Consultant 93-0893 and performed by Mr. Brad Wallenberg, Cal/OSHA Certified Asbestos Consultant 17-5872 and CDPH Certified Inspector/Assessor #25916. On March 27, 2019, Mr. Wallenberg was accompanied by Sarah Anderson-Flores CSST in training. On March 29, 2019, Mr. Wallenberg was accompanied by Aaron Alvarez, CSST in training, and AHERA Building Inspector #02505.

2.1 ACM Survey Overview

A preliminary walk-through of the structure was performed to familiarize the inspectors with the structures and to identify suspect ACM and suspect lead containing components and lead containing paint (LCP) or lead based paint (LBP) coating systems.

During the walk-through, heating, ventilation and air conditioning (HVAC) ducting; hot and cold water supply piping; other mechanical systems requiring thermal system insulation (TSI); and other suspect applications that were readily accessible were inspected for suspect asbestos-containing TSI, where present. The interior and exterior of the building was assessed for suspect Regulated Asbestos Containing Materials (RACM) including suspect asbestos-containing surfacing materials and suspect asbestos-containing miscellaneous friable materials. The interior and exterior of the building was also assessed for suspect asbestos-containing Category I non-friable materials, and suspect asbestos-containing Category II non-friable materials.

Friable materials (RACM) are defined as materials that when dry, can be crumbled or reduced to a powder by hand pressure. Category I non-friable materials are defined as packing, gaskets, asphaltic roofing materials, and resilient flooring materials and associated mastics in which the asbestos fibers are bound within a resinous matrix. Category II non-friable materials are defined as other non-friable materials such as transite in which the asbestos fibers are bound within a cement-like matrix.

During the walk-through, homogeneous sample groups (HSGs) were identified. Based on the identified HSG and understanding of each building's history, a bulk-sampling plan for suspect ACM was developed.

Bulk sampling was conducted in accordance with modified procedures outlined in the Asbestos Hazard Emergency Response Act (40 CFR 763.86, Sampling). The procedure requires the inspector to select random sampling locations from homogeneous materials suspected to contain asbestos.

Thirty-one total (31) suspect ACM bulk samples were collected from 1580 S 10th St, San Jose, CA. These samples were sealed in uniquely labeled bags and shipped under chain-of-custody procedures to Emlab P&K (Emlab) located in Irvine, CA and EMSL Laboratories in San Leandro, CA. Emlab and EMSL are accredited by the National Institute of Standards and Technology's National Voluntary Laboratory Accreditation Program (NVLAP) for the analysis of asbestos in bulk samples by EPA Method 600/M4-82-020.

The bulk sample locations are shown on the Bulk Sample Location Plans, in Appendix A. The results of the complete asbestos analyses are presented in Table 1 and Appendix B.

2.2 Survey Areas Found or Assumed to Contain Asbestos

The summarized inventory of materials tested and found <u>TO CONTAIN</u> detectable asbestos is described below:

Interior:

- Joint compound on drywall (2%) on partition walls of bathroom and storage area, and on drywall ceiling of bathroom and storage area.
 - Composite analysis of joint compound and drywall (<0.25%)

Exterior and Roof:

- Beige coating (<0.25%) with paint on cinder block wall throughout the exterior of the building
- Grey/Black roofing mastic- HVAC vents (5%)
- Black roofing mastic- flashing perimeter (5%)

The summarized inventory of materials assumed to contain asbestos (until inspected/sampled for confirmation) is described as below:

- Boiler components (suspect gaskets, linings, etc.)
- Fire doors
- Any hidden vapor barriers (none physically observed at the time)
- Any hidden suspect asbestos TSI (none physically observed at the time)

2.3 Survey Areas Not Sampled for Asbestos Containing Materials

During the visual inspection, the following areas were not within the scope of the survey but may require testing for asbestos containing material prior to demolition activities:

- Soils
- Underground utilities

2.4 Survey Areas Found Not to Contain Asbestos

The summarized inventory of materials tested and found <u>NOT TO CONTAIN</u> asbestos, according to survey work, are identified in the complete asbestos analyses located in Table 1 and Appendix B.

2.5 LEAD SURVEY OVERVIEW AND ASSESSMENT METHODOLOGY

Millennium conducted a limited demolition lead survey of select areas utilizing bulk lead sampling methodology. Lead sampling involves taking a small bulk sample of surface coatings, caulking, and other building materials that are suspect of containing lead. Eight (8) paint bulk lead samples were

collected and submitted under chain of custody procedures to EMLAB P&K located in Irvine, CA. EMLAB is accredited under the AIHA-LAP, LLC accreditation service (#178697). The samples were analyzed by Flame Atomic Absorption Spectrometry for total lead content (EPA Method 3050B/7000B). In addition to the lead bulk samples of building materials a total of three (3) lead wipes were collected to assess for the presence of a lead-dust hazard. The wipes were also sent to EMPLAB P&K for Flame AA analysis.

The results of the lead bulk survey are presented in Table 2. The results for the lead wipe sampling are presented in Table 3. Full analytical laboratory reports are presented in appendix C.

2.6 Lead Survey Findings

The following list of materials have concentrations of lead **above** the federal standard for lead based paint (LBP) (\geq 5000 ppm, or \geq 0.5% by weight or \geq 1.0mg/cm²). All homogenous components shall be assumed to contain similar concentrations of lead. According to laboratory results the following materials have concentrations of lead at or above the federal standard for LBP.

- Rubber bullet wall panel
- Grey paint on concrete floor interior
- Blue paint on concrete floor interior
- Red paint on concrete floor interior

The following is a list of materials have concentrations of lead **below** the federal standard for lead based paint (LBP) (<5000 ppm, or 0.5% by weight or less than 1.0 mg/cm²) but in concentrations which are considered Lead-Containing Materials and are regulated by Cal/OSHA and EPA. All homogeneous components shall be assumed to contain similar concentrations. According to laboratory analytical data, the following were identified to contain detectable concentrations of lead:

- Brown paint on exterior roof overhang
- White paint on exterior cinder block
- White caulking on concrete floor interior
- White/Blue paint on drywall interior

Table 2 contains the complete list of the bulk lead survey results. Full analytical laboratory report for lead bulk sampling can be found in appendix C.

The following materials were collected to assess for the presence of a lead-contaminated dust. The EPA defines lead -contaminated dust when it is equal to or exceeds 40 ug/ft² on floors, 250 ug/ft² on interior window sills, and 1200 ppm average for bare soil. The following lead wipe samples of the interior of the building had lead dust concentrations exceeding the limit of 40 ug/ft² on floors:

- Floor adjacent to rubber wall
- Floor adjacent to restrooms
- Floor at entryway

Table 3 contains the complete list of the bulk lead wipe survey results. Full analytical laboratory report for lead bulk wipe sampling can be found in appendix C. Lead soil testing was not within the scope of this survey. However, prior to disturbance and disposal of the surrounding soil it is recommended to test the soil for presence of lead and other regulated heavy metals so that it may be handled properly prior/during demolition activities and to ensure proper engineering and administrative controls are in place to protect worker health.

2.7 OTHER HAZARDOUS MATERIALS

In addition to lead and asbestos, buildings can contain other regulated materials (ORM) that are considered hazardous. Typically, the ORMs include polychlorinated bi-phenyl (PCBs) and mercury in lighting fixtures and thermostats. In addition, HVAC systems can contain oils and refrigerants. The hazardous material concern with regard to fluorescent lighting fixtures is the potential presence of PCB -containing ballasts incorporated into the fixtures and the removable fluorescent light tubes that contain mercury. Oils and refrigerants in HVAC systems could contain chlorinated compounds that are considered ozone depleting agents that are required to be captured or reclaimed before demolition.

Typically, the ballast labeling inside the fixtures reads either "PCB-containing", "No PCBs", or no label indication at all. Only those ballasts clearly indicating "No PCBs" can be disposed of as construction waste. Ballasts that were readily observable were determined to be non-PCB containing. However, for purposes of this survey, all ballasts that were not readily observable will be assumed as having PCB's until removed and inspected.

2.8 SURVEY FINDINGS – ORMS AND UNIVERSAL WASTES

The following ORMS and/or Universal Wastes were observed or suspected to be present:

- Mercury-containing Devices:
 - 1. Fluorescent Lighting Fixtures The interior of the building was observed to contain multiple ceiling mounted fluorescent lighting fixtures. For demolition purposes, each fluorescent light fixture (typically 4' long) is assumed to contain three light tubes.
- PCB-containing Device and Materials
 - 3. Fluorescent lighting fixtures The interior of the building was observed to contain multiple ceiling mounted fluorescent light fixtures throughout. For demolition purposes, each fluorescent light fixture is assumed to contain one ballast. Observed lighting fixtures in the storage warehouse were observed to have non-PCB containing ballasts. All other internally mounted ballasts that were not able to be observed should be considered to contain PCB's until removed from the light fixture and verified to be non-PCB containing.
 - 4. PCB Bulk Material Suspect PCB bulk material caulking was observed in concrete foundation. The collected sample was reported by the laboratory to be below the limit of detection. See recommendations for limitations. An addendum to this report specifically regarding supplemental surveying for the Bay Area Stormwater Management Agencies Association protocol for PCB surveys required for demolition permits has been submitted upon the issuance of this updated report and is available for reference.

- Low Level Radioactive Materials (tritium containing exit signs)
 - 1. Exit Signs The site was observed not to contain suspect exit tritium signs.
- Ozone Depleting Chemicals (compressor oils and refrigerants)
 - 1. HVAC System The exterior of the building is equipped with external roof mounted air conditioning units. HVAC units must be field verified for the possibility of containing liquids and refrigerants, such as the R-22 refrigerant known to contain hydrochloroflourocarbons (HCFCs).

An inventory of ORMs and Universal Wastes that were identified or suspected to be present based on the pre-demolition survey is included in the tables below:

Component	Regulated Material	Location
Lighting - Fluorescent Light Tubes	Mercury	Interior, ceiling mounted light fixtures throughout building except Storage/ Warehouse
Lighting - Ballasts	PCBs	Interior, ceiling mounted light fixtures throughout building except Storage/ Warehouse
HVAC System – Compressor/Refrigerant Reservoir	Ozone Depleting Chemical: R-22	Exterior HVAC Unit

3.0 REGULATORY CONSIDERATIONS

3.1 Worker Protection and Waste Definitions for Asbestos

Construction materials containing asbestos greater than one (1) percent are defined as an Asbestos Containing Material (ACM) and are regulated under both federal and state regulations. In California, ACMs that are RACM (friable) or will be made friable during demolition or handling are classified as a California-regulated Hazardous Waste, and require special handling, packaging, and disposal. Category I and II non-friable ACMs also require special handling, packing and disposal. In addition, construction materials containing any detectable level of asbestos (above 0.0%) are subject to the California Division of Occupational Safety and Health (Cal/OSHA) regulations and Standards for the Construction Industry, especially those designated as an Asbestos Containing Construction Material (ACCM, >0.1%.)

3.2 Worker Protection and Waste Definitions of Lead (in paint and construction materials)

Other Regulatory Definitions of Lead Paint are detailed in 8 CCR and 22 CCR and CFR title 40 regulations. California Occupational Safety and Health (OSHA) regulations require employee personnel monitoring at any detectable levels until statistically reliable results indicate that exposure will remain consistently below the OSHA Action Level of 30 micrograms/m³ and the Permissible Exposure Level of 50 micrograms/m³ for an 8-hour day. The employer must then produce a "Negative Exposure Assessment" to indicate that it is not possible with the specific lead paint product to create excessive lead exposure levels.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

The Pre-demolition Survey identified the following **asbestos** containing materials in the building:

Interior:

- Joint compound on drywall (2%) on partition walls of bathroom and storage area, and on drywall ceiling of bathroom and storage area.
 - Composite analysis of joint compound and drywall (<0.25%)

Exterior and Roof:

- Beige coating (<0.25%)
- Grey/Black roofing mastic- HVAC vents (5%)
- Black roofing mastic- flashing perimeter (5%)

The summarized inventory of materials assumed to contain asbestos (until inspected/sampled for confirmation) is described as below:

• Boiler components (suspect gaskets, linings, etc.)

- Fire doors
- Any hidden vapor barriers (none physically observed at the time)
- Any hidden suspect asbestos TSI (none physically observed at the time)

Except for the portions of the buildings that contain the confirmed or assumed asbestos listed in this section, all materials that cannot be recycled can be disposed as construction debris, pending all supplemental waste profiling and characterizations analyses yield results below regulatory levels established under SW-846.

The Pre-demolition Survey identified the following components or paint coating systems containing **lead** above the federal standard for LBP at the time of analysis:

- Rubber bullet wall panel
- Grey paint on concrete floor interior
- Blue paint on concrete floor interior
- Red paint on concrete floor interior

The Pre-demolition Survey identified the following components or paint coating systems containing **lead** above the reporting limit of detection at the time of analysis:

- Brown paint on exterior roof overhang
- White paint on exterior cinder block
- White caulking on concrete floor interior
- White/Blue paint on drywall interior

Lead wipes collected at the following areas indicate an elevated lead-dust concentration on floors:

- Floor adjacent to rubber wall
- Floor adjacent to restrooms
- Floor at entryway

The Pre-demolition Survey identified **Other Regulated Materials (ORMs) and Universal wastes** that are present in the building. Typical ORMs included known and suspected mercury containing components (fluorescent light tubes and thermostat), suspected PCB-containing components (internally mounted light ballasts). Only the externally mounted ballasts in the warehouse/storage area were observed to be non-PCB containing. The internally mounted ballasts throughout the rest of the building are assumed to be PCB containing. The AC system and refrigerator are anticipated to contain oil and refrigerant. These chemicals are considered ozone depleting chemicals that require removal and recycling by a certified HVAC technician.

