GEOTECHNICAL ENGINEERING INVESTIGATION PROPOSED SAN JOSE SENIOR LIVING 3315 ALMADEN EXPRESSWAY SAN JOSE, CALIFORNIA **KA PROJECT No. 042-19031** FEBRUARY 10, 2020 #### Prepared for: MR. ERIC KIMMELSHUE SRM DEVELOPMENT, LLC 111 N. POST STREET, SUITE 200 SPOKANE, WASHINGTON 99201 ### Prepared by: KRAZAN & ASSOCIATES, INC. GEOTECHNICAL ENGINEERING DIVISION 1061 SERPENTINE LANE, SUITE F PLEASANTON, CALIFORNIA 94566 (925) 307-1160 # GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION February 10, 2020 KA Project No. 042-19031 Mr. Eric Kimmelshue SRM Development, Inc. 111 N. Post Street, Suite 200 Spokane, Washington 99201 RE: Geotechnical Engineering Investigation Proposed San Jose Senior Living 3315 Almaden Expressway San Jose, California Dear Mr. Kimmelshue: In accordance with your request, we have completed a Geotechnical Engineering Investigation for the above-referenced site. The results of our investigation are presented in the attached report. If you have any questions, or if we may be of further assistance, please do not hesitate to contact our office at (925) 307-1160. Respectfully submitted, KRAZAN & ASSOCIATES, INC. David R. Jarosz, II Managing Engineer RGE No. 2698/RCE No. 60185 DRJ:ht # GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION #### **TABLE OF CONTENTS** | INTRODUCTION | | |--|------------| | PURPOSE AND SCOPE | | | PROPOSED CONSTRUCTION | 2 | | SITE LOCATION, SITE HISTORY AND SITE DESCRIPTION | 2 | | GEOLOGIC SETTING | | | FIELD AND LABORATORY INVESTIGATIONS | 4 | | SOIL PROFILE AND SUBSURFACE CONDITIONS | 4 | | GROUNDWATER | 5 | | SOIL LIQUEFACTION | 6 | | CONCLUSIONS AND RECOMMENDATIONS | | | Administrative Summary | | | Groundwater Influence on Structures/Construction | 9 | | Site Preparation - General | 9 | | Supplemental Site Preparation - Geogrid Option | | | Engineered Fill | | | Drainage and Landscaping | 12 | | Utility Trench Backfill | 13 | | Foundations - Conventional | 13 | | Foundations – Post-Tension or Structural Slab | 14 | | Floor Slabs and Exterior Flatwork | 16 | | Lateral Earth Pressures and Retaining Walls | 17 | | R-Value Test Results and Pavement Design | 18 | | Seismic Parameters – 2019 CBC | 10 | | Soil Cement Reactivity | 20 | | Compacted Material Acceptance | 20 | | Testing and Inspection | 20 | | LIMITATIONS | | | SITE PLAN | 23 | | LOGS OF BORINGS (1 TO 4) | | | GENERAL EARTHWORK SPECIFICATIONS | Appendix B | | GENERAL PAVEMENT SPECIFICATIONS | Appendix C | | LIQUEFACTION ANALYSIS | Appendix D | ## GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION February 10, 2020 KA Project No. 042-19031 #### GEOTECHNICAL ENGINEERING INVESTIGATION PROPOSED SAN JOSE SENIOR LIVING 3315 ALMADEN EXPRESSWAY SAN JOSE, CALIFORNIA #### INTRODUCTION This report presents the results of our Geotechnical Engineering Investigation for the proposed San Jose Senior Living to be located at 3315 Almaden Expressway in San Jose, California. Discussions regarding site conditions are presented herein, together with conclusions and recommendations pertaining to site preparation, Engineered Fill, utility trench backfill, drainage and landscaping, foundations, concrete floor slabs and exterior flatwork, retaining walls, pavement design and soil cement reactivity. A site plan showing the approximate boring locations is presented following the text of this report. A description of the field investigation, boring logs, and the boring log legend are presented in Appendix A. Appendix A also contains a description of the laboratory testing phase of this study, along with the laboratory test results. Appendices B and C contain guides to earthwork and pavement specifications. When conflicts in the text of the report occur with the general specifications in the appendices, the recommendations in the text of the report have precedence. #### PURPOSE AND SCOPE This investigation was conducted to evaluate the soil and groundwater conditions at the site, to make geotechnical engineering recommendations for use in design of specific construction elements, and to provide criteria for site preparation and Engineered Fill construction. Our scope of services was outlined in our proposal dated October 8, 2019 (KA Proposal No. P632-19) and included the following: - A site reconnaissance by a member of our engineering staff to evaluate the surface conditions at the project site. - A field investigation consisting of drilling 4 borings to depths ranging from approximately 20 to 50 feet for evaluation of the subsurface conditions at the project site. - Performing laboratory tests on representative soil samples obtained from the borings to evaluate the physical and index properties of the subsurface soils. KA No. 042-19031 Page No. 2 • Evaluation of the data obtained from the investigation and an engineering analysis to provide recommendations for use in the project design and preparation of construction specifications. • Preparation of this report summarizing the results, conclusions, recommendations, and findings of our investigation. #### PROPOSED CONSTRUCTION We understand that design of the proposed development is currently underway; structural load information and other final details pertaining to the structures are unavailable. On a preliminary basis, it is understood the proposed development will include the construction of a senior living facility. It is anticipated the buildings will be four-story structures utilizing concrete slab-on-grade construction. Foundations may consist of conventional shallow foundations, a post-tensioned or structural mat foundation system or drilled piers. Foundation loads are anticipated to be light to moderate. On-site paved areas and landscaping are also planned to be associated with the development of the project. In the event, these structural or grading details are inconsistent with the final design criteria, the Soils Engineer should be notified so that we may update this writing as applicable. #### SITE LOCATION, SITE HISTORY AND SITE DESCRIPTION The site is irregular in shape and encompasses approximately 3.57 acres. The site is located at the northwest corner of Chard Road and Almaden Expressway in San Jose, California. The site is predominately surrounded by commercial developments. Site history was obtained by reviewing historical aerial photographs taken in 1998, 2009 and 2017. Review of the 1998 aerial photograph indicates that the project site was occupied by a commercial building used for retail sales and office space. Landscaping consisting of grass, trees and shrubs was located throughout the site. Parking lots surrounded the commercial building. Review of the 2009 and 2017 aerial photographs indicate that the project site conditions appeared to be relatively similar to that noted in the 1998 aerial photograph. Presently, the site is predominately occupied by an existing commercial development consisting of office and retail spaces. Portions of the site are covered with concrete and asphaltic concrete pavements. Several trees and shrubs are located throughout portions of the site. The site is relatively level with no major changes in grade. #### **GEOLOGIC SETTING** The project area is located just south of San Francisco Bay and east of the Santa Cruz Mountains within the northern portion of the Coast Ranges Geomorphic Province of California. The Coast Ranges generally consist of an alternating series of parallel mountains and valleys located adjacent to the Pacific Coast. The bedrock units that form the range have been disrupted by intense folding, faulting, and crushing that occurred when the range was formed by the processes of plate tectonics. During the and crushing that occurred when the range was formed by the processes of plate tectonics. During the Jurassic and Cretaceous Periods (about 150 to 80 million years ago), the Pacific Oceanic Plate, which was progressively moving towards the east, collided with the North American Continental Plate, which was moving toward the west. This collision caused the less rigid Pacific Oceanic Plate to be subducted beneath the North American Continental Plate. The colliding motion of the two plates caused portions of the Pacific Oceanic Crust and overlying marine sediments to be piled onto the North American Continental Plate along the west coast of California. The resulting chaotic jumble of bedrock units scraped off onto the North American Plate, is known as the "Franciscan Assemblage" and comprises a large portion of the Coast Range Province. Subsequent development of a series of northwest-trending fault zones has further contributed to the deformation of the Coast Range. The near-surface deposits in the vicinity of the subject site are indicated to be comprised of Holocene alluvial fan deposits and alluvial fan levee deposits consisting of sands, silt, and clays derived from erosion of local mountain ranges. Deposits encountered on the subject site during exploratory drilling are discussed in detail in this report. Seven major faults are located near the site: The Monte Vista-Shannon fault, the San Andreas fault, the Calaveras fault, the Hayward fault, the Zayante-Vergeles fault, the Greenville fault, and the Mount Diablo Thrust fault. The Calaveras fault is located approximately 10 miles east of the site and is considered capable of producing an earthquake of magnitude of 6.9. The Monte Vista-Shannon fault and the San Andreas fault are located approximately 4 to 10 miles west of the site, respectively. The San Andreas fault was the source of the 1906 San Francisco Earthquake. The Hayward fault is located approximately 13 miles north of the site. The Hayward fault is considered capable of producing an earthquake event of magnitude 7.0. The last recorded movement of the Hayward fault was in 1868. The Zaynte-Vergeles fault is approximately 14 miles south of the site
and is considered capable of producing an earthquake of magnitude 7.0. The Mount Diablo Thrust and San Gregorio fault are located approximately 32 miles north and 33 miles west of the site, respectively, and are also considered capable of producing large earthquakes. Although the site is in close proximity to several faults, the site is not within a State of California Earthquake Fault Zone or Special Study Zone for faulting. The probability of one or more earthquakes of magnitude 6.7 or higher occurring in the San Francisco Bay Area within a 30-year period of time was evaluated by the U.S. Geological Survey (USGS) Working Group on California Earthquake Probabilities on a periodic basis. The result of the 2008 evaluation indicated a 63 percent likelihood that such an earthquake event will occur in the Bay Area between 2007 and 2036 (USGS 2008). The faults with the greater probability of a magnitude 6.7 or higher earthquake are the Hayward fault at 31 percent and the San Andreas fault at 21 percent. The Alquist-Priolo Earthquake Fault Zoning Act went into effect in March, 1973. Since that time, the act has been amended 11 times (Hart, 2007). The purpose of the Act, as provided in CGS Special Publication 42 (SP 42), is to prohibit the location of most structures for human occupancy across the traces of active faults and to mitigate thereby the hazard of fault-rupture." The act was renamed the Alquist-Priolo Earthquake Fault Zoning Act in 1994, and at that time, the originally designated "Special Studies Zones" was renamed the "Earthquake Fault Zones." The area of the subject site is included on the Earthquake Zones of Regional Investigation for the San Jose West Quadrangle. However, the site is not within a Fault-Rupture Hazard Zone. The nearest zoned faults are portions of the San Andreas fault located 6.9 miles west of the subject site. In 1990, the California State Legislature passed the Seismic Hazard Mapping Act to protect public safety from the effects of strong shaking, liquefaction, landslides, or other ground failure, and other hazards caused by earthquakes. The Act requires that the State Geologist delineate various seismic hazards zones on Seismic Hazards Zones Maps. Specifically, the maps identify areas where soil liquefaction and earthquake-induced landslides are most likely to occur. A site-specific geotechnical evaluation is required prior to permitting most urban developments within the mapped zones. The Act also requires sellers of real property within the zones to disclose this fact to potential buyers. The area of the subject site is located outside the bounds of the hazard zone associated with liquefaction potential and is outside of the zones associated with landslide potential, on the Seismic Hazards Zones San Jose West Quadrangle, dated, February 7, 2002. In addition, the site is included on the U.S. Geological Survey map entitled "Liquefaction Susceptibility, Central San Francisco Bay Region, California" (U.S. Geological Survey Open-File Report 2006-1037), dated 2006. The site is located within an area identified as a low susceptibility to liquefaction. #### FIELD AND LABORATORY INVESTIGATIONS Subsurface soil conditions were explored by drilling 4 borings to depths ranging from approximately 20 to 50 feet below existing site grade, using a truck-mounted drill rig. In addition, 2 bulk subgrade samples were obtained from the site for laboratory R-value testing. The approximate boring and bulk sample locations are shown on the site plan. During drilling operations, penetration tests were performed at regular intervals to evaluate the soil consistency and to obtain information regarding the engineering properties of the subsoils. Soil samples were retained for laboratory testing. The soils encountered were continuously examined and visually classified in accordance with the Unified Soil Classification System. A more detailed description of the field investigation is presented in Appendix A. Laboratory tests were performed on selected soil samples to evaluate their physical characteristics and engineering properties. The laboratory testing program was formulated with emphasis on the evaluation of natural moisture, density, gradation, shear strength, consolidation potential, atterberg limits, R-value and moisture-density relationships of the materials encountered. In addition, chemical tests were performed to evaluate the soil cement reactivity. Details of the laboratory test program and results of the laboratory tests are summarized in Appendix A. This information, along with the field observations, was used to prepare the final boring logs in Appendix A. #### SOIL PROFILE AND SUBSURFACE CONDITIONS Based on our findings, the subsurface conditions encountered appear typical of those found in the geologic region of the site. Portions of the site are covered by approximately 3½ to 4 inches of asphaltic concrete underlain by approximately 4 inches of aggregate base. Within areas not covered by pavement, the upper soils consisted of approximately 6 to 12 inches of very loose clayey sand and gravelly clayey sand. These soils are disturbed, have low strength characteristics and are highly compressible when saturated. Beneath the pavement section and loose surface soils, approximately 1 to 3½ feet of fill material was encountered. The fill material predominately consisted of clayey sand, silty clay and gravelly clayey sand. The thickness and extent of fill material was determined based on limited test borings and visual observation. Thicker fill may be present at the site. Limited testing was performed on the fill soils during the time of our field and laboratory investigations. The limited testing indicates that the fill material had varying strength characteristics ranging from loosely placed to compacted. Below the loose surface soils and fill material, approximately 2 to 3½ feet of loose to medium dense clayey sand and gravelly clayey sand or very stiff silty clay were encountered. Field and laboratory tests suggest that these soils are moderately strong and slightly compressible. Penetration resistance ranged from 9 to 37 blows per foot. Dry densities ranged from 101 to 115 pcf. Representative soil samples consolidated approximately 1½ and 2½ percent under a 2 ksf load when saturated. A representative soil sample had an angle of internal friction of 45 degrees. Below 4 to 6 feet, layers of predominately loose to very dense clayey sand, sandy silt, silty sand/sandy silt and silty sand/sand or stiff to hard silty clay and sandy clay were encountered. Field and laboratory tests suggest that these soils are moderately strong and slightly compressible. Penetration resistance ranged from 6 to 54 blows per foot. Dry densities ranged from 86 to 111 pcf. Representative soil samples contained approximately 11 to 95 percent fines. These soils had similar strength characteristics as the upper soils and extended to the termination depth of our borings. For additional information about the soils encountered, please refer to the logs of borings in Appendix A. #### **GROUNDWATER** Test boring locations were checked for the presence of groundwater during and immediately following the drilling operations. Free groundwater was encountered at approximately 24 feet below existing site grade. Historic high groundwater was estimated to be 10 feet based on information obtained from the California Geological Survey (CGS Seismic Hazard Zone Report 058). It should be recognized that water table elevations may fluctuate with time, being dependent upon seasonal precipitation, irrigation, land use and climatic conditions, as well as other factors. Therefore, water level observations at the time of the field investigation may vary from those encountered during the construction phase of the project. The evaluation of such factors is beyond the scope of this report. #### SOIL LIQUEFACTION Soil liquefaction is a state of soil particle suspension, caused by a complete loss of strength when the effective stress drops to zero. Liquefaction normally occurs in soils, such as sands, in which the strength is purely frictional. However, liquefaction has occurred in soils other than clean sands. Liquefaction usually occurs under vibratory conditions, such as those induced by seismic events. To evaluate the liquefaction potential of the site, the following items were evaluated: - 1) Soil type - 2) Groundwater depth - 3) Relative density - 4) Initial confining pressure - 5) Intensity and duration of groundshaking The predominant soils within the project site consist of alternating layers of clayey sands, silty clays, sandy clays, clayey silts, silty sands, sandy silts and sands. These soils were intermixed with varying amounts of gravel. Free groundwater was encountered at depths of 24 feet below existing site grade during our exploratory drilling. Historically, groundwater has been as shallow as 10 feet within the project site vicinity (CGS Open File Report 2000-12). A groundwater depth of 10 feet was used in this analysis. The potential for soil liquefaction during a seismic event was evaluated using the LIQUEFYPRO computer program (version 5.8h) developed by CivilTech Software. For the analysis, a maximum earthquake magnitude of 7.51 was used. A peak horizontal ground surface acceleration of 0.697g was considered conservative and appropriate for the liquefaction analysis. A high groundwater depth of 10 feet was used for our analysis. The computer analysis indicates that soils above a depth of 10 feet are non-liquefiable due to the absence of groundwater. Some of the soils below a depth of 19 feet have a slight to moderate potential for liquefaction under seismic shaking due to predominately medium dense clayey sand, liquefiable nature of some clay soils, and the anticipated moderate seismicity in the region. The analysis indicates that the estimated total seismic induced settlement is less than 2 inches. Differential settlement caused
by a seismic event is estimated to be less than 1½ inches. The anticipated differential settlement is estimated over a horizontal distance of 100 feet. The result of the liquefaction analysis is attached. The results of the screening analysis are as follows: Boring: B4 Project No.: 042-19031 | | Liqu | efaction A | ssessmen | t of Fine | -Grained S | oils | | | |-----------------|----------------------|--------------------------|------------------|-----------|----------------------------|-----------------|---------------------|-------------| | Sample
Depth | Soil Description | Soil
Class.