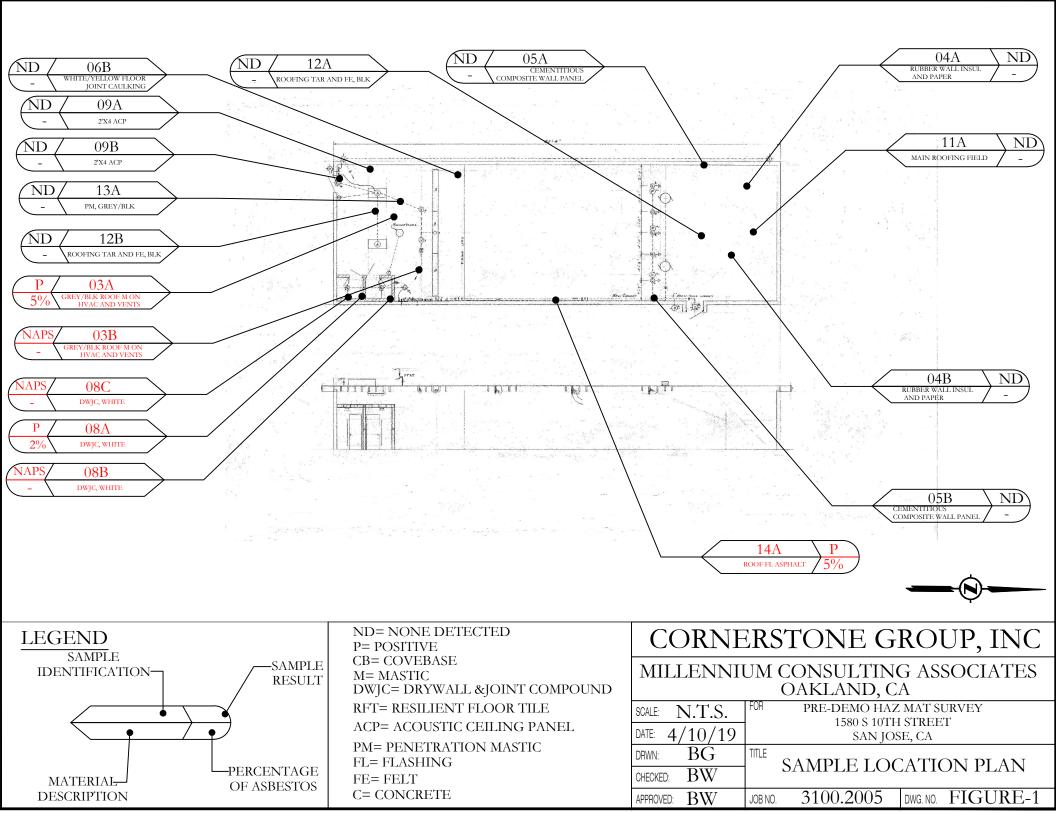
4.2 Recommendations

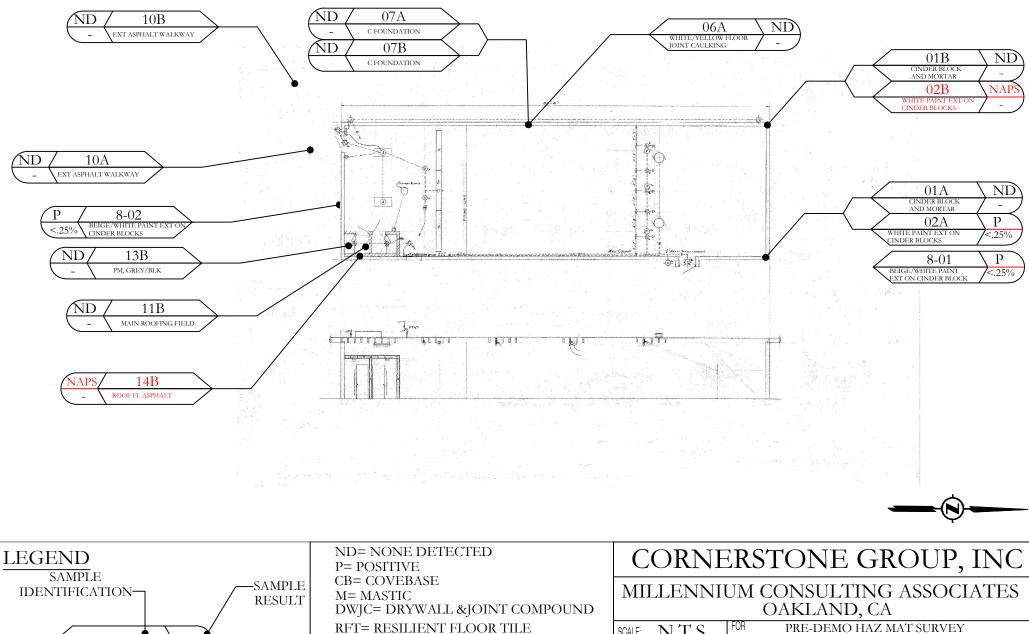
Based on the findings and conclusions from the Pre-demolition Survey, Millennium Consulting Associates presents the following recommendations:

- Positive stop analysis was performed on the joint compound which came back with a 2% concentration of chrysotile. Due to all drywall systems considered as homogenous, all are considered as having asbestos-containing joint compound.
 - Composite analysis of joint compound and drywall had a concentration of <0.25% asbestos content.
- Components that could not be accessed or sampled (where destructive sampling would compromise the integrity of the component) include any boilers/HVAC and fire doors. Boilers/HVAC may contain suspect ACM such as gaskets, valves, and linings. Fire doors may contain insulation material. Both components shall be inspected for ACM prior to removal.
- Effective as of July 1, 2019, regulatory discussions and considerations on requiring a thorough formal survey of collecting a minimum quantity of PCB samples in order to obtain a demolition permit from the Bay Area Stormwater Management Agencies Association are required. An addendum pertaining to this specific survey has been submitted simultaneously with this pre-demolition survey.
- Any fluorescent light tubes are assumed to contain mercury. Any light ballasts encountered by demolition crews should be inspected for PCBs on an individual case by case basis.
- All RACM, Category I and Category II non-friable asbestos-containing materials listed in Table 1 that will be affected by the planned demolition activities shall be removed prior to demolition of the subject buildings in compliance with the asbestos National Emissions Standards for Hazardous Air Pollutants (NESHAP), and Cal-OSHA Asbestos in the Construction Industry Standard, 8 CCR 1529. This will require the use of wet methods, prompt cleanup of the ACM, and placement in a leak-proof container, and perimeter air monitoring. If the contractor does not have a negative exposure assessment (for Class jobs where one is allowed), contractor employees will need to wear appropriate PPE, including respiratory protection.
- The Pre-demolition Survey identified lead containing components or paint coating systems above the federal standard for LBP. Work practices and handling are subject to 8 CCR 1532.1 (Lead in construction). Disposal shall be performed in accordance with DTSC and SW-846 standards. It is recommended that lead waste profiling be performed to comply with DTSC and landfill acceptance criteria.
- Wipe results indicate concentrations defined as lead-contaminated dust by the EPA. Cleaning of these areas shall be performed by personnel with training under OSHA and CDPH lead compliance for lead-related activities.

- ORMs identified in the building will need to be removed prior to demolition of the building and recycled/disposed in conformance with applicable laws and regulations by an appropriately trained contractor.
- Removal of compressor oil and refrigerant from AC systems should be performed by a HVAC technician that is certified and trained in refrigerant recovery procedures and methods.
- Demolition of the building will be subject to Federal National Emission Standards for Hazardous Air Pollutants (NESHAP). NESHAP demolition permitting will require notification to the Bay Area Air Quality Management District for demolition of the building. A copy of the Bay Area Air Quality Management district (BAAQMD) Demolition Notification form must be submitted online before demolition work can commence. The local building department should also be contacted to determine if a building demolition permit will be required.

5.0 LIMITING CONDITIONS


Millennium Consulting conducted the survey at 1580 S 10th Street, San Jose, CA 95112, on March 27th 2019 and March 29th 2019, with supplemental sampling in August of 2019 in general accordance with industry standards for bulk asbestos and lead sampling procedures in existence at the time of the project. The conclusions and recommendations presented in this report are based on the applicable standards of our profession at the time this report was prepared. Copies of this report are furnished to provide the factual data that were gathered and summarized in the report.


The analysis and recommendations submitted in this report are based in part on the data obtained from specific and discrete, representative sampling locations throughout accessible interior wall, floor and ceiling systems as well as exterior and roof systems.

This report has been prepared for the exclusive use of Cornerstone Earth Group for specific application to the locations where the survey was performed. This report may not be copied, except by Cornerstone Earth Group, without the express written permission of Cornerstone Earth Group. No other representation, expressed or implied, is made.

APPENDIX A

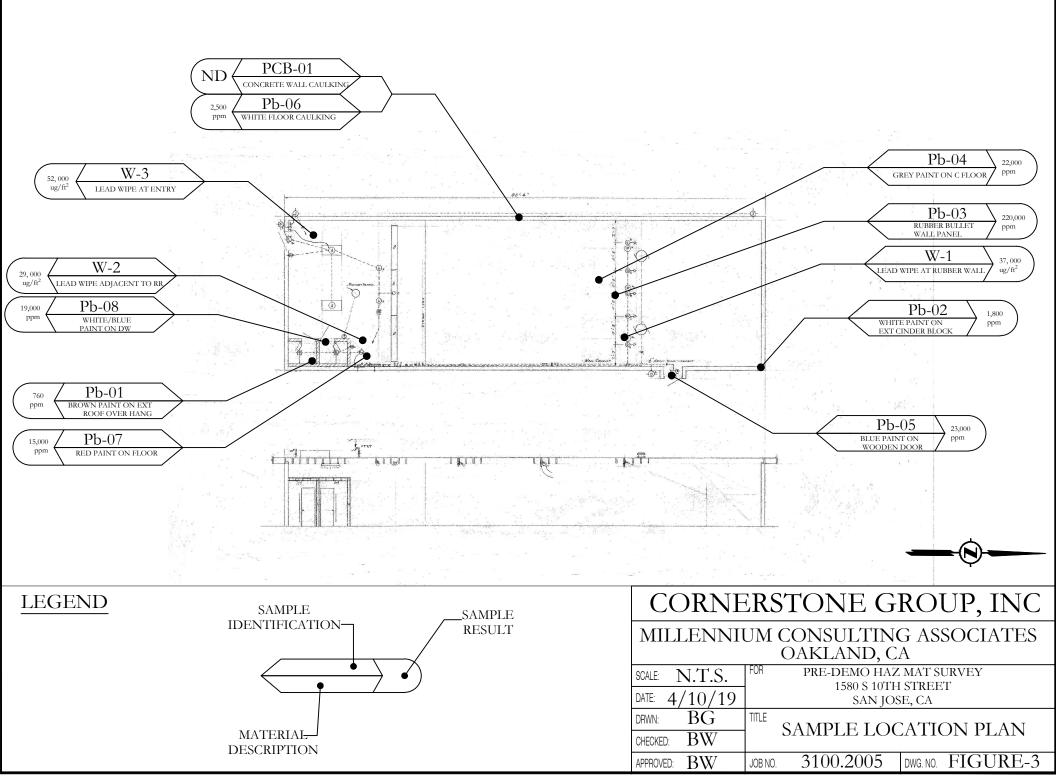
SAMPLE LOCATION DRAWINGS

ACP= ACOUSTIC CEILING PANEL PM= PENETRATION MASTIC

FL= FLASHING

C= CONCRETE

FE= FELT


-PERCENTAGE

OF ASBESTOS

MATERIAL

DESCRIPTION

)	OAKLAND, CA			
	SCALE: N.T.S.	FOR PRE-DEMO HAZ MAT SURVEY		
		1580 S 10TH STREET		
	DATE: 4/10/19	SAN JOSE, CA		
	DRWN: BG	SAMPLE LOCATION PLAN		
	CHECKED: ${ m BW}$	SAMPLE LOCATION FLAN		
	APPROVED: BW	JOB NO. 3100.2005 DWG. NO. FIGURE-2		

APPENDIX B

ASBESTOS ANALYTICAL LABORATORY REPORTS

Report for:

Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Millennium Consulting Associates 401 Roland Way, Suite 250 Oakland, CA 94621

Regarding: Project: 1580 S. 10th St. San Jose / 3100.2005 EML ID: 2128644

Approved by:

Approved Signatory Danny Li

Dates of Analysis: Asbestos PLM: 04-04-2019

Service SOPs: Asbestos PLM (EPA 40CFR App E to Sub E of Part 763 & EPA METHOD 600/R-93-116, SOP EM-AS-S-1267)

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. The results relate only to the samples as received. The results include an inherent uncertainty of measurement associated with estimating percentages by polarized light microscopy. Measurement uncertainty data for sample results with >1% asbestos concentration can be provided when requested.

EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

EMLab P&K 17461 Derian Ave, Suite 100, Irvine, CA 92614

Client: Millennium Consulting Associates C/O: Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005

ASBESTOS PLM REPORT

Total Samples Submitted: 29 **Total Samples Analyzed:** 24 Total Samples with Laver Asbestos Content > 1%: 3 Location: 01A, NE corner of building ext., cinder block and mortar Lab ID-Version 1 10089306-1 Sample Lavers **Asbestos Content** Brown Brick ND Gray Mortar ND Sample Composite Homogeneity: Poor Location: 01B, Ext. NW corner of building, cinder block and mortar Lab ID-Version 1 10089307-1 Sample Layers **Asbestos Content** Brown Brick ND Gray Mortar ND Sample Composite Homogeneity: Poor Location: 02A, Ext. NE corner of building, white pain exterior on cinder block Lab ID-Version 1 10089308-1 **Sample Layers** Asbestos Content Beige Coating with Paint <1% Chrysotile Sample Composite Homogeneity: Good

Comments: Sample 02B was not analyzed due to prior positive series.

Location: 03A, South vent of roof, grey/black roof mastic on HVAC and vents		Lab ID-Version [‡] : 10089310-1
Sample Layers	Asbestos Co	ontent
Gray/Black Roofing Mastic	5% Chrysotile	
Sample Composite Homogeneity: Good		

Comments: Sample 3B was not analyzed due to prior positive series.

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

[‡] A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

(866) 888-6653 Fax (623) 780-7695 www.emlab.com Date of Sampling: 03-27-2019

Date of Receipt: 04-01-2019 Date of Report: 04-04-2019

Date of Sampling: 03-27-2019

Date of Receipt: 04-01-2019

Date of Report: 04-04-2019

Client: Millennium Consulting Associates C/O: Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005

ASBESTOS PLM REPORT

Location: 04A, West side of rubber impact wall, rubber wall insulation and paper Lab ID-Version [‡] : 10089461		
Sample Layers	Asbestos Cont	ent
Gray Fibrous Material	ND	
Composite Non-Asbestos Content:	70% Synthetic Fibers 20% Cellulose	
Sample Composite Homogeneity: Poor		
Location: 04B. East side of rubber impact wall, rubber wall insulation and paper Lab ID-Version [‡] : 10089462-		

Location: 04B, East side of rubber impact wall, rubber wall insulation and paper Lab ID-Version[‡]: 10089462-

Sample Layers	Asbestos Content
Gray Fibrous Material	ND
Composite Non-Asbestos Content: 70% Synthetic Fibers	
	20% Cellulose
Sample Composite Homogeneity: Poor	

Location: 05A, West wall, interior, cementious composite wall panel

Lab ID-Version 10089463-1

Sample Layers	Asbestos Content
Gray Cementitious Material	ND
Composite Non-Asbestos Content: 35% Cellulose	
Sample Composite Homogeneity:	Moderate

Location: 05B, East wall, interior, cementious composite wall panel

Lab ID-Version[‡]: 10089464-1

Sample Layers	Asbestos Content
Gray Cementitious Material	ND
Composite Non-Asbestos Content:	35% Cellulose
Sample Composite Homogeneity:	Moderate

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Date of Sampling: 03-27-2019

Date of Receipt: 04-01-2019

Date of Report: 04-04-2019

Client: Millennium Consulting Associates C/O: Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005

ASBESTOS PLM REPORT

Location: 06A, West, central part of floor, white/yellow	v floor joint caulking	Lab ID-Version‡: 10089465-1
Sample Layers	Asbesto	s Content
Off-White Caulk	Ν	ND
Yellow Caulk	ND	
Sample Composite Homogeneity	: Poor	
Location: 06B, West, central part of floor, white/yellov	v floor joint caulking	Lab ID-Version‡: 10089466-
Sample Layers	Asbesto	s Content
Off-White Caulk	Ν	ND
Yellow Caulk	ND	
Sample Composite Homogeneity	: Poor	
Location: 07A, West, central part of floor, concrete for	indation	Lab ID-Version‡: 10089467-
Sample Layers	Asbesto	s Content
Gray Concrete	ND	
Sample Composite Homogeneity	: Good	

Location: 07B, West, central part of floor, concrete foundation

Lab ID-Version‡: 10089468-1

Sample Layers	Asbestos Content
Gray Concrete	ND
Sample Composite Homogeneity:	Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Date of Sampling: 03-27-2019

Date of Receipt: 04-01-2019

Date of Report: 04-04-2019

Client: Millennium Consulting Associates C/O: Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005

ASBESTOS PLM REPORT

Location: 08A, North wall of south restroom, drywall and joint compound Lab ID-Versio		
Sample Layers	Asbestos Content	
White Joint Compound with Paint	ND	
Cream Tape	ND	
White Joint Compound	ND	
Beige Joint Compound	2% Chrysotile	
White Drywall with Brown Paper	ND	
Composite Asbestos Fibrous Content:	<1% Asbestos	
Composite Non-Asbestos Content:	10% Cellulose	
Sample Composite Homogeneity:	Poor	

Comments: Samples 08B and 08C were not analyzed due to prior positive series. Composite asbestos content provided is only for Drywall/Joint compound. Composite content provided for this analysis has been performed by following the NESHAP guidelines.

Location: 09A, SW corner of building, 2'x4' acoustical ceiling panel Lab ID-Version 10089472-1

Sample Layers	Asbestos Content
Tan Ceiling Tile with White Surface	ND
Composite Non-Asbestos Content:	50% Cellulose
-	35% Glass Fibers
Sample Composite Homogeneity:	Moderate

Location: 09B SW corner of building 2'x4' acoustical ceiling nanel

Location: 09B, SW corner of building, 2'x4' acoustical of	ceiling panelLab ID-Version : 10089473-1
Sample Layers	Asbestos Content
Tan Ceiling Tile with White Surface	ND
Composite Non-Asbestos Content: 50% Cellulose	
	35% Glass Fibers
Sample Composite Homogeneity: Moderate	

Location: 10A, Ext. asphalt walkway, SW corner of property

Sample Layers	Asbestos Content
Black Asphalt	ND
Sample Composite Homogeneity:	Moderate

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Lab ID-Version 10089474-1

Date of Sampling: 03-27-2019

Date of Receipt: 04-01-2019

Date of Report: 04-04-2019

Client: Millennium Consulting Associates C/O: Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005

ASBESTOS PLM REPORT

Location: 10B, Ext. asphalt walkway, SW corner of pro	pertyLab ID-Version‡: 10089475-1	
Sample Layers	Asbestos Content	
Black Asphalt	ND	
Sample Composite Homogeneity: Moderate		

Location: 11A, NE corner of north (main) roof, main roofing field, rolled on asphalt shingle

	·
Sample Layers	Asbestos Content
Black Roofing Shingle with Gray Pebbles	ND
Black Roofing Tar and Felt	ND
Black Roofing Tar and Felt	ND
Composite Non-Asbestos Content:	30% Glass Fibers
Sample Composite Homogeneity:	Poor

Location: 11B, NE corner of south roof, main roofing field, rolled on asphalt shingle

Lab ID-Version \$\$: 10089477-1

Lab ID-Version[‡]: 10089476-1

Sample Layers	Asbestos Content
Black Roofing Shingle with Gray Pebbles	ND
Black Roofing Tar and Felt	ND
Black Roofing Tar and Felt	ND
Composite Non-Asbestos Content:	30% Glass Fibers
Sample Composite Homogeneity:	Poor

Location: 12A, North central area of roof (main), HVAC/vent curbing asphalt shingle

Lab ID-Version 10089478-1

Sample Layers	Asbestos Content	
Black Roofing Tar and Felt	ND	
Black Roofing Tar and Felt	ND	
Composite Non-Asbestos Content:	30% Glass Fibers	
Sample Composite Homogeneity: Moderate		

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Date of Sampling: 03-27-2019

Date of Receipt: 04-01-2019

Client: Millennium Consulting Associates C/O: Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005

s Date of Report: 04-04-2019 se / 3100.2005

ASBESTOS PLM REPORT

Location: 12B, South HVAC unit of main roof, HVAC/vent curbing asphalt shingle Lab ID-Version 1: 10089			
Sample Layers Asbestos		ntent	
Black Roofing Shingle with Gray Pebbles	ND		
Black Roofing Tar and Felt	ND		
Black Roofing Tar and Felt	ND		
Composite Non-Asbestos Content: 30% Glass Fibers			
Sample Composite Homogeneity: Moderate			

Location: 13A, SW pipe on north main roof, black/grey penetration mastic

Lab ID-Version‡: 10089480-1

Sample Layers	Asbestos Content
Gray/Black Roofing Mastic	ND
Composite Non-Asbestos Content:	7% Cellulose
Sample Composite Homogeneity:	Moderate

Location: 13B, SW pipe on north main roof, black/grey penetration mastic Lab ID-Version 1: 10089481-1

Sample Layers	Asbestos Content
Gray/Black Roofing Mastic	ND
Composite Non-Asbestos Content:	7% Cellulose
Sample Composite Homogeneity:	Moderate

Location: 14A, East parapet wall north (main) roof, perimeter roof flashing asphalt shingle

Lab ID-Version[‡]: 10089482-1

Sample Layers	Asbestos Content
Black Roofing Mastic	5% Chrysotile
Black Roofing Shingle	ND
Black Roofing Tar and Felt	ND
Black Roofing Tar and Felt	ND
Composite Non-Asbestos Content:	30% Glass Fibers
Sample Composite Homogeneity:	Poor

Comments: Sample 14B was not analyzed due to prior positive series.

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Report for:

Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Millennium Consulting Associates 401 Roland Way, Suite 250 Oakland, CA 94621

Regarding: Project: 15

Project: 1580 S. 10th St. San Jose / 3100.2005 EML ID: 2128644

Approved by:

Approved Signatory Danny Li

Dates of Analysis: Asbestos-EPA 400 point count: 04-11-2019

Service SOPs: Asbestos-EPA 400 point count (EPA 40CFR App E to Sub E of Part 763 & EPA METHOD 600/R-93-116, SOP EM-AS-S-1262)

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received.

EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Client: Millennium Consulting Associates C/O: Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005 17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Date of Sampling: 03-27-2019 Date of Receipt: 04-01-2019 Date of Report: 04-11-2019

ASBESTOS POINT COUNT REPORT

Location:	02A Ext. NE corner of building, white pain exterior on cinder block				
Total Points Counted:	400				
Lab ID-Version‡:	10121513-1				
Sample Layers	Asbestos TypeAsbestos Points CountedAsbestos Concentration (%)				
Beige Coating with Paint	Chrysotile 1 0.25				
Layer Totals:	ls: 1 0.25				

Location:	08A North wall of south restroom, drywall and joint compound				
Total Points Counted:	400				
Lab ID-Version‡:	10121514-1				
Sample Layers			Asbestos Concentration (%)		
White Drywall and White/Beige Joint Compound Composite	Chrysotile 0 < 0.25		< 0.25		
Layer Totals:	s: 0 NA				

Comments: Asbestos was detected, but no points counted.

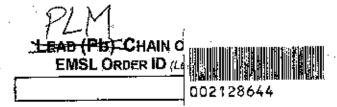
The analytical sensitivity is 1 asbestos point. The limit of detection is 1 asbestos point divided by the total number of points counted and multiplied by 100.

The results relate only to the items tested. Interpretation is left to the company and/or persons who conducted the field work. The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government.

All samples were received in acceptable condition unless otherwise noted. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

1


Asbestos Bulk Building Chain of Custod

EMSL Order Number (Lab 002128644

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077

PHONE: (800) 220-3675 FAX: (856) 786-5974

				O	
Company : Millennium Consulting Asso	ciates			Same 🔲 Differentiations for Comme	
Street: 401 Roland Way Suite 25D		Third Perty Billing requires written authorization from third party		om third party	
City: Oakland	State/Province:CA	Zip/Postał Code	94621	Country: U≦	A
Report To (Name): Brad (Wollenb	ing bruallenberg @	Telephone #: (9	25) 808-6700	and the second	
Email Address: ifelner@mccamviro.com	mercientino	Fax #: (925) 808	-6708	litures in second	BW-3-27-19
HIMPHONIA PROVIDENCE OF 1580 S	5 10th St. Sen Jose	Please Provide	Results: 🔲 Fa	IX 🛛 Email	02
U.S. State Samples Taken: (A	3100.2005				antial/Tax Exempt
3 Hour 6 Hour 1	Turnaround Time (TA 24 Hour 48 Hour	🔲 72 Hour	98 Hour	TO TOWARD	
For TEM Air 3 hr through 6 hr, pleese call ah an authorization form for this service.	ead to schedule. Them is a ore	amlum charge for 3 Hou	ur TEM AHERA or E	PA Level II TAT. You	u will be asked to sign of Price Coulds
PLM - Bulk (reporting		enge win cwars ren		- Bulk	NY MUD CIQUES.
PLM EPA 600/R-93/116 (<1%)					5.1
PLM EPA NOB (<1%)		NY ELAP Meth	od 198.4 (TEM)		
Point Count 400 (<0.25%) 1000	(≪0.1%)	Chatfield Protoc	col (semi-quantita	tive)	
Point Count w/Gravimetric 2 400 (<0.1	· · · · · · · · · · · · · · · · · · ·	TEM % by Mas			.5.2
NIOSH 9002 (<1%)		TEM Qualitative		····· · · · · · · · · · · · · · · · ·	
NY ELAP Method 198.1 (friable in		TEM Qualitative	e via Drop Mount	Prep Technique	·
NY ELAP Method 198.6 NOB (non OSHA ID-191 Modified			<u>U</u> Æ	tenat	
Standard Addition Method					
Check For Positive Stop - Clearly	v ktartify Homogenous (Group Date San	mled: 3-2	27-19	
\overline{O}	I Have to		· · · · ·	50	
summer Brad h	TALLENDERG	BOD INS		\mathbb{Z}_{-}	
Sample # HA #	Sample Location			Material Descrip	tion
OLA \$50D NE Cornes		Ext	Cinder 8	lock and	Mortar
OB # EXT. NW	Corner of E	Building		· •	
DZA 25004 EXT. NE		ilding	White f	MAT, Exte	en to the
028 Ext. NW	Corner of Bui	lding	Concertainty		
03A 100 st South Ve	nt of Roof		HVAC and	K Roof Ma Vents	STIC
03B SE Vent	of Roof		Norther .	V	
QUA 300st West Side	of Rubber In	npact Wall.	Rubbes Wal *Don't anal	l Insulation	sind laper
04B East"				V	
	, Inderlos-		Cementition	us Compositi	e Wall Panel
05B East Wa	ll Interior			\vee	
Clieni Sample # (s):			N M M		21
eRelinguistied (Gilbhil)	Date	<u>e: 3-27</u>	-19	Time:	16:30
Received (Lab):	Date	e: 04/01/10	'n	Time:	10:10
KStop atter fr	rst positive	- include	19 <1.	0% asbe	estos.
Control Costanted - Autorian OCC - R9 - 15/28/2012	1				
	Page_1 of	pages			

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE; (800) 220-3675 FAX: (856) 786-5974

Ĵ

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #		ecation	Volume/Area	Date/Time Sampled
06A	West Central Port	White Yellow Floor Joint Coulking	200 lia ft	3-27-19
OlaB				
07A	West Central Port	Concrete Foundation	3000 SA	. 1
076	1 V			
08A	North Wall of South Restroom	Drywall and Soint Compound	500 s.f.	
08B	Ceiling of North Restroom	1		
080	Ceiling of South Restroom!			· · · · · ·
69A	Shal Corner of Building	2'XY' Acoustical Ceiling Panel	400 st	
09B				· ·
10A	Ext. Asphalt Walkuny	SW corner off reperty,	300 st	
10B				V ·
·K	·Mastic on not sameled	Cabinetry Assumed	300 st	
IIA	NE Corner of Nor the Mail R	Cabinetry Assumed Main, Roofing Field, 26 Rolled on Asphalt Shing	2700 SF	3-29-19
113	NE Corner of South Roof			
12A	North Central. Area of Root (N	and Asphallt Shing le	50 SF	
12B	South HVAC 40	*		
<u>13A</u>	SW Pipe On Nor Main Roof	th Black/Grey Peneolration Mustic	10 SF	<u> </u>
<u>138</u>				$\sqrt{-\chi}$
Comments/\$	Special Instructions:			eto
			3-27-19	16:30
		· • • •	, peceived by:	the cylollia 1
		Page <u>~</u> of	🛫 pages	
 Coveré aut Docume 	ni — Leza (75) GOC – P6– 8/12/2012	A State of the second sec	•	

EMISL
MBL ANALYTICAL, INC.

Asbestos Chain of EMSL Order Number ı

EMSE ANALYFICAL, INC. 235 POLVOROSA DR., STE 230 SAN LEANDRO, CA 94577 PHONE: (510) 895-3675 FAX; (510) 895-3680

10.10

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	Sample Description	Volume/Area (Air) HA # (Bulk)	Date/Time Sampled
14/A	Bast Perpet Wall Perimeter Root +Lashing North (Mala) Roof +Asphalt Shaple	200 1/4. Pt	3-29-19
14B	East Para pot Wall South Root		V
			• •
			<u>.</u>
		·	
			·
	· · · · · · · · · · · · · · · · · · ·		· · · · ·
*Comments/Specia	3	-29-19	······································
<u> </u>	Page 3 of 3 pages pccc	eiled By F	\$ ottolla

Controlled Document - Asbestos COC - P2 - 1/42/2010

Attn:	Ramil Arcia Millennium Consulting Associates, Inc. 401 Roland Way Suite 250	Phone: Fax: Received: Analysis Date: Collected:	(925) 808-6700 09/06/19 6:30 PM 9/9/2019 8/19/2019
	Oakland, CA 94621	Collected.	0/19/2019
Proje	ct: 190906-RA1 - PRE-DEMO SURVEY - 1580 S 10TH ST. / 3100.2007		

Test Report: Polarized Light Microscopy (PLM) - Point Count Performed by EPA 600/R-93/116 Method with Gravimetric Reduction and 400 Point Count

SAMPLE ID	DESCRIPTION	APPEARANCE	(%) M Organi	latrix c Acid	NON- ASBESTOS % Fibrous	NON- ASBESTOS % NON-FIBROUS	ASBESTOS % TYPES
190818-8-01 091921091-0001	BEIGE - EXTERIOR PAINT/COATIN G ON CMU - N	Beige Non-Fibrous Homogeneous	33.9	10.3		55.7 Non-fibrous (other)	<0.25 Chrysotile
190818-8-02 091921091-0002	BEIGE - EXTERIOR PAINT/COATIN G ON CMU - S	Beige Non-Fibrous Homogeneous	33.9	10.8		55.3 Non-fibrous (other)	<0.25 Chrysotile

Analyst(s)

Shane Heisser (2)

atter

Matthew Batongbacal or other approved signatory

Disclaimers: Some samples may contain asbestos fibers present in dimensions below PLM resolution limits. The limit of detection as stated in the method is 0.25%. EMSL Analytical Inc. suggests that samples reported as <0.25% or none detected undergo additional analysis via TEM. The above test report relates only to the items tested. This report may not be reproduced, except in full, without written approval by EMSL Analytical Inc. This report must not be used to claim product endorsement by NVLAP or any agency of the United States Government. EMSL Analytical Inc. bears no responsibility for sample collection activities, analytical method limitations, or the accuracy of results when requested to separate layer samples. EMSL Analytical Inc. liability is limited to the cost of sample analysis. The test results contained within this report meet the requirements of NELAC unless otherwise noted. Samples received in good condition unless otherwise noted. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample.

Initial report from 09/09/2019 14:43:05

OrderID: 091921091

EMS

EMSL ANALYTICAL, INC.