(USCS) | Passing #200 (%) | Wc/LL | Moisture
Content
(%) | Liquid
Limit | Plasticity
Index | Liquefiable | | 2 | Clayey Sand | SC | 28 | | 13.6 | | | Y | | 5 | Sandy Clay | CL | 88 | 0.300 | 14.7 | 49 | 26 | N N | | 10 | Sandy Clay | CL | 89 | 0.347 | 17.0 | 49 | 26 | N N | | 15 | Sandy Clay | CL | 72 | 0.621 | 21.1 | 34 | 15 | N Y | | 20 | Sandy Silt | ML | 68 | | 22.7 | | | Y | | 25 | Sandy Clay | CL | 95 | 0.644 | 26.4 | 41 | 19 | N Y | | 30 | Sandy Silt | ML | 80 | | 22.9 | | | Y | | 35 | Silty Sand/Sand Silt | SM | 51 | | 16.6 | | | Y | | 40 | Silty Sand/Sand | SP | 11 | | 8.8 | | | Y | | 45 | Silty Sand/Sand | SP | 10 | | 8.9 | | | Y | | 50 | Silty Sand/Sand | SP | 11 | | 10.1 | | | Y | #### **CONCLUSIONS AND RECOMMENDATIONS** Based on the findings of our field and laboratory investigations, along with previous geotechnical experience in the project area, the following is a summary of our evaluations, conclusions, and recommendations. #### **Administrative Summary** In brief, the subject site and soil conditions, with the exception of the existing development, fill material, moderate expansion potential of the on-site clayey soils and estimated settlement associated with the potential for liquefaction, appear to be conducive to the development of the project. The pavement section consisted of approximately 31/4 to 4 inches of asphaltic concrete underlain by 4 inches of aggregate base. Beneath the pavement section, approximately 1 to 3½ feet of fill material was encountered. The fill material predominately consisted of clayey sand, silty clay and gravelly clayey sand. The thickness and extent of fill material was determined based on limited test borings and visual observation. Thicker fill may be present at the site. Limited testing was performed on the fill soils during the time of our field and laboratory investigations. The limited testing indicates that the fill material had varying strength characteristics ranging from loosely placed to compacted. Therefore, it is recommended that fill soils that have not been properly compacted and certified be excavated and stockpiled so that the native soils can be properly prepared. The clayey soils will not be suitable for reuse as non-expansive Engineered Fill. These clayey soils will be suitable for reuse as General Engineered Fill provided they are cleansed of excessive organics and debris and are moistureconditioned to a minimum of 2 percent above optimum moisture content. Prior to fill placement Krazan & Associates, Inc. should inspect the bottom of the excavation to verify no additional removal will be required. The site is occupied by existing commercial developments. Portions of the site are covered with concrete and asphaltic concrete pavements. In addition, several structures are located within the project site vicinity. Associated with these developments are buried structures, such as utilities and irrigation lines. Demolition activities should include proper removal of any buried structures. Any surface or buried structures, including utilities, encountered during construction should be properly removed and the resulting excavations backfilled. It is suspected demolition of the existing structures will disturb the upper soils. Areas disturbed by demolition activities should be excavated to firm native ground. The resulting excavations should be backfilled with Engineered Fill. This compaction effort should stabilize the upper soils and locate any unsuitable or pliant areas not found during our field investigation. The on-site clayey soils have a moderate swell potential. The clayey soils in their present condition present a minor to moderate hazard to construction in terms of possible post-construction movement of slab-on-grade construction. To reduce potential soil movement related to swell potential of the clayey soils, it is recommended that slab-on-grade and exterior flatwork areas be supported by at least 24 inches of non-expansive Engineered Fill. The fill material should be a well-graded silty sand or sandy silt soil. A clean sand or very sandy soil is not acceptable for this purpose. A sandy soil will allow the surface water to drain into the expansive soils below, which may result in soil swelling. The replacement soils and/or upper 24 inches of Imported Fill soils should meet the specifications as described under the subheading Engineered Fill. The replacement soils should extend 5 feet beyond the perimeter of slab-on-grade areas. The non-expansive replacement soils should be compacted to at least 90 percent of relative compaction based on ASTM Test Method D1557. The exposed native soils in the excavation should not be allowed to dry out and should be kept continually moist, prior to backfilling. In addition, it is recommended that slab-on-grade, continuous footings and slabs be nominally reinforced to reduce cracking and vertical off-set. As an alternative to the use of non-expansive soils, the upper 24 inches of soil supporting the slab areas can consist of lime-treated clayey soils. The lime-treated soils should be recompacted to a minimum of 90 percent of maximum density. Preliminary application rate of lime should be 5 percent by dry weight. The lime material should be calcium oxide, commonly known as quick-lime. The clayey soils should be at or near optimum moisture during the mixing operations. Based on the soil liquefaction analysis performed within the site, the estimated total seismic-induced settlement is less than 2 inches. Differential settlement caused by a seismic event is estimated to be on the order of 1½ inches. The anticipated differential settlement is estimated over a horizontal distance of 100 feet. The seismic settlements would develop if liquefaction of the underlying saturated subsoils were to occur during a seismic event. If these potential movements are not tolerable, then mitigation measures are recommended to reduce structural damage due to soil liquefaction. Recommendations for structural slabs and geogrid reinforced soil are provided in the report. After completion of the recommended site preparation and over-excavation, the site should be suitable for shallow footing support. The proposed structure footings may be designed utilizing an allowable bearing pressure of 2,500 psf for dead-plus-live loads. Footings should have a minimum embedment of 18 inches. As an alternative, the proposed structure may be designed utilizing a post-tensioned or structural slabs system. Utilization of post-tensioned or structural slabs designed utilizing the design parameters provided in this report, will eliminate the requirement for 24 inches of non-expansive or lime-treated Engineered Fill below slabs-on-grade. However, the previously recommended densification of the upper native soils and fill material at the site should still be performed. #### **Groundwater Influence on Structures/Construction** During our recent field investigation groundwater was encountered at approximately 24 feet below existing site grade. Historic high groundwater level for the site was determined to be 10 feet. Therefore, dewatering and/or waterproofing may be required should structures or excavations extend below this depth. If groundwater is encountered, our firm should be consulted prior to dewatering the site. Installation of a standpipe piezometer is suggested prior to construction should groundwater levels be a concern. In addition to the groundwater level if earthwork is performed during or soon after periods of precipitation, the subgrade soils may become saturated, "pump," or not respond to densification techniques. Typical remedial measures include: discing and aerating the soil during dry weather; mixing the soil with dryer materials; removing and replacing the soil with an approved fill material; or mixing the soil with an approved lime or cement product. Our firm should be consulted prior to implementing remedial measures to observe the unstable subgrade conditions and provide appropriate recommendations. #### Site Preparation - General General site clearing should include removal of vegetation; existing utilities; structures including foundations; basement walls and floors; existing stockpiled soil; trees and associated root systems; rubble; rubbish; and any loose and/or saturated materials. Site stripping should extend to a minimum depth of 2 to 4 inches, or until all organics in excess of 3 percent by volume are removed. Deeper stripping may be required in localized areas. These materials will not be suitable for reuse as Engineered Fill. However, stripped topsoil may be stockpiled and reused in landscape or non-structural areas. Portions of the site are covered with concrete and asphaltic concrete pavements. In addition, approximately 1 to 3½ feet of fill material was encountered within the site. The fill material predominately consisted of clayey sand, silty clay and gravelly clayey sand. The thickness and extent of fill material was determined based on limited test borings and visual observation. Thicker fill may be present at the site. Limited testing was performed on the fill soils during the time of our field and laboratory investigations. The limited testing indicates that the fill material had varying strength characteristics ranging from loosely placed to compacted. Therefore, it is recommended that fill soils that have
not been properly compacted and certified be excavated and stockpiled so that the native soils can be properly prepared. These clayey soils will not be suitable for reuse as non-expansive Engineered Fill. However, these clayey soils will be suitable for reuse as General Engineered Fill, provided they are cleansed of excessive organics and debris, and are moisture-conditioned to a minimum of 2 percent above optimum moisture content. Prior to fill placement Krazan & Associates, Inc. should inspect the bottom of the excavation to verify no additional removal will be required. Existing structures are located within the site and vicinity. Associated with these developments are buried structures, such as utilities or loosely backfilled excavations, encountered during construction should be properly removed and the resulting excavations backfilled. After demolition activities, it is recommended that these disturbed soils be removed and/or recompacted. Excavations, depressions, or soft and pliant areas extending below planned, finished subgrade levels should be cleaned to firm, undisturbed soil and backfilled with Engineered Fill. In general, any septic tanks, debris pits, cesspools, or similar structures should be entirely removed. Concrete footings should be removed to an equivalent depth of at least 3 feet below proposed footing elevations or as recommended by the Soils Engineer. Any other buried structures should be removed in accordance with the recommendations of the Soils Engineer. The resulting excavations should be backfilled with Engineered Fill. Several trees and shrubs are located along the edges of the site. If not utilized for the proposed development, tree and shrub removal operations should include roots greater than 1 inch in diameter. The resulting excavations should be backfilled with Engineered Fill compacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Following stripping, fill removal, and demolition activities, it is recommended that at a minimum, the upper 12 inches of exposed subgrade soils beneath the building pad, exterior flatwork and pavement areas be excavated, worked until uniform and free from large clods, moisture-conditioned to a minimum of 2 percent above optimum moisture content, and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Limits of recompaction should extend a minimum of 5 feet beyond structural elements and 2 feet beyond flatwork and pavements. Prior to backfilling, the bottom of the excavation should be proof-rolled and observed by Krazan & Associates, Inc. to verify stability. This compaction effort should stabilize the upper soils and locate any unsuitable or pliant areas not found during our field investigation. It is recommended that the upper 24 inches of soil within proposed conventional slab-on-grade and exterior flatwork areas consist of non-expansive Engineered Fill or lime-treated Engineered Fill. The fill placement serves two functions: 1) it provides a uniform amount of soil which will more evenly distribute the soil pressures and 2) it reduces moisture content fluctuation in the clayey material beneath the building area. The non-expansive fill material should be a well-graded silty sand or sandy silt soil. A clean sand or very sandy soil is not acceptable for this purpose. A sandy soil will allow the surface water to drain into the expansive clayey soil below, which may result in soil swelling. Imported Fill should be approved by the Soils Engineer prior to placement. The fill should be placed as specified as Engineered Fill. In addition, it is recommended footings and concrete slabs-on-grade be nominally reinforced. The upper soils, during wet winter months, become very moist due to the absorptive characteristics of the soil. Earthwork operations performed during winter months may encounter very moist unstable soils, which may require removal to grade a stable building foundation. Project site winterization consisting of placement of aggregate base and protecting exposed soils during the construction phase should be performed. A representative of our firm should be present during all site clearing and grading operations to test and observe earthwork construction. This testing and observation is an integral part of our service, as acceptance of earthwork construction is dependent upon compaction and stability of the material. The Soils Engineer may reject any material that does not meet compaction and stability requirements. Further recommendations of this report are predicated upon the assumption that earthwork construction will conform to recommendations set forth in this section and the Engineered Fill section. #### **Supplemental Site Preparation - Geogrid Option** Subsurface soils within the site are prone to liquefaction under high groundshaking acceleration during an earthquake. If the proposed structure will be constructed over a geogrid soil mat, the building area should be excavated to a depth of 5 feet and the resulting excavation should be backfilled with a layered system of Engineered Fill and geogrid reinforcement. The depth of the over-excavation should be measured from existing ground or rough pad grade, whichever is deeper. The first layer of geogrid reinforcement will be placed directly at the bottom of the excavation. The geogrid material should be overlapped a minimum of 3 feet in all directions. The geogrid strips should be "shingled" such that the exposed geogrid edge is opposite the direction of fill placement (as roof shingles to rain runoff). The interlock between the geogrid and Engineered Fill will provide load transfer. No vehicles may traverse the geogrid prior to placement of the Engineered Fill cover. The next layer of geogrid should be placed on top of the compacted Engineered Fill. This and subsequent layers need only be overlapped a minimum of 1 foot on all sides. The geogrid strips of this layer, and all subsequent layers within the footprint, should be placed with lengths perpendicular to those in the layer immediately below. The fill soils excavated from the area beneath the structure may be moisture-conditioned and recompacted between geogrid layers as reinforced fill. The reinforced fill should be conditioned from 1 to 3 percent above optimum moisture and recompacted to a minimum of 90 percent of maximum density based on ASTM D1557 Test Method. A total of 4 geogrid layers, including the layer at the base of the excavation, should be installed at vertical increments of 1 foot. The geogrid layers should extend to a minimum of 5 feet beyond the exterior footing perimeter of the structure. The geogrid reinforcement fabric should consist of Tensar® BX 6100 Geogrid, TriAx-TX7 or equivalent. Any additional unstable soils within building areas should be excavated and backfilled with Engineered Fill as requested by the Soil Engineer. It is recommended that the building site be excavated at once, and soils be stockpiled. The geogrid and excavated soil may then be placed and recompacted as recommended herein. Alternatively, the Contractor may elect to excavate the site in two stages, where excavated soil can be stockpiled over one-half of the site while the other half is mitigated. However, if the Contractor elects the option of two stages over the preferred option of using one stage, a minimum of 5 feet of geogrid from the first half should overlap the second half. Furthermore, the overlapping geogrid should be protected from damages, which may be caused by operating equipment. It is further recommended that flexible utility connections be used for the project. #### Engineered Fill The organic-free, on-site, upper native soils and fill material are predominately clayey sand, gravelly clayey sand, sandy clay and silty clay. These clayey soils will not be suitable for reuse as non-expansive Engineered Fill. The clayey soils will be suitable for reuse for fill placement within the upper 24 inches of slab-on-grade and exterior flatwork areas, provided they are lime-treated. The preliminary application rate of lime should be 5 percent by dry weight. The lime material should be calcium oxide, commonly known as quick-lime. The clayey soils should be above optimum moisture-condition during mixing operations. Additional testing is recommended to determine the appropriate application rate of lime prior to placement. These clayey soils will be suitable for reuse as General Engineered Fill, within pavement areas, structural areas supported by post-tensioned or structural slabs, and below 24 inches from finished pad grade in building areas, provided they are cleansed of excessive organics, debris, and moisture-conditioned to at least 2 percent above optimum moisture. It is recommended that additional testing be performed on the on-site soils and fill material to evaluate the physical and index properties prior to reuse as Engineered Fill. The preferred materials specified for Engineered Fill are suitable for most applications with the exception of exposure to erosion. Project site winterization and protection of exposed soils during the construction phase should be the sole responsibility of the Contractor, since he has complete control of the project site at that time. Imported Fill should consist of a well-graded, slightly cohesive, fine silty sand or sandy silt soil, with relatively impervious characteristics when compacted. This material should be approved by the Soils Engineer prior to use and should typically possess the following characteristics: | Percent Passing No. 200 Sieve | 20 to 50 | | |-----------------------------------|------------|--| | Plasticity Index | 10 maximum | | | UBC Standard 29-2 Expansion Index | 15 maximum | | Fill soils should be placed in lifts approximately 6 inches thick, moisture-conditioned to a minimum of 2 percent above optimum moisture content, and compacted to achieve at least 90 percent of maximum density based on ASTM D1557.