Asbestos	Chain o	of Custody
----------	---------	------------

EMSL Order Number (Lab Use Only):

№091921091

EMSL ANALYTICAL, INC. 464 McCormick Street SAN LEANDRO, CA 94577

PHONE: (510) 895-3675 FAX: (510) 895-3680

-					
Company : Millenniu	m Consulting Associates			Bill to: 🛛 Same 🗌 Dif	
Street: 401 Roland W	ay Suite 250		Third Party Billing r	requires written authorizatio	on from third party
City: Oakland		/Province: CA	Zip/Postal Code: 946		try: USA
Report To (Name):	Rami Arcia	n	Fax #: (925) 808-6708		
Telephone #: (925) 8			Email Address: jfeine	r@mecaenviro.com	
		URVEY - 1580	S 10th St - / 133 3	100.2007	
Please Provide Res		ail Purchase Orde	10-00-0	S. State Samples Take	n: CA
	Tur	naround Time (TAT)	Options* – Please Che	ck	States and states
*For TEM Air 3 hours/6 h	Hour 24 Hou nours, please call ahead to so form for this service. Analysi	chedule. There is a premiu	Im charge for 3 Hour TEM AH e with EMSL's Terms and Col	96 Hour 1 Week	ou will be asked to sign
PCM - Air			.5hr TAT (AHERA only)	TEM- Dust	carrice Guide.
NIOSH 7400		AHERA 40 CF	R, Part 763	Microvac - ASTM	0 5755
w/ OSHA 8hr. TW	A	NIOSH 7402		Wipe - ASTM D64	80
PLM - Bulk (reporting	g limit)	EPA Level II		Carpet Sonication	(EPA 600/J-93/167)
PLM EPA 600/R-9	3/116 (<1%)	SO 10312		Soil/Rock/Vermiculit	e
PLM EPA NOB (<1	1%)	TEM - Bulk		PLM CARB 435 - A	A (0.25% sensitivity)
Point Count		TEM EPA NOB		PLM CARB 435 - E	
400 (<0.25%) 🗌 1	. ,	NYS NOB 198.	4 (non-friable-NY)	TEM CARB 435 - E	
Point Count w/Gravim		Chatfield SOP		TEM CARB 435 - 0	
□ 400 (<0.25%) □ 1			lysis-EPA 600 sec. 2.5	EPA Protocol (Sem	
NYS 198.1 (friable		TEM - Water: EPA	and the second	EPA Protocol (Qua	intitative)
NYS 198.6 NOB (1		Fibers >10µm		Other:	
□ NIOSH 9002 (<1%	1		Waste Drinking		
	Check For	Positive Stop – Cle	early Identify Homoge	enous Group	
Samplers Name:	Fam 1 A	pr-	Samplers Signature:		
Sample #	Beige	Sample Description	1	Volume/Area (Air) HA # (Bulk)	Date/Time Sampled
190818 - 8-01	Exterior P.	aint/coating o	n Cmy - N	HA I	8/19/19
190818-8-02	* 1	1	£ -5	J	L
A DECEMBER OF					
87					14441
10 To 10					
Client Sample # (s):	8-01	. 8	02	Total # of Samples:	2
Relinquished (Client)	200	Date:	9/0/19	Time:	532pm
Received (Lab):		NI Date:	9/6/29	Time:	6:30 pm
Comments/Special In	structions:				

Controlled Document - Asbestos COC - R2 - 1/12/2010

1

Page 1 of ____ pages

Page 1 Of

APPENDIX C

LEAD ANALYTICAL LABORATORY RESULTS

Report for:

Jenice Feiner, Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Millennium Consulting Associates 401 Roland Way, Suite 250 Oakland, CA 94621

Regarding:

Project: 1580 S. 10th St. San Jose / 3100.2005 EML ID: 2128650

Approved by:

Indun Heda

Technical Manager Andrew Ikeda

REVISED REPORT

Dates of Analysis: Lead - Flame AA: 04-10-2019

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

EMLab P&K

Client: Millennium Consulting Associates C/O: Jenice Feiner, Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005 17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Date of Sampling: 03-27-2019 Date of Receipt: 04-01-2019 Date of Report: 04-10-2019

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	Pb-01: Brown Paint on Exterior Roof Over Hang	Pb-02: White Paint on Exterior Cinder Block	Pb-03: Rubber Bullet Wall Panel	Pb-04: Grey Paint on Concrete Floor
Comments (see below)	None	None	А	None
Lab ID-Version [‡] :	10082985-1	10082986-1	10083149-3	10082988-1
Analysis Date:	04/10/2019	04/10/2019	04/10/2019	04/10/2019
Sample type	Paint Chip sample	Paint Chip sample	Paint Chip sample	Paint Chip sample
Method*	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	38 ppm	38 ppm	44 ppm	37 ppm
Sample size	0.2619 grams	0.2648 grams	0.2289 grams	0.2694 grams
§Total Lead Result	760 ppm	1800 ppm	220000 ppm	22000 ppm

Comments: A) Sample is of the Bulk matrix. Sample version number change due to; Report revised for addition/update to sample comment.

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

*Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

† The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.

§ Total Lead Result has been rounded to two significant figures to reflect analytical precision.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

EMLab P&K

Client: Millennium Consulting Associates C/O: Jenice Feiner, Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005 17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Date of Sampling: 03-27-2019 Date of Receipt: 04-01-2019 Date of Report: 04-10-2019

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	Pb-05: Blue Paint on	Pb-06: White Floor	Pb-07: Red Paint on Floor	Pb-08: White/Blue Paint
	Concrete Floor	Caulking		on Drywall
Comments (see below)	None	А	None	None
Lab ID-Version [‡] :	10082989-1	10083146-3	10082991-1	10082992-1
Analysis Date:	04/10/2019	04/10/2019	04/10/2019	04/10/2019
Sample type	Paint Chip sample	Paint Chip sample	Paint Chip sample	Paint Chip sample
Sample type Method*	Paint Chip sample NIOSH 7082 & EPA 7000B modified			
1 71	NIOSH 7082 & EPA			
Method*	NIOSH 7082 & EPA 7000B modified			

Comments: A) Sample is of the Bulk matrix. Sample version number change due to; Report revised for addition/update to sample comment.

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

*Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

† The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.

§ Total Lead Result has been rounded to two significant figures to reflect analytical precision.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

Lead (Pb) Chain of Custody EMSL Order ID (Lab Use Only):

.

EMSL ANALYTICAL, INC. 464 McCormick Street San Leandro, CA 94577 PHONE: (510) 895-3675 FAX: (510) 895-3680

** 225.2

						PAX: (510) \$90-3680
Company :	Millennium Consulti	ng Associates].	EN	ST-BIII (0:X	Same Different	·
	01 Roland Way, Ste 250			a Bill A Nad Party Aw	o is Cifferent note in: ling regulars writte	stractions in Comments** In authorization from third p	
		Province: CA					
~	tame): Brad Wallenderg		1	at Code: 1		Country: US/	<u></u> }−
Email Addres	ss; ifeiner@moczenviro.com			10 #; 925	-808-6700	·	
	152A < 1014/	Mecaenviro, Cel	'Fax #:	·	 	EUCHONOMI	<u> </u>
	10111111111111111111111111111111111111	<u>241 NSC/31002005</u>	Piesse P	rovide Rea	wits: 🗌 Fax	X Email	
0.0. State 33	mples Taken: CA	/	CT Samp	oles: 🔲 Co	mmercial/Taxa	ble 🔲 Residentiai/Tax	Exempt
3 Hour		urnaround Time (TA Hour				:	
		Hour 48 Hour		2 Hour	96 Hour		2 Wesk
	Matrix	Method	23 (41m2 H		<u>is located in the Pl</u> trument		
Chips 🗆 %	by wt. 🖂 mg/cm² 🗙 ppm	SW646-7000E			onsie Absorption	Reporting Limit	Check
Alr		<u>+-</u>	<u> </u>	—		0.01%	<u> </u>
		NIOSH 7082			mic Absorption	4 µg/filter	
		NIOSH 7105 NIOSH 7300 mad	ified		a Fumace AA	0.03 µg/filter	
Wipe*	***** 	SW846-7000E			ESACP-MS	0.5 µg/filter	
•	ASTM 🔲 non ASTM [1]	SW646-6010B of		<u> </u>	mic Absorption	10 µg/wipe	
*iŕ ne box j	is chocked, non-ASTM Wipe is assumed	SW846-7000B/7(·	P-AES	1.0 µg/wipe	
TCLP					9 Furnace AA	0.075 µg/wipe	
		SW846-1311/7000B/St SW846-1131/SW848-60			mic Absorption	0.4 mg/L (ppm)	
Soil		SW846-7000B			P-AES	0.1 mg/L (ppm)	
		SW846-7010	— . .		Fumace AA	40 mg/kg (ppm) 0.3 mg/kg (ppm)	
		SW845-6010B or	C .		P-AES	2 mg/kg (ppm)	
Wastewater	Unpreserved	SM3111B/SW846-7	8009		mic Absorption	0.4 mg/L (ppm)	
Preserved w	Unpreserved	EPA 200.9			Furnace AA	0.003 mg/L (ppm)	
Drinking Wa	ter Unpreserved	EPA 200.7 EPA 200.9			P-AES	0.020 mg/L (ppm)	<u> </u>
Preserved w	rith HNO₃pH < 2	EPA 200.8	:		P-MS	0.003 mg/L (ppm)	
TSP/SPM Fil		40 CFR Part 50	· · · ·		P-AES	0.001 mg/L (ppm) 12 µg/filter	━┢
	061	48 CFR Part 60			Fumace AA	3.6 µg/filter	──┝─┤
Other:		· · · · · · · · · · · · · · · · · · ·					
Namendelan	Miller Brad Waller	ibera-		<u>Unio Insta</u>	ពីមើរទានទ		
Saamle #	l locati	on		Volum	e/Area	Date/Time S	ampled
8b-01	Brown Paint on E	xterial Root	506) sf	<u>):</u>	3-07	19
16-02	White Birdt on E	Kterias	$\overline{\neg c}$	* ~ ~ _		<u> </u>	<u> </u>
	<u>Conder Block</u> Rubber Bullet Wa	1. Parel	$\underline{\prec}$	\sim	· · ·	·	
0-02	KARALYZE W/ T	TLC	<u>400</u>) 54			
Pb-04	Grey rant on	Concrete Floor	701	2 sf).		
Pb-05	Blue Paint on Woo	den Bast Pros	75	<f< th=""><th>· · .</th><th></th><th>·</th></f<>	· · .		·
Cilent Samp	o#'s		- <u> </u>	<u></u>			
			12				
BAIINADISEN		Date:	12-	<u>d (- 1</u>	<u>7</u> Time:	16:30	
Received (Lab	»:	Date:	୦୳/୦	11197	Time: 0	10Am	ł
Comments:	,					, <u></u> ,,,	
Gorne and Continuent		·		·			
		Page 1 of _0	}				FRI LIFI (II)
		Page 1 of 12	> pages	•		002128650	

Page 1 of <u>A</u> pages

LEAD (Pb) CHAIN OF CUSTODY EMSL ORDER ID (Leb Use Only):

....

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3875 FAX: (856) 786-5974

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	Location	<u>-</u>	Volume/Area	Date/Time Sampled
Pb-06	White Floor Caulking	* Anglyze w	150 h ft	3-27-19
PS-07	Red Paint on Floor		1500 st	
26-08	White/Blue Palat on Pfywall	······································	300 sf	
	0		····	
	·. ·		· ·	
	· · ·			
	·			002128650
				-
	· · · · ·		· · · ·	••
	·			
			-	
	· · · ·			
			· · · · · · · · · · · · · · · · · · ·	· · ·
	· · · · · · · · · · · · · · · · · · ·	-	-	
	· .			
omments/8p	ecial Instructions:		- 254	
	·		3-27-19	7 16:30
		γ	Receiven	By: 18 0410/19
-	•	Page of _ a	pages	10:10

Report for:

Jenice Feiner, Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Millennium Consulting Associates 401 Roland Way, Suite 250 Oakland, CA 94621

Regarding:

Project: 1580 S. 10th St. San Jose / 3100.2005 EML ID: 2128634

Approved by:

Indun Heda

Technical Manager Andrew Ikeda

Dates of Analysis: Lead - Flame AA: 04-03-2019

Service SOPs: Lead - Flame AA (EM-BC-S-8443) AIHA-LAP, LLC accredited service, Lab ID #178697

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received. Sample size, as it relates to Wipe samples only, is supplied by the client.

EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

EMLab P&K

Client: Millennium Consulting Associates C/O: Jenice Feiner, Mr. Brad Wallenberg, B.S. Natural Resources and Environmental Sciences Re: 1580 S. 10th St. San Jose / 3100.2005 17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Date of Sampling: 03-27-2019 Date of Receipt: 04-01-2019 Date of Report: 04-03-2019

LEAD: FLAME ATOMIC ABSORPTION SPECTROMETRY

Location:	W-1: Lead Wipe at Rubber Wall	W-2: Lead Wipe Adjacent to Restrooms	W-3: Lead Wipe at Entry Way, Beneath Rug
Comments (see below)	None	None	None
Lab ID-Version [‡] :	10083140-1	10083142-1	10083145-1
Analysis Date:	04/03/2019	04/03/2019	04/03/2019
Sample type	Wipe sample	Wipe sample	Wipe sample
Method*	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified	NIOSH 7082 & EPA 7000B modified
† Method Reporting Limit	10 ug/ft ²	10 ug/ft ²	10 ug/ft ²
Sample size	1 ft ²	1 ft ²	1 ft ²
§Total Lead Result	37000 ug/ft ²	29000 ug/ft ²	52000 ug/ft ²

Comments:

Sample results have not been corrected for blank values.

Bulk samples are not covered under the AIHA-LAP, LLC service accreditation.

Wipe samples must meet ASTM E1792 criteria. Method Reporting Limits may not be valid for non-ASTM E1792 wipe samples.

*Sample preparation and analytical methods are based upon NIOSH 7082 and EPA 7000B.

† The Method Reporting Limit is the minimum concentration of Lead that the laboratory can confidently detect in the sample.

§ Total Lead Result has been rounded to two significant figures to reflect analytical precision.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

t-ead For California Samples 'EMSL Order Number (Lab Use Only):

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 Fax: (856) 786-6974

LAA .	, ,	اد را ور	1				
Company Name : Mil	lennium (Consulting Ass.	EMSL Cust	omer ID:			
	Way, 57			kland		State/Prov	Ince: CA
Zip/Postal Code: 94	62101	Country: USA	Telephone #		68-6700	Fax #:	
Report To (Name): Bi	ed Wallenb	era			ite: 🔲 Fax	Email	
Email Address:	Mecaeny)ro.	Cont me an own acon	Purchase O	rder: Bu	1-3-27	7-19	* 1
Project Name/Number:	5 <u>80 5,</u> 10** St	San Jose /3100.2005			mal Use Only);	
U.S. State Samples Take EMSL B	en: A ill-to: 🛄 Same	Different: if Bill-to is differe	-			·	ekw.
		Third-party billing requi	tes written autho	orizstion.			
□ 3 Hour* 1 [6	Ночг	Turnaround Time (TAT) 24 Hour X48 Hour	Options - Pl				c 2 Week
		24 Hour 244 Hour 4-4.5hr T/			96 Hour	📋 1 Weak	<u>с р. 2 ччевк</u>
TEM Ak	3 hr., piease call	ahead to schedule. There is a pr	emium charge f	or 3 Hour T			
PCM - Air		TEM-Air	*		sk/Vermiculit		ing Limit)
NIOSH 7400		AHERA 40 CFR, Part 7	63		CARB 435 - J CARB 435 - I		
🔲 w/ OSHA 8hr. TWA		EPA Level II			CARB 435 -		
PLM - Bulk (Reporting		NIOSH 7402		1	CARB 435 - (• •	
 PLM EPA 600/R-93/11 PLM EPA NOB (<1%) 	• •	ISO 10312			Qualitative via Qualitative via		
☐ FCW EPA NOB (<1%) ☐ 400 (<0.25%) Point Co		TEM - Buik		·		•	///ling.Prep (<1%)
☐ 400 (<0.25%) Point Co		Chatfield SOP	· ·	1			Alling Prep (<0.25%)
Gravimetric Reduction			u della di di filina na		EPA 000/K-8.	overo vnen n	nning Prep (<0.20%)
☐ 1000 (<0.1%) Point Co		TEM EPA 600/R-93/116	AART REPRING		EPA 600/R-9	3/118 with M	Ailling Prep (<0.1%)*
1009 (<0.1%) Point Col Gravimetric Reduction	unt with	Lower reporting limits evailable	7	*Lawer rej	porting limits av	railable	· · · · ·
NIOSH 9002 (<1%)		TEM-Dust			ther lood	Wipe:	
TEM - Water: EPA 100.2		Microvec - ASTM D 5758	5) D	SW844		oB .
Fibers >10µm 🔲 Waste	Drinking	🔲 Wipe - ASTM D6480		1.	Elenso At	m > Ab	sorption
All Fibor Sizes 📋 Waste	Drinking	Carpet Sonication (EPA	600/J-93/167)		ION ZWI	e e	·····
Stop At First Positive	(Cieariy Identi	fy homogenous groups bel	ow) Fliter i	Pore Size	(Air Samples	shy 🗍 0.8	um 🗌 0.45µm
Sampler's Name: BF	ad W	allenbera	Sampler's	Signatus	e. <u>2</u>	<u> </u>	·
					Volumet	• •	Date/Time
Sample #		Sample Description				(Buik)	Sampled
W^{-l}	Lead Wij	oe at Rubber V			134	·	3-27-19
W-2	Lead WI	pe adjacent to Ke	stroom	7	158	5	
W-3	bead Wi	pe at Entryway,	bereath k	lug	150		
							· · · · ·
			.			. : · ·	
Client Sample # (s):	~ ~			······································	Total # of S	Samples:	3
Relinguished (Client):	RC	Date:_	3-27	-19		Tirae	18:00
	The last		0410110			οιαίΤ	
Received (Lab): Comments/Special Instru	ctions:	Date:	* 4 */4*	J.			- 4 [.]
						1 hadan daga kerepak	I MILI MANANIN'I ANA KARANANIN'I ANA
Rented address	A-basi-+ D4 D0 01	#16#10#7	· · ·				
Controlled Document - GGC-51	NSDOSKOS CA KU O1	Page 1 of	pages			00212	8634
庭						00012	

APPENDIX D

PCB ANALYTICAL LABORATORY RESULTS

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1904037

Report Created for: MECA Consulting, Inc.

401 Roland Way, Ste. 250 Oakland, CA 94621

Project Contact: Project P.O.: Project:

Brad Wallenberg BW-3-27-19 3100.2005; 3100.2005

Project Received: 04/01/2019

Analytical Report reviewed & approved for release on 04/05/2019 by:

Christine Askari Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

 Client:
 MECA Consulting, Inc.

 Project:
 3100.2005; 3100.2005

 WorkOrder:
 1904037

Glossary Abbreviation

95% Interval95% Confident IntervalDFDilution FactorDI WET(DISTLC) Waste Extraction Test using DI waterDISSDissolved (direct analysis of 0.45 µm filtered and acidified water sample)DLTDilution Test (Serial Dilution)DUPDuplicateEDLEstimated Detection LimitERSExternal reference sample. Second source calibration verification.ITEFInternational Toxicity Equivalence FactorLCSLaboratory Control SampleMBMethod BlankMB % Rec% Recovery of Surrogate in Method Blank, if applicableMLMinimum Level of QuantitationMSMatrix SpikeNAMatrix SpikeNDLMatrix Spike DuplicateNANot ApplicableNANot ApplicableNANot detected at or above the indicated MDL or RLPDSPost Digestion SpikePDSDPost Digestion SpikePDSDRelative DifferenceRLRelative DifferenceRLRelative DifferenceRLRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPKRef ValSpike Reference ValueTCLPToxicity Characteristic Leachate ProcedureTCLPToxicity Characteristic Leachate ProcedureTCATimeZone NEt Adjustment for sample collected outside of MAl's UTC.WET (STLC)Waste Extraction Test (Soluble Threshold Limit Concentration)	%D	Serial Dilution Percent Difference
DI WET(DISTLC) Waste Extraction Test using DI waterDISSDissolved (direct analysis of 0.45 µm filtered and acidified water sample)DLTDilution Test (Serial Dilution)DUPDuplicateEDLEstimated Detection LimitERSExternal reference sample. Second source calibration verification.ITEFInternational Toxicity Equivalence FactorLCSLaboratory Control SampleMBMethod BlankMBMethod BlankMBMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix SpikeMSDMatrix Spike DuplicateN/ANot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSDPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Retention TimeSPKRef ValSpike Retence ValueSPKRef ValSpike Reference ValueSPLRSynthetic Precipitation Leachate ProcedureSTLSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity Characteristic Leachate ProcedureTEQToxicity Characteristic Leachate ProcedureTEQToxicity Characteristic Leachate ProcedureTEQToxicity Characteristic Leachate ProcedureT	95% Interval	95% Confident Interval
DISSDissolved (direct analysis of 0.45 µm filtered and acidified water sample)DLTDilution Test (Serial Dilution)DUPDuplicateEDLEstimated Detection LimitERSExternal reference sample. Second source calibration verification.ITEFInternational Toxicity Equivalence FactorLCSLaboratory Control SampleMBMethod BlankMB % Rec% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableN/ANot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Precent DeviationRRTRelative Precent DeviationRRTSpike ValueSPKRef ValSpike Reference ValueSPLPSorther TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity Equivalents	DF	Dilution Factor
DLTDilution Test (Serial Dilution)DUPDuplicateEDLEstimated Detection LimitERSExternal reference sample. Second source calibration verification.ITEFInternational Toxicity Equivalence FactorLCSLaboratory Control SampleMBMethod BlankMB% Rec% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Retention TimeSPK ValSpike ValueSPKKef ValSpike Reference ValueSPKKef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity Equivalents	DI WET	(DISTLC) Waste Extraction Test using DI water
DUPDuplicateEDLEstimated Detection LimitERSExternal reference sample. Second source calibration verification.ITEFInternational Toxicity Equivalence FactorLCSLaboratory Control SampleMBMethod BlankMB% Rec% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDLNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLRelative DifferenceRLRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPK ValSpike Reference ValueSPK ValSpike Reference ValueSPK ValSorbert TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity EquivalentsTEQToxicity Equivalents	DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
EDLEstimated Detection LimitERSExternal reference sample. Second source calibration verification.ITEFInternational Toxicity Equivalence FactorLCSLaboratory Control SampleMBMethod BlankMBMethod BlankMB% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableN/ANot ApplicableNDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion SpikePDSDPost Digestion Spike DuplicateRFRelative DifferenceRLRelative DifferenceRLRelative DifferenceRLRelative DifferenceRLSpike ValueSPK ValSpike Retention TimeSPK ValSpike Retention Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity EquivalentsTEQToxicity Equivalents	DLT	Dilution Test (Serial Dilution)
ERSExternal reference sample. Second source calibration verification.ITEFInternational Toxicity Equivalence FactorLCSLaboratory Control SampleMBMethod BlankMB % Rec% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDLNot ApplicableNDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Retention TimeSPK ValSpike ValueSPK ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity Equivalents	DUP	Duplicate
ITEFInternational Toxicity Equivalence FactorLCSLaboratory Control SampleMBMethod BlankMB % Rec% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDLData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRLRelative DifferenceRTRelative DifferenceRTRelative DifferenceRTRelative Percent DeviationRTSpike ValueSPK ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity Equivalents	EDL	Estimated Detection Limit
LCSLaboratory Control SampleMBMethod BlankMB % Rec% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDLNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRLRelative DifferenceRLRelative DifferenceRLRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity EquivalentsTEQToxicity Equivalents	ERS	External reference sample. Second source calibration verification.
MBMethod BlankMB % Rec% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableN/ANot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicateRFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQTimeZone Net Adjustment for sample collected outside of MAI's UTC.	ITEF	International Toxicity Equivalence Factor
MB % Rec% Recovery of Surrogate in Method Blank, if applicableMDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity EquivalentsTEQToxicity Equivalents	LCS	Laboratory Control Sample
MDLMethod Detection LimitMLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike Reference ValueSPLPSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTEQToxicity Equivalents	MB	Method Blank
MLMinimum Level of QuantitationMSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MSMatrix SpikeMSDMatrix Spike DuplicateN/ANot ApplicableNDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQTimeZone Net Adjustment for sample collected outside of MAI's UTC.	MDL	Method Detection Limit
MSDMatrix Spike DuplicateN/ANot ApplicableN/DNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	ML	Minimum Level of Quantitation
N/ANot ApplicableNDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	MS	Matrix Spike
NDNot detected at or above the indicated MDL or RLNRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	MSD	Matrix Spike Duplicate
NRData Not Reported due to matrix interference or insufficient sample amount.PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	N/A	Not Applicable
PDSPost Digestion SpikePDSDPost Digestion Spike DuplicatePDSDPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQTimeZone Net Adjustment for sample collected outside of MAI's UTC.	ND	Not detected at or above the indicated MDL or RL
PDSDPost Digestion Spike DuplicatePFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQTimeZone Net Adjustment for sample collected outside of MAI's UTC.	NR	Data Not Reported due to matrix interference or insufficient sample amount.
PFPrep FactorRDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	PDS	Post Digestion Spike
RDRelative DifferenceRLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike Retention TimeSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	PDSD	Post Digestion Spike Duplicate
RLReporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	PF	Prep Factor
RPDRelative Percent DeviationRRTRelative Retention TimeSPK ValSpike Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	RD	Relative Difference
RRTRelative Retention TimeSPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
SPK ValSpike ValueSPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	RPD	Relative Percent Deviation
SPKRef ValSpike Reference ValueSPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	RRT	Relative Retention Time
SPLPSynthetic Precipitation Leachate ProcedureSTSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	SPK Val	Spike Value
STSorbent TubeTCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	SPKRef Val	Spike Reference Value
TCLPToxicity Characteristic Leachate ProcedureTEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	SPLP	Synthetic Precipitation Leachate Procedure
TEQToxicity EquivalentsTZATimeZone Net Adjustment for sample collected outside of MAI's UTC.	ST	Sorbent Tube
TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.	TCLP	Toxicity Characteristic Leachate Procedure
	TEQ	Toxicity Equivalents
WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)	TZA	TimeZone Net Adjustment for sample collected outside of MAI's UTC.
	WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

 Client:
 MECA Consulting, Inc.

 Project:
 3100.2005; 3100.2005

WorkOrder: 1904037

Analytical Qualifiers

- a4 Reporting limits raised due to the sample's matrix prohibiting a full volume extraction.
- h4 Sulfuric acid permanganate (EPA 3665) cleanup

 Client:
 MECA Consulting, Inc.

 Date Received:
 4/1/19 15:20

 Date Prepared:
 4/1/19

 Project:
 3100.2005; 3100.2005

WorkOrder:	1904037
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg

Polychlorinated Biphenyls (PCBs) Aroclors

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
PCB-01	1904037-001A	Solid	03/27/2019	9 11:00	GC23 04021946.d	175537
Analytes	Result		<u>RL</u>	DE		Date Analyzed
Aroclor1016	ND		0.50	1		04/03/2019 02:36
Aroclor1221	ND		0.50	1		04/03/2019 02:36
Aroclor1232	ND		0.50	1		04/03/2019 02:36
Aroclor1242	ND		0.50	1		04/03/2019 02:36
Aroclor1248	ND		0.50	1		04/03/2019 02:36
Aroclor1254	ND		0.50	1		04/03/2019 02:36
Aroclor1260	ND		0.50	1		04/03/2019 02:36
PCBs, total	ND		0.50	1		04/03/2019 02:36
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	118		69-143			04/03/2019 02:36
<u>Analyst(s):</u> LT			Analytical Con	<u>nments:</u> h4	1,a4	

- Y

Quality Control Report

 Client:
 MECA Consulting, Inc.

 Date Prepared:
 4/1/19

 Date Analyzed:
 4/2/19 - 4/3/19

 Instrument:
 GC23

 Matrix:
 Soil

 Project:
 3100.2005; 3100.2005

WorkOrder:	1904037
BatchID:	175537
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg
Sample ID:	MB/LCS/LCSD-175537

QC Summary Report for SW8082

Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC	-	MB SS Limits
Aroclor1016	ND		0.0051	0.050		-	-	-	
Aroclor1221	ND		0.011	0.050		-	-	-	
Aroclor1232	ND		0.0063	0.050		-	-	-	
Aroclor1242	ND		0.0067	0.050		-	-	-	
Aroclor1248	ND		0.0040	0.050		-	-	-	
Aroclor1254	ND		0.0068	0.050		-	-	-	
Aroclor1260	ND		0.0061	0.050		-	-	-	
PCBs, total	ND		N/A	0.050		-	-	-	
Surrogate Recovery									
Decachlorobiphenyl	0.062					0.050	124	-	75-136
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aroclor1016	0.14	0.14	0.15		94	96	90-125	1.60	20
Aroclor1260	0.14	0.14	0.15		95	93	77-122	2.10	20
Surrogate Recovery									
Decachlorobiphenyl	0.062	0.060	0.050		125	120	75-136	3.49	20

McCampbe	ell Analytical, Pass Rd	Inc.			CH	AIN	-0F-(CUST	'ODY	REC	ORD		Page	1 of	1
Pittsburg, CA (925) 252-926		WaterTrax	k ⊡WriteOn	EDF	E	xcel	EQ Summary	ulS 🖣	ClientC Email Dry-Weig		ECA ardCopy	ThirdF	Party	J-fl	ag
Report to:		Email:	hwallanhara@r	magaan vira aam		Bill	to: Janice Fe	inor			Req	uested TAT	Г:	5 days;	
Brad Wallenberg MECA Consulting 401 Roland Way, Oakland, CA 946 (925) 808-6700	Ste. 250	cc/3rd Party: PO: Project:	jfeiner@mecae BW-3-27-19 3100.2005; 310				MECA, LL 401 Rolar Dakland,					e Received e Logged:		04/01/2 04/01/2	
					Γ			R	equested -	Tests (See	elegend	below)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3 4	5	6	7 8	3 9	10	11	12
1904037-001	PCB-01		Solid	3/27/2019 11:00		А									<u> </u>

Test Legend:

1	8082_PCB_Solid
5	
9	

2	
6	
10	

3	
7	
11	

4	
8	
12	

Project Manager: Angela Rydelius

Prepared by: Lilly Ortiz

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell Analytical, Inc. "When Quality Counts"						Toll Free Telep	phone: (877) 252-92	burg, CA 94565-1701 262 / Fax: (925) 252-9269 ail: main@mccampbell.com			
				WORK OR	DER SU	UMMA	RY					
Client Name: Client Contac		ECA CONSULTING, INC. ad Wallenberg		Project:	3100.200)5; 3100.2	.005				k Order: 1904 C Level: LEV	
Contact's Em	nail: bw	allenberg@mecaenviro.com		Comments	:					Date	Logged: 4/1/2	2019
		WaterTrax	WriteOn	EDF Exce		EQuIS	Email		ppy ThirdParty	٦	-flag	
Lab ID	Client I	D Matrix	Test Name	-	ontainers Composites	Bottle &	Preservative	De- chlorinated	Collection Date & Time	ТАТ	Sediment Hol Content	ld SubOut
1904037-001A	PCB-01	Solid	SW8082 (PCBs Only)	1	Plastic Bag	gie, Extra Small		3/27/2019 11:00	5 days]