Additional lifts should not be placed if the previous lift did not meet the required dry density or if soil conditions are not stable. #### **Drainage and Landscaping** The ground surface should slope away from building pad and pavement areas toward appropriate drop inlets or other surface drainage devices. In accordance with Section 1804 of the 2019 California Building Code, it is recommended that the ground surface adjacent to foundations be sloped a minimum of 5 percent for a minimum distance of 10 feet away from structures, or to an approved alternative means of drainage conveyance. Swales used for conveyance of drainage and located within 10 feet of foundations should be sloped a minimum of 2 percent. Impervious surfaces, such as pavement and exterior concrete flatwork, within 10 feet of building foundations should be sloped a minimum of 1 percent away from the structure. Drainage gradients should be maintained to carry all surface water to collection facilities and off-site. These grades should be maintained for the life of the project. Slots or weep holes should be placed in drop inlets or other surface drainage devices in pavement areas to allow free drainage of adjoining base course materials. Cutoff walls should be installed at pavement edges adjacent to vehicular traffic areas these walls should extend to a minimum depth of 12 inches below pavement subgrades to limit the amount of seepage water that can infiltrate the pavements. Where cutoff walls are undesirable subgrade drains can be constructed to transport excess water away from planters to drainage interceptors. If cutoff walls can be successfully used at the site, construction of subgrade drains is considered unnecessary. #### **Utility Trench Backfill** Utility trenches should be excavated according to accepted engineering practice following OSHA (Occupational Safety and Health Administration) standards by a Contractor experienced in such work. The responsibility for the safety of open trenches should be borne by the Contractor. Traffic and vibration adjacent to trench walls should be reduced; cyclic wetting and drying of excavation side slopes should be avoided. Depending upon the location and depth of some utility trenches, groundwater flow into open excavations could be experienced; especially during or following periods of precipitation. Utility trench backfill placed in or adjacent to buildings and exterior slabs should be compacted to at least 90 percent of maximum density based on ASTM Test Method D1557. The utility trench backfill placed in pavement areas should be compacted to at least 90 percent of maximum density based on ASTM Test Method D1557. Pipe bedding should be in accordance with pipe manufacturer's recommendations. Sandy and gravelly soil conditions were encountered at the site. These cohesionless soils have a tendency to cave in trench wall excavation. Shoring or sloping back trench sidewalls may be required within these sandy and gravelly soils. The Contractor is responsible for removing all water-sensitive soils from the trench regardless of the backfill location and compaction requirements. The Contractor should use appropriate equipment and methods to avoid damage to the utilities and/or structures during fill placement and compaction. #### Foundations - Conventional After completion of the recommended site preparation and over-excavation, the site should be suitable for shallow footing support. The proposed structures may be supported on a shallow foundation system bearing on undisturbed native soils, Engineered Fill or geogrid reinforced Engineered Fill. Spread and continuous footings can be designed for the following maximum allowable soil bearing pressures: | Load | Allowable Loading | |---|-------------------| | Dead Load Only | 1,875 psf | | Dead-Plus-Live Load | 2,500 psf | | Total Load, Including Wind or Seismic Loads | 3,325 psf | The footings should have a minimum embedment depth of 18 inches below pad subgrade (soil grade) or adjacent exterior grade, whichever is lower. Footings should have a minimum width of 12 inches, regardless of load. The footing excavations should not be allowed to dry out any time prior to pouring concrete. It is recommended that footings be reinforced by at least one No. 4 reinforcing bar in both top and bottom. Resistance to lateral footing displacement can be computed using an allowable friction factor of 0.3 acting between the base of foundations and the supporting subgrade. Lateral resistance for footings can alternatively be developed using an allowable equivalent fluid passive pressure of 250 pounds per cubic foot acting against the appropriate vertical footing faces. The frictional and passive resistance of the soil may be combined without reduction in determining the total lateral resistance. A ½ increase in the value above may be used for short duration, wind, or seismic loads. The total static movement is not expected to exceed ¾ inch. Differential static movement should be less than ½ inch. Most of the static settlement is expected to occur during construction, as the loads are applied. However, additional post-construction movement may occur if the foundation soils are flooded or saturated. The total and differential seismic-induced settlement is estimated to be less than 2 inches and 1⅓ inches, respectively. The anticipated differential settlement is estimated over a horizontal distance of 100 feet. The seismic settlements would develop if liquefaction of the underlying saturated sandy soils were to occur during a seismic event. If the structure is supported on geogrid reinforced Engineered Fill, the differential settlement is estimated to be less than ½ inch. #### Foundations -Post-Tension or Structural Slab The building may be supported on a post-tension slab or structural slab/foundation system. Utilization of a post-tensioned or structural slab designed utilizing the design parameters provided in this report, will eliminate the requirement for 24 inches of non-expansive or lime-treated Engineered Fill below slab-on-grade. However, the previously recommended densification of the upper native soils and fill material at the site should still be performed. Recommendations for a structural slab system are also provided herein. After completion of the recommended site preparation and over-excavations, the post-tension or structural slab foundation can be designed utilizing allowable bearing pressure of 1,500 pounds per square foot for dead-plus-live loads. This value may be increased ½ for short duration loads such as wind or seismic. The slab may be designed using a modulus of subgrade reaction (k) of 75 pounds per square inch per inch (pci). The thickened edges of the slab should have a minimum depth of 18 inches below pad grade (soil grade) or exterior grade, whichever is lower. Ultimate design of the post-tensioned slab and reinforcement should be performed by the project Structural Engineer. The thickness of the slab-on-grade and locations and sizing of stiffening beams (if used) should be determined by the structural consultant during a subsequent structural analysis, which incorporates our design recommendations, including a deepened perimeter or edge section. Post-tensioned slab-on-grade foundations should be structurally designed to resist or distribute the stresses that are anticipated to develop as the result of supporting soil movement. The following preliminary parameters are recommended for use in the structural design of the post-tensioned slab-on-grade foundations in accordance with *Design of Post-Tensioned Slabs-on-Ground*, 3rd Edition, by the Post-Tensioning Institute. In addition, the computer software program Volflo 1.5, by Geostructural Tool Kit, Inc. was also utilized in the analyses. The recommended edge moisture variation (e_m) and differential swell (y_m) values for use in preliminary design of post-tensioned slabs are as follows: Edge Moisture Variation Distance: Estimated Differential Swell: Center lift, $e_m = 9$ feet Center lift, $y_m = 1$ inch Edge lift, $e_m = 4.8$ feet Edge lift, $y_m = 1\frac{3}{4}$ inch To aid in reducing the potential for differential soil movement associated with shrinkage and swelling of the fine-grained soils due to changes in moisture contents with changing seasons and landscaping, we recommend that the exterior edge of the slab be deepened to provide a moisture cut-off around the perimeter of the building. The deepened edge should extend at least 18 inches below the top of the pad grade, where the top of pad grade is defined as the grade beneath the bottom of the capillary moisture break gravel course or the adjacent exterior subgrade, whichever is deeper. Import and placement of the amount of fill required for the building pad should correspond to the import fill specifications. The post-tensioned slab-on-grade foundation system will not prevent the structure from undergoing vertical displacement as a result of shrinkage and swelling of the underlying expansive soils. However, the use of a post-tensioned slab-on-grade foundation system, as opposed to a conventionally reinforced non-structural slab-on-grade, will reduce the amount of objectionable slab cracks and vertical off-set of adjacent concrete panels. The use of post-tension reinforcement does not necessarily eliminate the development of bending stresses in the slab due to differential movement of the supporting soils. Cracking in brittle finishes such as dry wall and stucco should be anticipated. This type of slab essentially distributes the differential movement of the supported structure over a longer span through controlled bending of the slab. Resistance to lateral displacement can be computed using an allowable friction factor of 0.3 acting between the base of foundations and the supporting subgrade. Lateral resistance for footings can alternatively be developed using an allowable equivalent fluid passive
pressure of 250 pounds per cubic foot acting against the appropriate vertical footing faces. The frictional and passive resistance of the soil may be combined without reduction in determining the total lateral resistance. A 1/3 increase in the above value may be used for short duration, wind, or seismic loads. The structural or post-tensioned slab foundations should be designed to withstand a combined total static and seismic settlement of $2\frac{1}{2}$ inches, and a differential settlement of up to $1\frac{1}{2}$ inches. Most of the static settlement is expected to occur during construction as the loads are applied. However, additional post-construction settlement may occur if the foundation soils are flooded or saturated. The anticipated differential settlement is estimated over the width of the building. The seismic settlements would develop only if liquefaction of the underlying saturated sandy soils were to occur during a seismic event. #### Floor Slabs and Exterior Flatwork To reduce post-construction soil movement beneath floor slabs and exterior flatwork, it is recommended that mitigation measures be performed. For conventional slab-on-grade, it is recommended that the upper 24 inches of soil consist of non-expansive or lime-treated Engineered Fill. In areas that will utilize moisture-sensitive floor coverings, concrete slab-on-grade floors should be underlain by a water vapor retarder. The water vapor retarder should be installed in accordance with accepted engineering practice. The water vapor retarder should consist of a vapor retarder sheeting underlain by a minimum of 3 inches of compacted, clean, gravel of ¾-inch maximum size. To aid in concrete curing an optional 2 to 4 inches of granular fill may be placed on top of the vapor retarder. The granular fill should consist of damp clean sand with at least 10 to 30 percent of the sand passing the 100 sieve. The sand should be free of clay, silt, or organic material. Rock dust which is manufactured sand from rock crushing operations is typically suitable for the granular fill. This granular fill material should be compacted. It is recommended that the concrete slabs be reinforced at a minimum with No. 3 reinforcing bars, placed at 18 inches on center in each direction within the slabs middle third, to reduce crack separation and possible vertical offset at the cracks. Thicker floor slabs with increased concrete strength and reinforcement should be designed wherever heavy concentrated loads, heavy equipment, or machinery is anticipated. The exterior floors should be poured separately in order to act independently of the walls and foundation system. Exterior finish grades should be sloped a minimum of 2 percent away from all interior slab areas to preclude ponding of water adjacent to the structures. All fills required to bring the building pads to grade should be Engineered Fills. Moisture within the structure may be derived from water vapors, which were transformed from the moisture within the soils. This moisture vapor can travel through the vapor membrane and penetrate the slab-on-grade. This moisture vapor penetration can affect floor coverings and produce mold and mildew in the structure. To reduce moisture vapor intrusion, it is recommended that a vapor retarder be installed. It is recommended that the utility trenches within the structure be compacted, as specified in our report, to reduce the transmission of moisture through the utility trench backfill. Special attention to the immediate drainage and irrigation around the building is recommended. Positive drainage should be established away from the structure and should be maintained throughout the life of the structure. Ponding of water should not be allowed adjacent to the structure. Over-irrigation within landscaped areas adjacent to the structure should not be performed. In addition, ventilation of the structure (i.e. ventilation fans) is recommended to reduce the accumulation of interior moisture. #### **Lateral Earth Pressures and Retaining Walls** Walls retaining horizontal backfill and capable of deflecting a minimum of 0.1 percent of its height at the top may be designed using an equivalent fluid active pressure of 50 pounds per square foot per foot of depth. Walls that are incapable of this deflection or walls that are fully constrained against deflection may be designed for an equivalent fluid at-rest pressure of 70 pounds per square foot per foot per depth. Expansive soils should not be used for backfill against walls. The wedge of non-expansive backfill material should extend from the bottom of each retaining wall outward and upward at a slope of 2:1 (horizontal to vertical) or flatter. The stated lateral earth pressures do not include the effects of hydrostatic water pressures generated by infiltrating surface water that may accumulate behind the retaining walls; or loads imposed by construction equipment, foundations, or roadways. During grading and backfilling operations adjacent to any walls, heavy equipment should not be allowed to operate within a lateral distance of 5 feet from the wall, or within a lateral distance equal to the wall height, whichever is greater, to avoid developing excessive lateral pressures. Within this zone, only hand operated equipment ("whackers," vibratory plates, or pneumatic compactors) should be used to compact the backfill soils. Retaining and/or below grade walls should be drained with either perforated pipe encased in free-draining gravel or a prefabricated drainage system. The gravel zone should have a minimum width of 12 inches wide and should extend upward to within 12 inches of the top of the wall. The upper 12 inches of backfill should consist of native soils, concrete, asphaltic concrete or other suitable backfill to reduce surface drainage into the wall drain system. The aggregate should conform to Class 2 permeable materials graded in accordance with the CalTrans Standard Specifications (2018). Prefabricated drainage systems, such as Miradrain®, Enkadrain®, or an equivalent substitute, are acceptable alternatives in lieu of gravel provided they are installed in accordance with the manufacturer's recommendations. If a prefabricated drainage system is proposed, our firm should review the system for final acceptance prior to installation. Drainage pipes should be placed with perforations down and should discharge in a non-erosive manner away from foundations and other improvements. The pipes should be placed no higher than 6 inches above the heel of the wall in the center line of the drainage blanket and should have a minimum diameter of 4 inches. Collector pipes may be either slotted or perforated. Slots should be no wider than ½ inch in diameter, while perforations should be no more than ¼ inch in diameter. If retaining walls are less than 6 feet in height, the perforated pipe may be omitted in lieu of weep holes on 4 feet maximum spacing. The weep holes should consist of 4-inch diameter holes (concrete walls) or unmortared head joints (masonry walls) and not be higher than 18 inches above the lowest adjacent grade. Two 8-inch square overlapping patches of geotextile fabric (conforming to the CalTrans Standard Specifications for "edge drains") should be affixed to the rear wall opening of each weep hole to retard soil piping. #### R-Value Test Results and Pavement Design Two subgrade soil samples were obtained from the project site for R-value testing at the locations shown on the attached site plan. The samples were tested in accordance with the State of California Materials Manual Test Designation 301. Results of the tests are as follows: | Sample | Depth | Description | R-Value at Equilibrium | |--------|--------|-----------------|------------------------| | 1 | 12-24" | Sandy Clay (CL) | Less than 5 | | 2 | 12-24" | Sandy Clay (CL) | Less than 5 | The test results are low and indicate poor subgrade support characteristics under dynamic traffic loads. The following table shows the recommended pavement sections for various traffic indices. | Traffic
Index | Asphaltic
Concrete | Class II
Aggregate Base* | Class III
Aggregate Subbase | Compacted
Subgrade** | |------------------|-----------------------|-----------------------------|--------------------------------|-------------------------| | 4.0 | 2.0" | 8.5" | | 12.0" | | 4.0 | 2.0" | 4.5" | 4.5" | 12.0" | | 4.5 | 3.0" | 9.0" | | 12.0" | | 4.5 | 3.0" | 4.0" | 5.5" | 12.0" | | 5.0 | 3.0" | 11.0" | | 12.0" | | 5.0 | 3.0" | 5.0" | 6.5" | 12.0" | | 5.5 | 3.0" | 11.5" | | 12.0" | | 5.5 | 3.0" | 5.0" | 7.0" | 12.0" | | 6.0 | 3.0" | 13.5" | | 12.0" | | 6.0 | 3.0" | 6.5" | 8.0" | 12.0" | | 6.5 | 3.5" | 14.0" | | 12.0" | | 6.5 | 3.5" | 6.0" | 9.0" | 12.0" | | 7.0 | 4.0" | 15.5" | | 12.0" | | 7.0 | 4.0" | 6.5" | 10.0" | 12.0" | | 7.5 | 4.0" | 17.0" | | 12.0" | | 7.5 | 4.0" | 7.5" | 10.5" | 12.0" | ^{* 95%} compaction based on ASTM Test Method D1557 or CAL 216 If traffic indices are not available, an estimated (typical value) index of 4.5 may be used for light automobile traffic, and an index of 7.0 may be used for light truck traffic. The following recommendations are for light-duty and heavy-duty Portland Cement Concrete Pavement Sections based on the design procedures developed by the Portland Cement Association. ^{** 90%} compaction based on ASTM Test Method D1557 or CAL 216 # PORTLAND CEMENT PAVEMENT LIGHT DUTY | Traffic Index | Portland Cement Concrete*** | Class II Aggregate Base* | Compacted Subgrade** | |---------------|-----------------------------|--------------------------|----------------------| | 4.5 | 6.0" | 5.0" | 12.0" | #### **HEAVY DUTY** | Traffic Index | Portland Cement Concrete*** | Class II Aggregate Base* | Compacted Subgrade** | |---------------|------------------------------------|--------------------------|----------------------| | 7.0 | 7.0" | 6.0" | 12.0" | * 95% compaction based on ASTM Test Method D1557 or CAL 216 ** 90% compaction based on