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

General COC

McCAMP	BELL	ANA	LYT	TICAL	, INC.						С	HAI	N O	F CI	JSTO	DDY	REC	COR	65	da	e			
1534 V	1534 Willow Pass Rd. Pittsburg, Ca. 94565-1701 Tu				Turn	Turn Around Time: 1 Day Rush 2 Day Rush 3 Day Rush STD Quote #					5													
Telepho	one: (877) 2	52-9262 / Fa	ax: (92:	5) 252-9269		J-Flag / MDL ESI			ESL		Cleanup Approved				Bottle Order #									
www.mccampt	bell.com	ma	in@m	ccampbell.	com	Deliv	ery For	rmat:	PDF		Geo	Tracker	r EDF		EDD		Wr	ite On	(DW)		E	EQuIS	Γ	
Report To: Brad Wallenbe	erg	Bill To:	Jen	ice Feil	ner	-19							Aı	nalysi	is Re	quest	ted							
Company: Millennium Consu	ulting t	+55.				CBE		еI	out		~									s				
Email; Jfelne @mecaenv, ro. ce	m Biva	llenberg	eme	caenvir	D.COM	LW (s	_	l Wit	With	Oil & Gel	418.1	s)	only			(SAS)				metals				
Alt Email: NA	/	Tele:	925	-808-1	6700	as Gas (8021/ 8015) MTBE	or Oi	or Oi	071)	ons - ilica	ons (ticide	clors	(s)	Cs)	s / Pi	*(0			lved				
Project Name		Project #:	310	0.200	95	8021	Mot	Mot	64/9	carb ith S	carb	l Pes	Aro	(VOC	(SVO	PAH	602			disse				
Project Location: 1580 5, 10th St	San Jo	se po#	Bh	1-3-27	7-19	Gas (15)+	15) +	e (16	lydro	lydro	81 (C	.B's	3260	\$270	310 (00.8	(0)	nents	e for				
Sampler Signature: BC						Has	as Diesel (8015) + Motor Oil out Silica Gel	TPH as Diesel (8015) + Motor Oil <u>With</u> Silca Gel	reas	Total Petroleum Hydrocarbons - Oil & Grease (1664 / 9071) <u>With</u> Silica Gel	Total Petroleum Hydrocarbons (418.1) <u>With</u> Silica Gel	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	Metals (200.8 / 6020)	Baylands Requirements	Lab to filter sample for dissolved analysis				
SAMPLE ID	Sam	pling	ners			& TPH	Diese	Diese	180	trole 1664	trole ica G	8/ 608	/ 80	.276	.276	10 SI	Met	200.8	s Req	lter s				
Location / Field Point	Date	Time	#Containers	Matrix	Preservative	BTEX &	H as thout	H as ca Ge	Total Oil Silica Gel	tal Pe ease (tal Pe	A 505	A 608	A 524	A 525	A 82	M 17	tals (land	o to fi lysis				
	Date		#			BT	TPH With	TP	Tot	Tot Gre	Tot Wi	EP.	EP.	EP,	EP,	EP,	CA	Mei	Bay	Lab ana				
PCB-01	3-27-19	11:00ap											Х											
													L											
																						-		
																						\rightarrow	+	
														_						$\left \right $		\rightarrow	_	
																						\rightarrow		
	s																							
																				┤─┤		-+		
						-	-															\rightarrow		
					L	L	L																	
MAI clients MUST disclose any dangerous chemical Non-disclosure incurs an immediate \$250 surcharge	and the client is	present in their s subject to full	submitte legal lia	d samples in co bility for harm	ncentrations that suffered. Thank	t may o you for	cause in r vour u	nmedia ndersta	e harm	or serie nd for a	ous futu allowing	re healt g us to v	h endai vork sa	ngerme felv.	nt as a i	result o	f brief,	gloved,	open a	air, samp	ole hand	lling by	MAI st	aff.
* If metals are requested for water samples and																			C	ommen	ts / Ins	truction	15	
Please provide an adequate volume of sample.													rt.											
Relinquished By / Compan	y Name		Da	ate Ti	me	1	Recei	ved By	/ Con	1pany 1	Name			Pa	ate	Ti	me							
Ha Millennium			3-2	7-19 18	:30			1	H	PP	-			4/1/	14	120	50							
U	UAP		yr	119 15	20 9	1	The.	/	2.	4	-			111	19	150	2							5
					C I	,	/	0		>				,,.,										
Matrix Code: DW=Drinking Water, C									=Slu	dge, A	A=Air	, WP	=Wip	be, O	=Othe							1		
Preservative Code: 1=4°C 2=HCl	$3=H_2SO_4$	$4=HNO_3$	5=Na	OH 6=Zr	OAc/NaOH	I 7	=Non	e								Т	emp	7.	4	SL	Initi	als	2	2

Page _ of _

Page 8 of 9

Sample Receipt Checklist

Client Name:	MECA Consulting, I				Date and Time Received	4/1/2019 15:20
Project:	3100.2005; 3100.20	05			Date Logged: Received by:	4/1/2019 Lilly Ortiz
WorkOrder №:	1904037	Matrix: <u>Solid</u>			Logged by:	Lilly Ortiz
Carrier:	Lorenzo Perez (MAI					,
		<u>Chain of C</u>	ustody	/ (COC) Infor	mation	
Chain of custody	present?		Yes	✓	No 🗌	
Chain of custody	signed when relinquis	shed and received?	Yes		No 🗌	
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌	
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌	
Date and Time of	f collection noted by C	Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗌	
COC agrees with	Quote?		Yes		No 🗌	NA 🗹
		Sampl	le Rece	eipt Informati	ion	
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good cond	lition?	Yes		No 🗌	
Samples in prope	er containers/bottles?		Yes		No 🗌	
Sample container	rs intact?		Yes		No 🗌	
Sufficient sample	volume for indicated	test?	Yes		No 🗌	
		Sample Preservation	on and	<u>Hold Time (</u>	HT) Information	
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌	
Samples Receive	ed on Ice?		Yes	✓	No 🗌	
		(Ісе Тур	e: WE	TICE)		
Sample/Temp Bla	ank temperature			Temp: 2.4	4°C	
Water - VOA vial	s have zero headspac	ce / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌	
pH acceptable up <2; 522: <4; 218.		Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹
		ipt (200.8: ≤2; 525.3: ≤4;	Yes		No 🗌	
Free Chlorine to	ested and acceptable	upon receipt (<0.1mg/L)?	Yes		No 🗌	NA 🗹

APPENDIX E

INSPECTOR CERTIFICATIONS

State of California Division of Occupational Safety and Health **Certified Asbestos Consultant** Brad S Walleuberg Certification No. 17-5872 Expression 02115/20 This certification was issued with Division of Occupational Service and Heatings authorized by Sections 7180 at 547 of the Business and Professions Code.

Corporate Offices: 401 Roland Way, Ste. 250 Oakland, CA 94621 Phone: 925.808.6700 Fax: 925.808.6708 <u>mm.meccenviro.com</u>

Cornerstone Earth Group, Inc. 1259 Oakmead Parkway Sunnyvale, CA 94085 September 12, 2019 Project No: 3100.2007

Attention: Christopher J. Heiny Principal Geologist

Sent via: cheiny@cornerstoneearth.com

Subject:Pre- Demolition Hazardous Materials Building Site Survey- PCB Addendum
1580 South 10th Street, San Jose, CA 95112

Dear Mr. Heiny,

Millennium Consulting Associates (Millennium) is pleased to present this Addendum to the Limited Hazardous Material Pre-Demolition Survey Report (updated 9/12/19) for the referenced project site. This addendum addresses only the survey dealing with polychlorinated bi-phenyls (PCBs) to support the Bay Area Stormwater Management Agencies Association (BASMAA) PCB-screening protocol for demolition projects. The survey was performed to support the planned demolition of the property located at: 1580 South 10th Street, San Jose, CA. Findings, conclusions and recommendations developed from the pre-demolition survey are presented in this report.

If you have comments or questions regarding this report, please do not hesitate to contact the undersigned at 925-808-6700.

Sincerely,

Prepared and reviewed by:

Ramil Arcia, CAC 10-4613, CDPH IA/PM 17756 Director of Building Sciences

EXECUTIVE SUMMARY

Cornerstone Earth Group, Inc (Client) intends to demolish the building located at 1580 South 10th Street, San Jose, CA. The building currently is utilized as a gun range.

The pre-demolition hazardous materials survey included the following elements:

• Inspecting the buildings for the presence of Bulk PCB-containing materials (i.e. caulking, mastics, etc.), under the newly enforced PCB-screening protocol under the Bay Area Stormwater Management Agencies Association for demolition of buildings. The protocol should be performed with reference to the general hazardous material building survey covering asbestos, lead, and other regulated materials covered under the NESHAP regulation (National Emission Standard for Hazardous Air Pollutants).

SUMMARY OF FINDINGS

Millennium conducted the pre-demolition survey starting on August 19, 2019. Reasonable efforts were made to access all areas and locate conditions/materials representative of the building. The summarized presentation of Findings is presented in the summary below:

PCB Bulk Material – Suspect PCB bulk materials were observed in joint caulking, fiberglass, and roof
mastics. These materials were all found to be not detected at the laboratory reporting limit under 50
ppm.

The summary inventory of materials is listed in Table 1 at the end of this report and the analytical laboratory report for the survey is included in Appendix A.

RECOMMENDATIONS

Based on the findings and conclusions from the Pre-demolition Survey, Millennium Consulting Associates presents the following recommendations:

- PCB sampling analysis was performed on suspect materials located throughout and results indicated all suspect materials sampled to be not detected at the reporting limit or under the threshold for EPA defined PCB-bulk product material of 50 ppm. As of this date, there are regulatory considerations on requiring a thorough formal survey of collecting a minimum quantity of PCB samples in order to obtain a demolition permit from the Bay Area Stormwater Management Agencies Association for specific counties, one of which is Santa Clara County. The survey for the accessible areas of the site was performed with respect to the BASMAA guidelines.
- Any quantities and observations listed in this report reflect only visual estimations of what was readily observed. For example, materials such as mastics may be discovered under various flooring systems throughout the site, in quantities greater than what was listed visually. It is recommended that specifications and hazmat drawings be prepared for the demolition of the buildings to detail the scope and abatement required throughout, which should require further exploratory demolition and removal of components to determine extent of materials for qualitative and quantitative bidding purposes.

LIMITING CONDITIONS

Millennium Consulting conducted the survey in general accordance with industry standards for bulk PCB sampling procedures in existence at the time of the project. The conclusions and recommendations presented in this report are based on the applicable standards of our profession at the time this report was prepared. Copies of this report are furnished to provide the factual data that were gathered and summarized in the report.

The analysis and recommendations submitted in this report are based in part on the data obtained from specific and discrete, representative sampling locations throughout accessible interior wall, floor, ceiling systems as well as exterior and roof systems.

This report has been prepared for the exclusive use of Cornerstone Earth Group, Inc for specific application to the locations where the survey was performed. This report may not be copied, except by Cornerstone, without the express written permission of Cornerstone. No other representation, expressed or implied, is made.

TABLE 1 - PCB Results 1580 S 10th Street

Sample Number	Material Sample/Description	PCB Concentration (ppm) ¹	Est. Quantity ²
190818-8-PCB-1	Rolled roofing asphalt field	None detected	N/A
190818-8-PCB-2	Rolled roofing asphalt field	None detected	N/A
190818-8-PCB-3	Rolled roofing asphalt field	None detected	N/A
190818-8-PCB-4	Rolled roofing asphalt field	None detected	N/A
190818-8-PCB-5	Rolled roofing asphalt field	None detected	N/A
190818-8-PCB-6	White roof mastic/patch mastic	None detected	N/A
190818-8-PCB-7	White roof mastic/patch mastic	None detected	N/A
190818-8-PCB-8	White roof mastic/patch mastic	None detected	N/A
190818-8-PCB-9	Roof flashing grey mastic	None detected	N/A
190818-8-PCB-10	Roof flashing grey mastic	None detected	N/A
190818-8-PCB-11	Roof flashing grey mastic	None detected	N/A
190818-8-PCB-12	Exterior joint caulking	None detected	N/A
190818-8-PCB-13	Exterior joint caulking	None detected	N/A
190818-8-PCB-14	Exterior joint caulking	None detected	N/A
190818-8-PCB-15	Interior concrete foundation joint caulking	None detected	N/A
190818-8-PCB-16	Interior concrete foundation joint caulking	None detected	N/A
190818-8-PCB-17	Interior concrete foundation joint caulking	None detected	N/A
190818-8-PCB-18	Yellow ceiling insulation	None detected	N/A
190818-8-PCB-19	Pink ceiling insulation	None detected	N/A

Notes:

1. Lab results and reporting limits (between 25-49 ppm) are reported in milligrams/kilogram (mg/kg), or parts per million (ppm). For reporting purposes above, in compliance with BASMAA formatting, the results are reported in parts per million (ppm)

2. Completed for materials with concentrations greater than or equal to 50 ppm

APPENDIX A

ANALYTICAL LABORATORY REPORTS

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1908F57

Report Created for: MECA Consulting, Inc.

401 Roland Way, Ste. 250 Oakland, CA 94621

Project Contact: Project P.O.: Project:

Ramil Arcia 190828-RA1 3100.2007; 1580 S 10th St.

Project Received: 08/29/2019

Analytical Report reviewed & approved for release on 09/04/2019 by:

Angela Rydelius Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

 Client:
 MECA Consulting, Inc.

 Project:
 3100.2007; 1580 S 10th St.

 WorkOrder:
 1908F57

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
LQL	Lowest Quantitation Level
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
TZA	TimeZone Net Adjustment for sample collected outside of MAI's UTC.
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: MECA Consulting, Inc.

Project: 3100.2007; 1580 S 10th St.

WorkOrder: 1908F57

Analytical Qualifiers

S	Spike recovery outside accepted recovery limits
a4	Reporting limits raised due to the sample's matrix prohibiting a full volume extraction.
а7	Reporting limit raised due to limited sample amount
c1	Surrogate recovery outside of the control limits due to the dilution of the sample.
h4	Sulfuric acid permanganate (EPA 3665) cleanup

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
190818-8-PCB-1	1908F57-001A	Solid	08/28/201	9 16:00	GC41 08301909.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 14:37
Aroclor1221	ND		25	50		08/30/2019 14:37
Aroclor1232	ND		25	50		08/30/2019 14:37
Aroclor1242	ND		25	50		08/30/2019 14:37
Aroclor1248	ND		25	50		08/30/2019 14:37
Aroclor1254	ND		25	50		08/30/2019 14:37
Aroclor1260	ND		25	50		08/30/2019 14:37
PCBs, total	ND		25	50		08/30/2019 14:37
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	101		70-130)		08/30/2019 14:37
<u>Analyst(s):</u> LT			Analytical Co	<u>mments:</u> a4	1,h4	

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
190818-8-PCB-2	1908F57-002A	Solid	08/28/201	9 16:00	GC41 08301910.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 14:52
Aroclor1221	ND		25	50		08/30/2019 14:52
Aroclor1232	ND		25	50		08/30/2019 14:52
Aroclor1242	ND		25	50		08/30/2019 14:52
Aroclor1248	ND		25	50		08/30/2019 14:52
Aroclor1254	ND		25	50		08/30/2019 14:52
Aroclor1260	ND		25	50		08/30/2019 14:52
PCBs, total	ND		25	50		08/30/2019 14:52
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	72		70-130)		08/30/2019 14:52
<u>Analyst(s):</u> LT			Analytical Co	<u>mments:</u> a4	1,h4	

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-3	1908F57-003A Solid 08/28/2019 16:00		9 16:00	GC41 08301911.d	184442	
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 15:07
Aroclor1221	ND		25	50		08/30/2019 15:07
Aroclor1232	ND		25	50		08/30/2019 15:07
Aroclor1242	ND		25	50		08/30/2019 15:07
Aroclor1248	ND		25	50		08/30/2019 15:07
Aroclor1254	ND		25	50		08/30/2019 15:07
Aroclor1260	ND		25	50		08/30/2019 15:07
PCBs, total	ND		25	50		08/30/2019 15:07
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	126		70-130)		08/30/2019 15:07
<u>Analyst(s):</u> LT	Analytical Comments: a4,h4					

Client ID	Lab ID	Matrix	Date Collected 08/28/2019 16:00		Instrument	Batch ID
190818-8-PCB-4	1908F57-004	A Solid			GC41 08301912.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 15:22
Aroclor1221	ND		25	50		08/30/2019 15:22
Aroclor1232	ND		25	50		08/30/2019 15:22
Aroclor1242	ND		25	50		08/30/2019 15:22
Aroclor1248	ND		25	50		08/30/2019 15:22
Aroclor1254	ND		25	50		08/30/2019 15:22
Aroclor1260	ND		25	50		08/30/2019 15:22
PCBs, total	ND		25	50		08/30/2019 15:22
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Decachlorobiphenyl	139	S	70-130)		08/30/2019 15:22
<u>Analyst(s):</u> LT	Analytical Comments: a4,c1,h4					