ASTM Test Method D1557 or CAL 216 ***Minimum Compressive Strength of 3000 psi As indicated previously, fill material is located throughout the site. It is recommended that any uncertified fill material encountered within pavement areas be removed and/or recompacted. The fill material should be moisture-conditioned to near optimum moisture and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. As an alternative, the Owner may elect not to recompact the existing fill within paved areas. However, the Owner should be aware that the paved areas may settle which may require annual maintenance. At a minimum, it is recommended that the upper 12 inches of subgrade soil be moisture-conditioned as necessary and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. #### Seismic Parameters – 2019 California Building Code The Site Class per Section 1613 of the 2019 California Building Code (2019 CBC) and ASCE 7-16, Chapter 20 is based upon the site soil conditions. It is our opinion that a Site Class D is most consistent with the subject site soil conditions. For seismic design of the structures based on the seismic provisions of the 2019 CBC, we recommend the following parameters: | Seismic Item | Value | CBC Reference | |---------------------------------|-------|--------------------| | Site Class | D | Section 1613.2.2 | | Site Coefficient Fa | 1.000 | Table 1613.2.3 (1) | | Ss | 1.541 | Section 1613.2.1 | | S_{MS} | 1.541 | Section 1613.2.3 | | S_{DS} | 1.027 | Section 1613.2.4 | | Site Coefficient F _v | 2.500 | Table 1613.2.3 (2) | | S_1 | 0.600 | Section 1613.2.1 | | S _{M1} | 1.500 | Section 1613.2.3 | | S_{D1} | 1.000 | Section 1613.2.4 | | T_{S} | 0.974 | Section 1613.2 | #### **Soil Cement Reactivity** Excessive sulfate in either the soil or native water may result in an adverse reaction between the cement in concrete (or stucco) and the soil. HUD/FHA and CBC have developed criteria for evaluation of sulfate levels and how they relate to cement reactivity with soil and/or water. Soil samples were obtained from the site and tested in accordance with State of California Materials Manual Test Designation 417. The sulfate concentrations detected in these soil samples were greater than 200 ppm and are above the maximum allowable values established by HUD/FHA and CBC. Therefore, it is recommended that a Type II cement be used within the concrete to compensate for sulfate reactivity with the cement. #### **Compacted Material Acceptance** Compaction specifications are not the only criteria for acceptance of the site grading or other such activities. However, the compaction test is the most universally recognized test method for assessing the performance of the Grading Contractor. The numerical test results from the compaction test cannot be used to predict the engineering performance of the compacted material. Therefore, the acceptance of compacted materials will also be dependent on the stability of that material. The Soils Engineer has the option of rejecting any compacted material regardless of the degree of compaction if that material is considered to be unstable or if future instability is suspected. A specific example of rejection of fill material passing the required percent compaction is a fill which has been compacted with an in situ moisture content significantly less than optimum moisture. This type of dry fill (brittle fill) is susceptible to future settlement if it becomes saturated or flooded. #### **Testing and Inspection** A representative of Krazan & Associates, Inc. should be present at the site during the earthwork activities to confirm that actual subsurface conditions are consistent with the exploratory fieldwork. This activity is an integral part of our service, as acceptance of earthwork construction is dependent upon compaction testing and stability of the material. This representative can also verify that the intent of these recommendations is incorporated into the project design and construction. Krazan & Associates, Inc. will not be responsible for grades or staking, since this is the responsibility of the Prime Contractor. #### **LIMITATIONS** Soils Engineering is one of the newest divisions of Civil Engineering. This branch of Civil Engineering is constantly improving as new technologies and understanding of earth sciences advance. Although your site was analyzed using the most appropriate and most current techniques and methods, undoubtedly there will be substantial future improvements in this branch of engineering. In addition to advancements in the field of Soils Engineering, physical changes in the site, either due to excavation or fill placement, new agency regulations, or possible changes in the proposed structure after the soils report is completed may require the soils report to be professionally reviewed. In light of this, the Owner should be aware that there is a practical limit to the usefulness of this report without critical review. Although the time limit for this review is strictly arbitrary, it is suggested that 2 years be considered a reasonable time for the usefulness of this report. Foundation and earthwork construction is characterized by the presence of a calculated risk that soil and groundwater conditions have been fully revealed by the original foundation investigation. This risk is derived from the practical necessity of basing interpretations and design conclusions on limited sampling of the earth. The recommendations made in this report are based on the assumption that soil conditions do not vary significantly from those disclosed during our field investigation. If any variations or undesirable conditions are encountered during construction, the Soils Engineer should be notified so that supplemental recommendations may be made. The conclusions of this report are based on the information provided regarding the proposed construction. If the proposed construction is relocated or redesigned, the conclusions in this report may not be valid. The Soils Engineer should be notified of any changes so the recommendations may be reviewed and re-evaluated. This report is a Geotechnical Engineering Investigation with the purpose of evaluating the soil conditions in terms of foundation design. The scope of our services did not include any Environmental Site Assessment for the presence or absence of hazardous and/or toxic materials in the soil, groundwater, or atmosphere; or the presence of wetlands. Any statements, or absence of statements, in this report or on any boring log regarding odors, unusual or suspicious items, or conditions observed, are strictly for descriptive purposes and are not intended to convey engineering judgment regarding potential hazardous and/or toxic assessment. The geotechnical engineering information presented herein is based upon professional interpretation utilizing standard engineering practices and a degree of conservatism deemed proper for this project. It is not warranted that such information and interpretation cannot be superseded by future geotechnical engineering developments. We emphasize that this report is valid for the project outlined above and should not be used for any other sites. If you have any questions, or if we may be of further assistance, please do not hesitate to contact our office at (925) 307-1160. Respectfully submitted, KRAZAN & ASSOCIATES, INC. Steve Nelson Project Engineer David R. Jarosz, II Managing Engineer RGE No. 2698/RCE No. 60185 SN/DRJ:ht | SITE MAP | NTS | Feb. 2020 | |---|-----------------------|--------------------| | San Jose Senior Living | Drawn by:
HT | Approved by:
DJ | | 3315 Almaden Expressway
San Jose, California | Project No. 042-19031 | Figure No. | #### **APPENDIX A** #### FIELD AND LABORATORY INVESTIGATIONS #### **Field Investigation** The field investigation consisted of a surface reconnaissance and a subsurface exploratory program. Six 4½-inch to 6½-inch diameter exploratory borings were advanced. The boring locations are shown on the attached site plan. The soils encountered were logged in the field during the exploration and with supplementary laboratory test data are described in accordance with the Unified Soil Classification System. Modified standard penetration tests and standard penetration tests were performed at selected depths. These tests represent the resistance to driving a $2\frac{1}{2}$ -inch and $1\frac{1}{2}$ -inch diameter split barrel sampler, respectively. The driving energy was provided by a hammer weighing 140 pounds falling 30 inches. Relatively undisturbed soil samples were obtained while performing this test. Bag samples of the disturbed soil were obtained from the auger cuttings. The modified standard penetration tests are identified in the sample type on the boring logs with a full shaded in block. The standard penetration tests are identified in the sample type on the boring logs with half of the block shaded. All samples were returned to our Clovis laboratory for evaluation. #### **Laboratory Investigation** The laboratory investigation was programmed to determine the physical and mechanical properties of the foundation soil underlying the site. Test results were used as criteria for determining the engineering suitability of the surface and subsurface materials encountered. In-situ moisture content, dry density, consolidation, direct shear, and sieve analysis tests were completed for the undisturbed samples representative of the subsurface material. Atterberg limits and R-value tests were completed for select bag samples obtained from the auger cuttings. These tests, supplemented by visual observation, comprised the basis for our evaluation of the site material. The logs of the exploratory borings and laboratory determinations are presented in this Appendix. ### **UNIFIED SOIL CLASSIFICATION SYSTEM** | UNIFIED SO | IL CLASS |
IFICATION AND SYMBOL CHART | | |--|---------------|--|--| | COARSE-GRAINED SOILS | | | | | (more than 50% of material is larger than No. 200 sieve size.) | | | | | | Clean | Gravels (Less than 5% fines) | | | GRAVELS More than 50% of coarse | GW | Well-graded gravels, gravel-sand mixtures, little or no fines | | | | GP | Poorly-graded gravels, gravel-sand mixtures, little or no fines | | | fraction larger
than No. 4 | Gravel | s with fines (More than 12% fines) | | | sieve size | GM | Silty gravels, gravel-sand-silt mixtures | | | | GC | Clayey gravels, gravel-sand-clay mixtures | | | | Clean | Sands (Less than 5% fines) | | | SANDS | SW | Well-graded sands, gravelly sands, little or no fines | | | SANDS
50% or more
of coarse | SP | Poorly graded sands, gravelly sands, little or no fines | | | fraction smaller | Sands | with fines (More than 12% fines) | | | than No. 4