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Collected 08/28/2019 16:00		Instrument	Batch ID
190818-8-PCB-5	1908F57-005	5A Solid			GC41 08301913.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 15:37
Aroclor1221	ND		25	50		08/30/2019 15:37
Aroclor1232	ND		25	50		08/30/2019 15:37
Aroclor1242	ND		25	50		08/30/2019 15:37
Aroclor1248	ND		25	50		08/30/2019 15:37
Aroclor1254	ND		25	50		08/30/2019 15:37
Aroclor1260	ND		25	50		08/30/2019 15:37
PCBs, total	ND		25	50		08/30/2019 15:37
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Decachlorobiphenyl	144	S	70-130)		08/30/2019 15:37
<u>Analyst(s):</u> LT	Analytical Comments: a4,c1,h4					

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-6	818-8-PCB-6 1908F57-006A Solid 08/28/2019 16:00		9 16:00	GC41 08301914.d	184442	
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 15:52
Aroclor1221	ND		25	50		08/30/2019 15:52
Aroclor1232	ND		25	50		08/30/2019 15:52
Aroclor1242	ND		25	50		08/30/2019 15:52
Aroclor1248	ND		25	50		08/30/2019 15:52
Aroclor1254	ND		25	50		08/30/2019 15:52
Aroclor1260	ND		25	50		08/30/2019 15:52
PCBs, total	ND		25	50		08/30/2019 15:52
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	124		70-130)		08/30/2019 15:52
<u>Analyst(s):</u> LT	Analytical Comments: a4,h4					

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-7	1908F57-007A Solid 08/28/2019 16:0		9 16:00	GC41 08301915.d	184442	
Analytes	Result		<u>RL</u>	DE		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 16:07
Aroclor1221	ND		25	50		08/30/2019 16:07
Aroclor1232	ND		25	50		08/30/2019 16:07
Aroclor1242	ND		25	50		08/30/2019 16:07
Aroclor1248	ND		25	50		08/30/2019 16:07
Aroclor1254	ND		25	50		08/30/2019 16:07
Aroclor1260	ND		25	50		08/30/2019 16:07
PCBs, total	ND		25	50		08/30/2019 16:07
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	118		70-130)		08/30/2019 16:07
<u>Analyst(s):</u> LT	Analytical Comments: a4,h4					

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-8	3-8-PCB-8 1908F57-008A Solid 08/28/2019 16:00		9 16:00	GC41 08301916.d	184442	
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 16:22
Aroclor1221	ND		25	50		08/30/2019 16:22
Aroclor1232	ND		25	50		08/30/2019 16:22
Aroclor1242	ND		25	50		08/30/2019 16:22
Aroclor1248	ND		25	50		08/30/2019 16:22
Aroclor1254	ND		25	50		08/30/2019 16:22
Aroclor1260	ND		25	50		08/30/2019 16:22
PCBs, total	ND		25	50		08/30/2019 16:22
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	85		70-130)		08/30/2019 16:22
<u>Analyst(s):</u> LT	Analytical Comments: a4,h4					

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-9	-8-PCB-9 1908F57-009A Solid 08/28/2019 16:00		9 16:00	GC41 08301917.d	184442	
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 16:37
Aroclor1221	ND		25	50		08/30/2019 16:37
Aroclor1232	ND		25	50		08/30/2019 16:37
Aroclor1242	ND		25	50		08/30/2019 16:37
Aroclor1248	ND		25	50		08/30/2019 16:37
Aroclor1254	ND		25	50		08/30/2019 16:37
Aroclor1260	ND		25	50		08/30/2019 16:37
PCBs, total	ND		25	50		08/30/2019 16:37
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Decachlorobiphenyl	145	S	70-130			08/30/2019 16:37
<u>Analyst(s):</u> LT	Analytical Comments: a4,c1,h4					

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-10	818-8-PCB-10 1908F57-010A Solid 08/28/2019 16:00		9 16:00	GC41 08301918.d	184442	
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		29	50		08/30/2019 16:52
Aroclor1221	ND		29	50		08/30/2019 16:52
Aroclor1232	ND		29	50		08/30/2019 16:52
Aroclor1242	ND		29	50		08/30/2019 16:52
Aroclor1248	ND		29	50		08/30/2019 16:52
Aroclor1254	ND		29	50		08/30/2019 16:52
Aroclor1260	ND		29	50		08/30/2019 16:52
PCBs, total	ND		29	50		08/30/2019 16:52
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	84		70-130)		08/30/2019 16:52
Analyst(s): LT	Analytical Comments: a4,h4					

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Collected 08/28/2019 16:00		Instrument	Batch ID
190818-8-PCB-11	1908F57-011A	Solid			GC41 08301923.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 18:07
Aroclor1221	ND		25	50		08/30/2019 18:07
Aroclor1232	ND		25	50		08/30/2019 18:07
Aroclor1242	ND		25	50		08/30/2019 18:07
Aroclor1248	ND		25	50		08/30/2019 18:07
Aroclor1254	ND		25	50		08/30/2019 18:07
Aroclor1260	ND		25	50		08/30/2019 18:07
PCBs, total	ND		25	50		08/30/2019 18:07
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	123		70-130)		08/30/2019 18:07
<u>Analyst(s):</u> LT	Analytical Comments: a4,h4					

Client ID	Lab ID	Matrix	x Date Collected		Instrument	Batch ID
190818-8-PCB-15	1908F57-015	5A Solid	08/28/201	9 16:00	GC41 08291951.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 05:40
Aroclor1221	ND		25	50		08/30/2019 05:40
Aroclor1232	ND		25	50		08/30/2019 05:40
Aroclor1242	ND		25	50		08/30/2019 05:40
Aroclor1248	ND		25	50		08/30/2019 05:40
Aroclor1254	ND		25	50		08/30/2019 05:40
Aroclor1260	ND		25	50		08/30/2019 05:40
PCBs, total	ND		25	50		08/30/2019 05:40
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Decachlorobiphenyl	157	S	70-130)		08/30/2019 05:40
<u>Analyst(s):</u> CN	Analytical Comments: a4,c1,h4					

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-16	1908F57-016	1908F57-016A Solid		9 16:00	GC41 08291952.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 05:55
Aroclor1221	ND		25	50		08/30/2019 05:55
Aroclor1232	ND		25	50		08/30/2019 05:55
Aroclor1242	ND		25	50		08/30/2019 05:55
Aroclor1248	ND		25	50		08/30/2019 05:55
Aroclor1254	ND		25	50		08/30/2019 05:55
Aroclor1260	ND		25	50		08/30/2019 05:55
PCBs, total	ND		25	50		08/30/2019 05:55
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Decachlorobiphenyl	388	S	70-130	I		08/30/2019 05:55
<u>Analyst(s):</u> CN	Analytical Comments: a4,c1,h4					

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-17	1908F57-017	A Solid	08/28/201	9 16:00	GC41 08291953.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 06:10
Aroclor1221	ND		25	50		08/30/2019 06:10
Aroclor1232	ND		25	50		08/30/2019 06:10
Aroclor1242	ND		25	50		08/30/2019 06:10
Aroclor1248	ND		25	50		08/30/2019 06:10
Aroclor1254	ND		25	50		08/30/2019 06:10
Aroclor1260	ND		25	50		08/30/2019 06:10
PCBs, total	ND		25	50		08/30/2019 06:10
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>			
Decachlorobiphenyl	180	S	70-130)		08/30/2019 06:10
Analyst(s): CN	Analytical Comments: a4,c1,h4					

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-18	1908F57-018A Solid		08/28/2019 16:00		GC41 08291954.d	184442
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		45	50		08/30/2019 06:25
Aroclor1221	ND		45	50		08/30/2019 06:25
Aroclor1232	ND		45	50		08/30/2019 06:25
Aroclor1242	ND		45	50		08/30/2019 06:25
Aroclor1248	ND		45	50		08/30/2019 06:25
Aroclor1254	ND		45	50		08/30/2019 06:25
Aroclor1260	ND		45	50		08/30/2019 06:25
PCBs, total	ND		45	50		08/30/2019 06:25
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Decachlorobiphenyl	139	S	70-130)		08/30/2019 06:25
Analyst(s): CN	Analytical Comments: a7,c1,h4					

Client ID	Lab ID	Matrix Date Collected		Instrument	Batch ID	
190818-8-PCB-19	90818-8-PCB-19 1908F57-019A Solid (08/28/201	9 16:00	GC41 08291955.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		49	50		08/30/2019 06:40
Aroclor1221	ND		49	50		08/30/2019 06:40
Aroclor1232	ND		49	50		08/30/2019 06:40
Aroclor1242	ND		49	50		08/30/2019 06:40
Aroclor1248	ND		49	50		08/30/2019 06:40
Aroclor1254	ND		49	50		08/30/2019 06:40
Aroclor1260	ND		49	50		08/30/2019 06:40
PCBs, total	ND		49	50		08/30/2019 06:40
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Decachlorobiphenyl	116		70-130)		08/30/2019 06:40
<u>Analyst(s):</u> CN	Analytical Comments: a7,h4					

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-12	1908F57-012	A Solid	08/28/201	9 16:00	GC41 08291948.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 04:55
Aroclor1221	ND		25	50		08/30/2019 04:55
Aroclor1232	ND		25	50		08/30/2019 04:55
Aroclor1242	ND		25	50		08/30/2019 04:55
Aroclor1248	ND		25	50		08/30/2019 04:55
Aroclor1254	ND		25	50		08/30/2019 04:55
Aroclor1260	ND		25	50		08/30/2019 04:55
PCBs, total	ND		25	50		08/30/2019 04:55
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Decachlorobiphenyl	218	S	70-130)		08/30/2019 04:55
<u>Analyst(s):</u> CN	Analytical Comments: a4,c1,h4					

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
190818-8-PCB-13	1908F57-013	3A Solid	08/28/201	9 16:00	GC41 08291949.d	184442
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 05:10
Aroclor1221	ND		25	50		08/30/2019 05:10
Aroclor1232	ND		25	50		08/30/2019 05:10
Aroclor1242	ND		25	50		08/30/2019 05:10
Aroclor1248	ND		25	50		08/30/2019 05:10
Aroclor1254	ND		25	50		08/30/2019 05:10
Aroclor1260	ND		25	50		08/30/2019 05:10
PCBs, total	ND		25	50		08/30/2019 05:10
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Decachlorobiphenyl	166	S	70-130)		08/30/2019 05:10
Analyst(s): CN	Analytical Comments: a4,c1,h4					

 Client:
 MECA Consulting, Inc.

 Date Received:
 8/29/19 15:45

 Date Prepared:
 8/29/19

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID Matrix Date Collected Instru			Instrument	Batch ID	
190818-8-PCB-14	B-14 1908F57-014A Solid 08/28/2019 16:00		GC41 08291950.d	184442		
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Aroclor1016	ND		25	50		08/30/2019 05:25
Aroclor1221	ND		25	50		08/30/2019 05:25
Aroclor1232	ND		25	50		08/30/2019 05:25
Aroclor1242	ND		25	50		08/30/2019 05:25
Aroclor1248	ND		25	50		08/30/2019 05:25
Aroclor1254	ND		25	50		08/30/2019 05:25
Aroclor1260	ND		25	50		08/30/2019 05:25
PCBs, total	ND		25	50		08/30/2019 05:25
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>			
Decachlorobiphenyl	172	S	70-130)		08/30/2019 05:25
Analyst(s): CN			Analytical Co	<u>mments:</u> a4	1,c1,h4	

Quality Control Report

 Client:
 MECA Consulting, Inc.

 Date Prepared:
 8/29/19

 Date Analyzed:
 8/29/19 - 8/30/19

 Instrument:
 GC41

 Matrix:
 Caulk

 Project:
 3100.2007; 1580 S 10th St.

WorkOrder:	1908F57
BatchID:	184442
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8082
Unit:	mg/kg
Sample ID:	MB/LCS/LCSD-184442

QC Summary Report for SW8082 w/ Column Clean-up

Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC	MB SS Limits	
Aroclor1016	ND		0.050	0.050		-	-	-	
Aroclor1221	ND		0.050	0.050		-	-	-	
Aroclor1232	ND		0.050	0.050		-	-		
Aroclor1242	ND		0.050	0.050		-	-		
Aroclor1248	ND		0.050	0.050		-	-	-	
Aroclor1254	ND		0.050	0.050		-	-	-	
Aroclor1260	ND		0.050	0.050		-	-	-	
Surrogate Recovery									
Decachlorobiphenyl	0.048					0.05	97	-	70-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aroclor1016	0.14	0.14	0.15		96	96	70-130	0	20
Aroclor1260	0.14	0.14	0.15		90	93	70-130	2.72	20
Surrogate Recovery									
Decachlorobiphenyl	0.048	0.051	0.050		97	102	70-130	5.23	20

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

252-9262

□ WaterTrax □ WriteOn

EDF

Report to:

 Ramil Arcia
 Ema

 MECA Consulting, Inc.
 cc/3rc

 401 Roland Way, Ste. 250
 PO:

 Oakland, CA 94621
 Projet

 (925) 766-2634
 FAX: (925) 808-6708

Email:rarcia@mecaenviro.comcc/3rd Party:jfeiner@mecaenviro.com;PO:190828-RA1Project:3100.2007; 1580 S 10th St.

CHAIN-OF-CUSTODY RECORD

WorkOrder: 1908F57 **ClientCode: MECA** Excel EQuIS 🖌 Email □HardCopy ThirdParty □J-flag Detection Summary Dry-Weight Bill to: **Requested TAT:** 3 days; Janice Feiner MECA. LLC Date Received: 08/29/2019 401 Roland Way, Ste. 250 Oakland, CA 94621 Date Logged: 08/29/2019 jfeiner@mecaenviro.com

				[Re	quested	Tests (See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
									1						-	
1908F57-001	190818-8-PCB-1	Solid	8/28/2019 16:00		Α											
1908F57-002	190818-8-PCB-2	Solid	8/28/2019 16:00		А											
1908F57-003	190818-8-PCB-3	Solid	8/28/2019 16:00		А											
1908F57-004	190818-8-PCB-4	Solid	8/28/2019 16:00		А											
1908F57-005	190818-8-PCB-5	Solid	8/28/2019 16:00		А											
1908F57-006	190818-8-PCB-6	Solid	8/28/2019 16:00		А											
1908F57-007	190818-8-PCB-7	Solid	8/28/2019 16:00		А											
1908F57-008	190818-8-PCB-8	Solid	8/28/2019 16:00		А											
1908F57-009	190818-8-PCB-9	Solid	8/28/2019 16:00		А											
1908F57-010	190818-8-PCB-10	Solid	8/28/2019 16:00		А											
1908F57-011	190818-8-PCB-11	Solid	8/28/2019 16:00		А											
1908F57-012	190818-8-PCB-12	Solid	8/28/2019 16:00			Α										
1908F57-013	190818-8-PCB-13	Solid	8/28/2019 16:00			А										
1908F57-014	190818-8-PCB-14	Solid	8/28/2019 16:00			Α										
1908F57-015	190818-8-PCB-15	Solid	8/28/2019 16:00		А											

Test Legend:

1	8082_PCB_SG_Bulk	
5		
9		

2	8082_PCB_SG_Caulk
6	
10	

3	
7	
11	

4	
8	
12	

Page

1 of 2

Project Manager: Angela Rydelius

Prepared by: Kena Ponce

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, 1534 Willow Pass Rd Pittsburg, CA 94565-1701	Inc.					- OF r: 1908					COR meca			Page	2 of	2
(925) 252-9262	WaterTrax	WriteOn	EDF	E	xcel		EQuIS	✓	Email		HardCo	ру	ThirdPa	arty	_J-fla	g
				D	etection	n Summ	ary		Dry-We	ight						
Report to:					Bi	ll to:						Reque	sted TAT:	3	3 days;	
Ramil ArciaEmail:rarcia@mecaenviro.comMECA Consulting, Inc.cc/3rd Party:jfeiner@mecaenviro.com;401 Roland Way, Ste. 250PO:190828-RA1Oakland, CA 94621Project:3100.2007; 1580 S 10th St.(925) 766-2634FAX:(925) 808-6708						Janice MECA 401 Ro Oaklar jfeiner	bland W nd, CA 9	/ay, Ste 94621					Received Logged:		08/29/2 08/29/2	• = -
				Γ				Re	quested	Tests	(See lege	end be	elow)			
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1908F57-016 190818-8-PCB-	16	Solid	8/28/2019 16:00		А											
1908F57-017 190818-8-PCB-	17	Solid	8/28/2019 16:00		А											

А

А

8/28/2019 16:00

8/28/2019 16:00

Test Legend:

1908F57-018

1908F57-019

1	8082_PCB_SG_Bulk
5	
9	

190818-8-PCB-18

190818-8-PCB-19

2	8082_PCB_SG_Caulk
6	
10	

Solid

Solid

3	
7	
11	

4	
8	
12	

Project Manager: Angela Rydelius

Prepared by: Kena Ponce

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

WORK ORDER SUMMARY

Client Name	e: MECA CO	NSULTING, INC.	Pr	oject: 31	00.2007; 1580	S 10th St.			Woi	rk Order: 1908F57
Client Conta	act: Ramil Arcia	a							(C Level: LEVEL 2
Contact's Er	mail: rarcia@med	caenviro.com	Co	omments:				Date	e Logged: 8/29/2019	
		WaterTrax	WriteOnEDF	Excel	EQuIS	✓ Email	HardC	opyThirdPart	у 🗌	J-flag
Lab ID	Client ID	Matrix	Test Name	Conta /Comp		& Preservative	De- chlorinated	Collection Date & Time	ТАТ	Sediment Hold SubOut Content
1908F57-001A	190818-8-PCB-1	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-002A	190818-8-PCB-2	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-003A	190818-8-PCB-3	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-004A	190818-8-PCB-4	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-005A	190818-8-PCB-5	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-006A	190818-8-PCB-6	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-007A	190818-8-PCB-7	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-008A	190818-8-PCB-8	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-009A	190818-8-PCB-9	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-010A	190818-8-PCB-10	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-011A	190818-8-PCB-11	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	
1908F57-012A	190818-8-PCB-12	Solid	SW8082 (PCBs w/ Column Style up)	Clean- 1	Plastic	Baggie, Small		8/28/2019 16:00	3 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

WORK ORDER SUMMARY

Client Name	: MECA CO	NSULTING, INC.		Project	t: 3100.20	07; 1580 S 10th St.			Wor	k Order: 1908F57
Client Conta	act: Ramil Arcia	a							C	C Level: LEVEL 2
Contact's Er	mail: rarcia@mec	caenviro.com		Comm	ents:				Date	Logged: 8/29/2019
		WaterTrax	WriteOn	EDF	Excel	EQuIS Fmail	HardC	opyThirdPart	y 🗌	J-flag
Lab ID	Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	ТАТ	Sediment Hold SubOut Content
1908F57-013A	190818-8-PCB-13	Solid	SW8082 (PCE up)	s w/ Column Style Clean	- 1	Plastic Baggie, Small		8/28/2019 16:00	3 days	
1908F57-014A	190818-8-PCB-14	Solid	SW8082 (PCE up)	s w/ Column Style Clean	- 1	Plastic Baggie, Small		8/28/2019 16:00	3 days	
1908F57-015A	190818-8-PCB-15	Solid	SW8082 (PCE up)	s w/ Column Style Clean	- 1	Plastic Baggie, Small		8/28/2019 16:00	3 days	
1908F57-016A	190818-8-PCB-16	Solid	SW8082 (PCE up)	s w/ Column Style Clean	- 1	Plastic Baggie, Small		8/28/2019 16:00	3 days	
1908F57-017A	190818-8-PCB-17	Solid	SW8082 (PCE up)	s w/ Column Style Clean	- 1	Plastic Baggie, Small		8/28/2019 16:00	3 days	
1908F57-018A	190818-8-PCB-18	Solid	SW8082 (PCE up)	s w/ Column Style Clean	- 1	Plastic Baggie, Small		8/28/2019 16:00	3 days	
1908F57-019A	190818-8-PCB-19	Solid	SW8082 (PCE up)	s w/ Column Style Clean	- 1	Plastic Baggie, Small		8/28/2019 16:00	3 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

General COC

MAI Work Order # _

909 F57

McCAMP	. CHAIN OF CUSTODY RECORD																								
1534 W		Turn Around Time: 1 Day Rush 2 Day Rush 3 Day Rush X STD Quote #											٦												
Telepho	Telephone: (877) 252-9262 / Fax: (925) 252-9269										Cleanup Approved							Bottle Order #							
www.mccampb	www.mccampbell.com main@mccampbell.com									J-Flag / MDL ESL Delivery Format: PDF							Write On (DW) EQuIS					QuIS			
Report To: RAMIL ARCIA	NSULTING								Ar	nalysi	s Ree	quest	ed												
Company: MILLENNIUM CONSLUTING	MTBE		اعر	out		-				5			-		lls		20								
Email: JFEINER@MECAENVIRO.COM	EW (Wit	With	Oil & Gel	118.1	s)	only			(SAS)				metals										
Alt Email: RARCIA@MECAENVIRO.COM	-6700	8015	r Oi	r Oi	(11)	ons -) suc	icide	clors	(s)	Cs)	s / Pl	*((lved									
Project Name: 1580 S 10TH ST		Project #:				8021/	Moto	Moto	54/9	carbo ith Si	carbo	Pest	Aro	Ň	SVO	PAH	602(disse					
Project Location: 1580 S 10TH ST, SAN JO	DSE, CA	PO #	190828-R	A1		as (5)+	5)+	e (16	ydro 1) W	ydro	11 (C	B's;	260	270	310 (00.8	6	nents	e for					
Sampler Signature: The Sug	die	ONBE	HALF	ot RA	MIL ARCIA	as	(801 Gel	(801	reas	H mi 1 907	el H	/ 808	12 PC	24/8	25/8	M / 8	als (2	/ 602	uireı	ampl					
SAMPLE ID	Sam	oling	lers	/		BTEX & TPH as Gas (8021/ 8015)	Diese	Diese	Total Oil & Grease (1664 / 9071) <u>Withou</u> Silica Gel	Total Petroleum Hydrocarbons - Oil & Grease (1664 / 9071) <u>With</u> Silica Gel	Total Petroleum Hydrocarbons (418.1) <u>With</u> Silica Gel	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 524.2 / 624 / 8260 (VOCs)	525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	Metals (200.8 / 6020)	Baylands Requirements	Lab to filter sample for dissolved analysis					
Location / Field Point	Sield Point Preserve					EX &	I as I hout	Has I a Gel	al Oi	al Pe	al Pe <u>h</u> Sili	A 505	A 608	N 524	A 525		M 17	tals (land	to fi lysis					
	Date	Time	#C			BTI	TPI Wit	TPH as Diesel (8015) + Motor Oil <u>With</u> Silca Gel	Tot Sili	Tot Gre	Tot	EP	EP.	EP.	EPA	EPA	CA	Me	Bay	Latana				_	
190818-8-PCB-1	8/28/19	'4pm		Ø	7								X											_	
8-PCB2		1		1	i														1						
8-PCB 3																									
8-PCB 4																									
8-PCB 5																									
8-PCB 6																									
8- PCB 7																					10				
8-PCB 8																									
8-PCB 9																									
¥ 8-PCB 10	\checkmark	\forall		V	¥						4)		V												
MAI clients MUST disclose any dangerous chemical															nt as a	result o	of brief,	gloved.	, open	air, sam	ple han	dling by	MAI sta	ıff.	
Non-disclosure incurs an immediate \$250 surcharge								2010/01/02/02/02/02					work sa	fely.	_		-	-	C		to / Inc	truction		_	
* If metals are requested for water samples and Please provide an adequate volume of sample. I			1997 1997 1997 1997 1997 1997 1997 1997			2015		tribut medita			1144 COA		t					SAA	nple	ommen A A	EF.	50.00	,NG		
Relinquished By / Company	CONTRACTOR OF THE OWNER	s not sufficie	Date		Time	be pi		ived B	and the second		a second law of	le repo	ч г .	D	ate	Ti	me	MA	MATERIALS. · PLEASE SET REPORTING						
-The Middle	, runie			18 13			1	1	AP	-puil)				820	-	13		1.	44 14	· AS	1/1 A	Mann	1 RS		
John Juan	- /A	P	8/20/			0	1	٨	111				-	80		in	15	Pos	SS.R	LE.	NO	GRE	ATER	L	
	01		-1-11		1000		X	~	-					010	4-1	13		POSS, BLE. NO GREATER THAN SOPPM.							
Matrix Code: DW=Drinking Water, G	W=Ground	Water, W	W=Was	ste Wate	r, SW=Seaw	ater,	S=So	il, SL	_=Slu	dge, A	A=Ai	r, WF	P=Wi	be, O	=Oth	er		Con	JTA	ST.B	AMI	UF	ANY		
Preservative Code: 1=4°C 2=HCl										-		8 .0 400-640					Гетр	-		°C					

Page <u>/</u> of <u>2</u> Page 19 of 21

General COC

MAI Work Order #

McCAMP	CHAIN OF CUSTODY RECORD																							
1534 W	illow Pass	Rd. Pittsbur	rg, Ca. 94:	565-17	01	Turn	Aroun	d Time	e:1 Day	Rush		2 Day	Rush		3 Day	Rush	٠	STD		Que	ote #			
Telepho	one: (877) 2	252-9262 / F		J-Flag / MDL ESL					Cleanup Approved					Bottle Order #										
www.mccampb	ell.com	<u>m</u>	ain@mcc	ampb	ell.com	Deliv	very Fo	rmat:	PDF		Geo	Fracke	r EDF		EDD		Wr	rite On (DW) EQuIS						
Report To: RAMIL ARCIA		Bill To	:MILLENN	IUM C	ONSULTING								Aı	nalysi	is Ree	quest	ed				14			
Company: MILLENNIUM CONSLUTING						MTBE		ام	out						2					sli				Τ
Email: JFEINER@MECAENVIRO.COM						W		Wid	With	Oil & Gel	118.1	(s	only			(sAs)				metals				
Alt Email: RARCIA@MECAENVIRO.COM		Tele	: 925-808-6	6700		8015	r Oil	r Oi	(11)	ons -) suo	icide	clors	(s)	(Cs)	s / Pl	*(0			olved				
Project Name: 1580 S 10TH ST		Project #	:3100.200	7		8021/	Mote	Mote	64/9	ith Si	carb	l Pest	Aro	VOC	(SVO	PAH	/ 602		~	disse		- 1		
Project Location: 1580 S 10TH ST, SAN JC	DSE, CA	PO #	# 190828-R	RA1		as Gas (8021/ 8015)	(8015) + Motor Oil Gel	15)+	e (16	(ydro	ydro	31 (C	B's	3260	8270	310 (00.8	(0)	ment	le for				
Sampler Signature:							1 (801 I Gel	1(8)	reas	H mr / 907	e m	/ 808	82 PC	24/8	25/8	M / 8	als (2	/ 602	uire	amp				
SAMPLE ID	San	npling	ners			BTEX & TPH	TPH as Diesel (Without Silica	TPH as Diesel (8015) + Motor Oil <u>With</u> Silca Gel	Total Oil & Grease (1664 / 9071) <u>Without</u> Silica Gel	Total Petroleum Hydrocarbons - Oil. Grease (1664 / 9071) <u>With</u> Silica Gel	Total Petroleum Hydrocarbons (418.1) With Silica Gel	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	Metals (200.8 / 6020)	Baylands Requirements	Lab to filter sample for dissolved analysis				
Location / Field Point			#Containers	Matri	x Preservative	EX	H as hout	H as a Ge	al Oi	al Pe 2ase (al Pe th Sil	A 505	A 605	A 524	A 525	A 82	M 17	tals (land	o to fi dysis				
	Date	Time	-			BT	TPI	TPI	Tot Sili	G J	Tot Wit	EP.	EP	EP	EP.	EP.	CA	Me	Bay	Lal ana				
190818-8-PCB 11	8/28/1	94pm		Ø	7								X											
1 8-PCB12	· / /)		1	i								1											
8-PCR 13																						9		
8-PCB14												•	1											\top
S- Proje				+		+							\square											+
0 1 0 8 1 5				+		┢		-					\vdash											+
8-PCB16													+				<u> </u>					1.2		+
8-PCB17																								
8-PCB/8																								-
8-PCB/9		V																						
L.	V	,		V	\checkmark	1							V										12	
MAI clients MUST disclose any dangerous chemicals	s known to be	present in thei	r submitted s	samples	in concentrations th	at may	cause in	mmedia	ite harm	or seri	ous fut	ire heal	th enda	ingerme	ent as a	result o	of brief,	gloved	, open	air, sam	ple han	dling b	y MA	I staff.
Non-disclosure incurs an immediate \$250 surcharge a																								
* If metals are requested for water samples and							_											1	C	ommen	nts / Ins	structio	ons	
Please provide an adequate volume of sample. I	No. Course in Arrival	e is not suffici	Contraction of the local division of the loc	and the second second	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	ll be p	STATUTO DE LA COMPANYA DE LA COMPANY	and the second second	THE R. LEWIS CO.		ACCESS OF THE OWNER	ne repo	ort.	-		-		4						
Relinquished By / Company	/ Name		Date	-	Time		Rece		у / Сог	npany	Name	3		D	ate		me	{						
		110	Vianil		ut			A		/				0	LAW	13	40							
		UAP	81411	1 16	>1)			C	Y	A_	-			8/2	9117	/) (13	{						
Matrix Code: DW=Drinking Water, G	W=Group	d Water V	WW=Wa	ste Wa	ter SW=Sea	vater	S=Sc	il si	=Slu	dae	A = A	r WI	D=Wi	ne O	=Oth	er		1						
Preservative Code: 1=4°C 2=HCl									5 510	450,		.,		pc, 0	Jun		Гетр	<u> </u>		°C	Ini	tials		1

Page 2 of 2

Sample Receipt Checklist

Client Name: Project:	MECA Consulting, I 3100.2007; 1580 S				Date and Time Received Date Logged: Received by:	8/29/2019 15:45 8/29/2019 Kena Ponce							
WorkOrder №:	1908F57	Matrix: <u>Solid</u>			Logged by:	Kena Ponce							
Carrier:	Lorenzo Perez (MAI	<u>Courier)</u>											
Chain of Custody (COC) Information													
Chain of custody	present?		✓	No 🗌									
Chain of custody	signed when relinquis	shed and received?	✓	No 🗌									
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌								
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌								
Date and Time of	f collection noted by C	Client on COC?	Yes	\checkmark	No 🗌								
Sampler's name	noted on COC?		Yes	\checkmark	No 🗌								
COC agrees with	Quote?		Yes		No 🗌	NA 🗹							
		Samp	le Rece	ipt Informati	on								
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗌	NA 🗹							
Shipping containe	er/cooler in good cond	dition?	Yes		No 🗌								
Samples in prope	er containers/bottles?		Yes	✓	No 🗌								
Sample container	rs intact?		Yes	✓	No 🗌								
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌								
		Sample Preservati	on and	<u>Hold Time (</u>	HT) Information								
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌	NA							
Samples Receive	ed on Ice?		Yes	✓	No 🗌								
		(Ісе Тур	e: WE	TICE)		_							
Sample/Temp Bla	ank temperature			Temp: 2°	C								
Water - VOA vial	s have zero headspac	ce / no bubbles?	Yes		No 🗌	NA 🗹							
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No								
pH acceptable up <2; 522: <4; 218.		; Nitrate 353.2/4500NO3:	Yes		No 🗌	NA 🗹							
UCMR Samples:				_	_	_							
	acceptable upon rece 3; 544: <6.5 & 7.5)?	ipt (200.8: ≤2; 525.3: ≤4;	Yes		No	NA 🗹							
Free Chlorine to	ested and acceptable	upon receipt (<0.1mg/L)?	Yes		No 🗌	NA 🗹							