sleve size | SM | Silty sands, sand-silt mixtures | | | | sc | Clayey sands, sand-clay mixtures | | | | FINE- | GRAINED SOILS | | | (50% or m | ore of mater | ial is smaller than No. 200 sieve size.) | | | SILTS
AND | ML | Inorganic silts and very fine sands, rock flour, silty of clayey fine sands or clayey silts with slight plasticity | | | CLAYS Liquid limit less than | CL | Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays | | | 50% | OL | Organic silts and organic silty clays of low plasticity | | | SILTS | МН | Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts | | | CLAYS Liquid limit 50% or greater | СН | Inorganic clays of high plasticity, fat clays | | | | ОН | Organic clays of medium to high plasticity, organic silts | | | HIGHLY
ORGANIC
SOILS | <u>₹</u> № PT | Peat and other highly organic soils | | | CONSISTENCY CLASSIFICATION | | | |----------------------------|----------------|--| | Description | Blows per Foot | | | Granule | ar Soils | | | Very Loose | < 5 | | | Loose | 5 – 15 | | | Medium Dense | 16 – 40 | | | Dense | 41 – 65 | | | Very Dense | > 65 | | | Cohesiv | ve Soils | | | Very Soft | < 3 | | | Soft | 3 – 5 | | | Firm | 6 - 10 | | | Stiff | 11 - 20 | | | Very Stiff | 21 - 40 | | | Hard | > 40 | | | GRAIN SIZE CLASSIFICATION | | | | | | | |---------------------------|---------------------|------------------------------|--|--|--|--| | Grain Type | Standard Sieve Size | Grain Size in
Millimeters | | | | | | Boulders | Above 12 inches | Above 305 | | | | | | Cobbles | 12 to 13 inches | 305 to 76.2 | | | | | | Gravel | 3 inches to No. 4 | 76.2 to 4.76 | | | | | | Coarse-grained | 3 to ¾ inches | 76.2 to 19.1 | | | | | | Fine-grained | 3/4 inches to No. 4 | 19.1 to 4.76 | | | | | | Sand | No. 4 to No. 200 | 4.76 to 0.074 | | | | | | Coarse-grained | No. 4 to No. 10 | 4.76 to 2.00 | | | | | | Medium-grained | No. 10 to No. 40 | 2.00 to 0.042 | | | | | | Fine-grained | No. 40 to No. 200 | 0.042 to 0.074 | | | | | | Silt and Clay | Below No. 200 | Below 0.074 | | | | | Project: San Jose Senior Living Project No: 042-19031 Client: SRM Development, LLC Figure No.: A-1 Location: 3315 Almaden Expressway, San Jose, California Logged By: R. Alexander Depth to Water> Initial: None At Completion: None | | SUBSURFACE PROFILE SAMPLE | | | | | | | | |------------|---------------------------|--|-------------------|--------------|------|-----------|------------------------------|-------------------| | Depth (ft) | Symbol | Description | Dry Density (pcf) | Moisture (%) | Туре | Blows/ft. | Penetration Test
blows/ft | Water Content (%) | | 0 | | Ground Surface ASPHALTIC CONCRETE = 3% inches | | | | | | | | | | AGGREGATE BASE = 4 inches GRAVELLY CLAYEY SAND (SC) | | | | | | | | 2- | | FILL, fine- to medium-grained; gray, damp, drills easily | 115.0 | 12.2 | | 25 | † | | | 4- | | SILTY CLAY (CL) Very stiff; brown, damp, drills easily | | | | | | | | 6- | | GRAVELLY SILTY SAND (SM) Medium dense, fine- to coarse-grained; brown, damp, drills firmly | 113.9 | 5.9 | | 37 | | • | | 8- | | SANDY CLAY (CL) Firm, fine-grained; brown, damp, drills firmly | | | | | | | | 12- | | CLAYEY SILT (ML) Loose, fine-grained; brown, moist, drills easily | 107.8 | 8.1 | | 6 | | • | | 14- | | SANDY CLAY (CL) Stiff, fine-grained with trace GRAVEL; grayish-brown, damp, drills easily | | | | | | | | 16- | | | 103.7 | 20.5 | | 17 | 7 | | | 18- | | | | | | | | | | 10 | - | | | | | | | | | 20- | | | | | | | | | Drill Method: Solid Flight Drill Rig: CME 45B Krazan and Associates Hole Size: 4½ Inches Driller: Brent Snyder Elevation: 20 Feet Sheet: 1 of 1 **Drill Date: 12-4-19** Project: San Jose Senior Living Client: SRM Development, LLC Figure No.: A-2 Location: 3315 Almaden Expressway, San Jose, California Logged By: R. Alexander **Project No:** 042-19031 Depth to Water> Initial: None At Completion: None | | SUBSURFACE PROFILE SAMPLE | | | | | | | | |------------|---------------------------|--|-------------------|--------------|------|-----------|--|-------------------| | Depth (ft) | Symbol | Description | Dry Density (pcf) | Moisture (%) | Туре | Blows/ft. | Penetration Test
blows/ft
20 40 60 | Water Content (%) | | 0 | | Ground Surface | | | | | | | | - | | ASPHALTIC CONCRETE = 3% inches
AGGREGATE BASE = 4 inches | | | | | | | | 2- | | GRAVELLY CLAYEY SAND (SC) FILL, fine- to medium-grained; gray, | | | | | | | | 1 | | damp, drills firmly | 115.0 | 12.2 | | 28 | † | | | 4- | | CLAYEY SAND (SC) Medium dense, fine- to coarse-grained with GRAVEL; brown, damp, drills easily | | | | | | | | | | | 113.9 | 5.9 | | 35 | | | | 8- | | | | | | | | | | 12- | | SANDY CLAY (CL) Firm, fine- to medium-grained; brown, damp, drills easily | 107.8 | 8.1 | | 8 | | | | 40 | | Very stiff below 15 feet | 103.7 | 20.5 | | 21 | | • | | 18- | | | | | | | | | Drill Method: Solid Flight Drill Rig: CME 45B Driller: Brent Snyder **Krazan and Associates** **Drill Date: 12-4-19** Hole Size: 41/2 Inches Elevation: 20 Feet Sheet: 1 of 1 Project: San Jose Senior Living Project No: 042-19031 Client: SRM Development, LLC Figure No.: A-3 Location: 3315 Almaden Expressway, San Jose, California Logged By: R. Alexander Depth to Water> Initial: None At Completion: None Drill Method: Solid Flight **Krazan and Associates** **Drill Date: 12-4-19** Drill Rig: CME 45B Hole Size: 41/2 Inches **Driller:** Brent Snyder Elevation: 20 Feet Sheet: 1 of 1 Project: San Jose Senior Living Client: SRM Development, LLC Location: 3315 Almaden Expressway, San Jose, California Depth to Water> Initial: 24 Feet **Project No:** 042-19031 Figure No.: A-4 Logged By: R. Alexander At Completion: 24 Feet | | | SUBSURFACE PROFILE | | SAM | IPLE | | | | |------------|--------|---|-------------------|--------------|------|-----------|--|-------------------| | Depth (ft) | Symbol | Description | Dry Density (pcf) | Moisture (%) | Туре | Blows/ft. | Penetration Test
blows/ft
20 40 60 | Water Content (%) | | 0 | | Ground Surface | | | | | | | | | | ASPHALTIC CONCRETE = 4 inches
AGGREGATE BASE = 4 inches | | | | | | | | 2 | | GRAVELLY CLAYEY SAND (SC) FILL, fine- to medium-grained; gray, damp, drills easily | 111.7 | 13.6 | | 32 | A . | | | 4- | | CLAYEY SAND (SC) Medium dense, fine- to medium-grained; brown, damp, drills easily | | | | | | | | 6- | | SANDY CLAY (CL) Very stiff, fine- to medium-grained; light brown/brown, damp, drills easily | 86.2 | 14.7 | | 17 | 4 | • | | 8- | | | | | | | | | | 10- | | Hard below 10 feet | 111.4 | 17.0 | | 40 | | • | | 14- | | Very stiff below 14 feet | | | | | | | | 16- | , | | 104.4 | 21.1 | | 24 | | | | 18 - | - | SANDY SILT (ML) Medium dense, fine- to medium-grained; brown, moist, drills firmly | | | | | | | Drill Method: Hollow Stem Drill Rig: CME 45B **Driller:** Brent Snyder **Krazan and Associates** **Drill Date: 12-4-19** Hole Size: 61/2 Inches Elevation: 51 Feet Sheet: 1 of 3 Project: San Jose Senior Living Client: SRM Development, LLC Location: 3315 Almaden Expressway, San Jose, California Depth to Water> Initial: 24 Feet Project No: 042-19031 Figure No.: A-4 Logged By: R. Alexander At Completion: 24 Feet Drill Method: Hollow Stem Drill Rig: CME 45B **Driller:** Brent Snyder **Krazan and Associates** **Drill Date**: 12-4-19 Hole Size: 61/2 Inches Elevation: 51 Feet Sheet: 2 of 3 Initial: 24 Feet Project: San Jose Senior Living Client: SRM Development, LLC Location: 3315 Almaden Expressway, San Jose, California Depth to Water> **Project No:** 042-19031 Figure No.: A-4 Logged By: R. Alexander At Completion: 24 Feet Drill Method: Hollow Stem Drill Rig: CME 45B **Driller:** Brent Snyder **Krazan and Associates** **Drill Date: 12-4-19** Hole Size: 61/2 Inches Elevation: 51 Feet Sheet: 3 of 3 # **Consolidation Test** | Project No | Boring No. & Depth | Date | Soil Classification | |------------|--------------------|------------|---------------------| | 042-19031 | B2 @ 2-3' | 12/26/2019 | SC w/ grvl | # **Consolidation Test** | Project No | Boring No. & Depth | Date | Soil Classification | |------------|--------------------|------------|---------------------| | 042-19031 | B3 @ 5-6' | 12/26/2019 | SC w/ grvl | # Shear Strength Diagram (Direct Shear) ASTM D - 3080 / AASHTO T - 236 | Project Number | Boring No. & Depth | Soil Type | Date | |----------------|--------------------|------------|------------| | 042-19031 | B3 @ 2-3' | SC w/ grvl | 12/26/2019 | 042-19031 SC w/ grvl B2 @ 2-3' Project Number Soil Classification Sample Number ##
ASTM D4318/AASHTO T89 T90/CT 204 Project: San Jose Senior Living Project Number: 042-19031 Date Sampled: 12/4/2019 Date Tested: 12/26/2019 Tested By: J Mitchell Sampled By: RA Verified By: J Gruszczynski Sample Number: Sample Location: B4 @ 10-11' Sample Description: CL | | Plastic Limit | | | Liquid Limit | | | |-------------------------------|---------------|-------|---|--------------|---|---| | Trial Number | 1 | 2 | 3 | 1 | 2 | 3 | | Weight of Wet Soil & Tare (g) | 21.23 | 21.99 | | 44.25 | | | | Weight of Dry Soil & Tare (g) | 19.84 | 20.35 | | 35.34 | | | | Weight of Tare (g) | 13.57 | 13.65 | | 17.22 | | | | Weight of water (g) | 1.39 | 1.65 | | 8.91 | | | | Weight of Dry Soil (g) | 6.27 | 6.70 | | 18.12 | | | | Water Content (% of dry wt.) | 22.1% | 24.6% | | 49.2% | | | | Number of Blows | | | | 25 | | | Plastic Limit: 23 Liquid Limit: 49 Plasticity Index: 26 Unified Soil Classification: CL Requirement: Approx. % of Material Retained on # 40 Sieve: Departures from Outlined Procedure: ## ASTM D4318/AASHTO T89 T90/CT 204 Project: San Jose Senior Living Project Number: 042-19031 Date Sampled: 12/4/2019 Sampled By: RA Tested By: J Mitchell Verified By: J Gruszczynski Sample Location: B4 @ 15-16' Sample Description: CL | | Plastic Limit | | | Liquid Limit | | | |-------------------------------|---------------|-------|---|--------------|---|---| | Trial Number | 1 | 2 | 3 | 1 | 2 | 3 | | Weight of Wet Soil & Tare (g) | 29.60 | 29.77 | | 43.64 | | | | Weight of Dry Soil & Tare (g) | 27.09 | 27.17 | | 36.91 | | | | Weight of Tare (g) | 13.68 | 13.63 | | 17.01 | | | | Weight of water (g) | 2.51 | 2.60 | | 6.73 | | | | Weight of Dry Soil (g) | 13.41 | 13.55 | | 19.90 | | | | Water Content (% of dry wt.) | 18.7% | 19.2% | | 33.8% | | | | Number of Blows | | | | 25 | | | Plastic Limit: 19 Liquid Limit: 34 Plasticity Index: 15 Unified Soil Classification: CL Requirement: Approx. % of Material Retained on # 40 Sieve: Departures from Outlined Procedure: ### ASTM D4318/AASHTO T89 T90/CT 204 Project: San Jose Senior Living Project Number: 042-19031 Date Sampled: 12/4/2019 Sampled By: RA Date Tested: 12/26/2019 Tested By: J Mitchell Verified By: J Gruszczynski Sample Number: Sample Location: B4 @ 20-21' Sample Description: ML | | Plastic Limit | | | Liquid Limit | | | |-------------------------------|---------------|---|---|--------------|---|---| | Trial Number | 1 | 2 | 3 | 1 | 2 | 3 | | Weight of Wet Soil & Tare (g) | | | | | | | | Weight of Dry Soil & Tare (g) | | | | | | | | Weight of Tare (g) | | | | | | | | Weight of water (g) | | | | | | | | Weight of Dry Soil (g) | | | | | | | | Water Content (% of dry wt.) | | | | | | | | Number of Blows | | | | | | | Plastic Limit: N/D Liquid Limit: N/D Plasticity Index: NON-PLASTIC Unified Soil Classification: NON-PLASTIC Requirement: Approx. % of Material Retained on # 40 Sieve: Departures from Outlined Procedure: ### ASTM D4318/AASHTO T89 T90/CT 204 Project: San Jose Senior Living Project Number: 042-19031 Date Sampled: 12/4/2019 Sampled By: RA Sample Number: Date Tested: 12/26/2019 Tested By: J Mitchell Verified By: J Gruszczynski Sample Location: B4 @ 25-26' Sample Description: CL | | Plastic Limit | | | Liquid Limit | | | |--|---------------|-------|---|--------------|---|---| | Weight of Dry Soil & Tare (g) Weight of Tare (g) | 1 | 2 | 3 | 1 | 2 | 3 | | Weight of Wet Soil & Tare (g) | 25.23 | 25.52 | | 31.37 | | | | Weight of Dry Soil & Tare (g) | 23.78 | 23.36 | | 26.19 | | | | Weight of Tare (g) | 17.02 | 13.58 | | 13.67 | | | | Weight of water (g) | 1.45 | 2.16 | | 5.17 | | 1 | | Weight of Dry Soil (g) | 6.77 | 9.78 | | 12.53 | | | | Water Content (% of dry wt.) | 21.4% | 22.1% | | 41.3% | | | | Number of Blows | | | | 25 | | | Plastic Limit: 22 Liquid Limit: 41 Plasticity Index: 19 Unified Soil Classification: CL Requirement: Approx. % of Material Retained on # 40 Sieve: Departures from Outlined Procedure: ## ASTM D4318/AASHTO T89 T90/CT 204 Project: San Jose Senior Living Project Number: 042-19031 Date Sampled: 12/4/2019 Sampled By: RA Date Tested: 12/26/2019 Tested By: J Mitchell Verified By: J Gruszczynski Sample Location: B4 @ 30-31' Sample Description: ML | | Plastic Limit | | | Liquid Limit | | | |-------------------------------|---------------|---|---|--------------|---|---| | Trial Number | 1 | 2 | 3 | 1 | 2 | 3 | | Weight of Wet Soil & Tare (g) | | | | | | | | Weight of Dry Soil & Tare (g) | | | | | | | | Weight of Tare (g) | | | | | | | | Weight of water (g) | | | | | | | | Weight of Dry Soil (g) | | | | | | | | Water Content (% of dry wt.) | | | | | | | | Number of Blows | | | | | | | Plastic Limit: N/D Liquid Limit: N/D Plasticity Index: NON-PLASTIC Unified Soil Classification: NON-PLASTIC ion: NON-PLASTIC Requirement: Approx. % of Material Retained on # 40 Sieve: Departures from Outlined Procedure: ## R - VALUE TEST ASTM D - 2844 / CAL 301 Project Number : 042-19031 Project Name : San Jose Senior Living Date : 1/2/2020 Sample Location/Curve Number : RV#1 Soil Classification : CL | Α | В | С | | | |-----------------------------------|---|---|--|--| | | | | | | | R - Value less than 5 | | | | | | Sample Exuded from bottom of Mold | _ | _ | | | | R - Value at 300 PSI Exudation Pressure | (<5) | | | |---|------|--|--| | R - Value by Expansion Pressure | | | | ## R - VALUE TEST ASTM D - 2844 / CAL 301 Project Number : 042-19031 Project Name : San Jose Senior Living Date : 1/2/2020 Sample Location/Curve Number : RV#2 Soil Classification : CL | TEST | A B (| | С | | | |------------------------------------|-----------------------------------|--|---|--|--| | Percent Moisture @ Compaction, % | | | | | | | Dry Density, Ibm/cu.ft. | R - Value less than 5 | | | | | | Exudation Pressure, psi | Sample Exuded from bottom of Mold | | | | | | Expansion Pressure, (Dial Reading) | During test | | | | | | Expansion Pressure, psf | | | | | | | Resistance Value R | | | | | | | | | | | | | | R - Value at 300 PSI Exudation Pressure | (<5) | |---|------| | R - Value by Expansion Pressure | | #### APPENDIX B #### EARTHWORK SPECIFICATIONS #### **GENERAL** When the text of the report conflicts with the general specifications in this appendix, the recommendations in the report have precedence. **SCOPE OF WORK:** These specifications and applicable plans pertain to and include all earthwork associated with the site rough grading, including but not limited to the furnishing of all labor, tools, and equipment necessary for site clearing and grubbing, stripping, preparation of foundation materials for receiving fill, excavation, processing, placement and compaction of fill and backfill materials to the lines and grades shown on the project grading plans, and disposal of excess materials. **PERFORMANCE:** The Contractor shall be responsible for the satisfactory completion of all earthwork in accordance with the project plans and specifications. This work shall be inspected and tested by a representative of Krazan and Associates, Inc., hereinafter known as the Soils Engineer and/or Testing Agency. Attainment of design grades when achieved shall be certified by the project Civil Engineer. Both the Soils Engineer and the Civil Engineer are the Owner's representatives. If the Contractor should fail to meet the technical or design requirements embodied in this document and on the applicable plans, he shall make the necessary readjustments until all work is deemed satisfactory as determined by both the Soils Engineer and the Civil Engineer. No deviation from these specifications shall be made except upon written approval of the Soils Engineer, Civil Engineer or project Architect. No earthwork shall be performed without the physical presence or approval of the Soils Engineer. The Contractor shall notify the Soils Engineer at least 2 working days prior to the commencement of any aspect of the site earthwork. The Contractor agrees that he shall assume sole and complete responsibility for job site conditions during the course of construction of this project, including safety of all persons and property; that this requirement shall apply continuously and not be limited to normal working hours; and that the Contractor shall defend, indemnify and hold the Owner and the Engineers harmless from any and all liability, real or alleged, in connection with the performance of work on this project, except for liability arising from the sole negligence of the Owner or the Engineers. **TECHNICAL REQUIREMENTS**: All compacted materials shall be densified to a density not less than 90 percent relative compaction based on ASTM Test Method D1557 or CAL-216, as specified in the technical portion of the Soil Engineer's report. The location and frequency of field density tests shall be as determined by the Soils Engineer. The results of these tests and compliance with these specifications shall be the basis upon which satisfactory completion of work will be judged by the Soils Engineer. **SOILS AND FOUNDATION CONDITIONS**: The Contractor is presumed to have visited the site and to have familiarized himself with existing site conditions and the contents of the data presented in the soil report. The Contractor shall make his own interpretation of the data contained in said report, and the Contractor shall not be relieved of liability under the Contract documents for any loss sustained as a result of any variance between conditions indicated by or deduced from said report and the actual conditions encountered during the progress of the work. **DUST CONTROL:** The work includes dust control as required for the alleviation or prevention of any dust nuisance on or about the site or the borrow area, or off-site if caused by the Contractor's operation either during the performance of the earthwork or resulting from the conditions in which the
Contractor leaves the site. The Contractor shall assume all liability, including court costs of codefendants, for all claims related to dust or windblown materials attributable to his work. #### SITE PREPARATION Site preparation shall consist of site clearing and grubbing and the preparations of foundation materials for receiving fill. **CLEARING AND GRUBBING:** The Contractor shall accept the site in this present condition and shall demolish and/or remove from the area of designated project earthwork all structures, both surface and subsurface, trees, brush, roots, debris, organic matter, and all other matter determined by the Soils Engineer to be deleterious or otherwise unsuitable. Such materials shall become the property of the Contractor and shall be removed from the site. Tree root systems in proposed building areas should be removed to a minimum depth of 3 feet and to such an extent which would permit removal of all roots larger than 1 inch. Tree roots removed in parking areas may be limited to the upper 1½ feet of the ground surface. Backfill of tree root excavations should not be permitted until all exposed surfaces have been inspected and the Soils Engineer is present for the proper control of backfill placement and compaction. Burning in areas which are to receive fill materials shall not be permitted. **SUBGRADE PREPARATION:** Surfaces to receive Engineered Fill, building or slab loads shall be prepared as outlined above, excavated/scarified to a depth of 12 inches, moisture-conditioned as necessary, and compacted to 90 percent relative compaction. Loose soil areas, areas of uncertified fill, and/or areas of disturbed soils shall be moisture-conditioned as necessary and recompacted to 90 percent relative compaction. All ruts, hummocks, or other uneven surface features shall be removed by surface grading prior to placement of any fill materials. All areas which are to receive fill materials shall be approved by the Soils Engineer prior to the placement of any of the fill material. **EXCAVATION:** All excavation shall be accomplished to the tolerance normally defined by the Civil Engineer as shown on the project grading plans. All over-excavation below the grades specified shall be backfilled at the Contractor's expense and shall be compacted in accordance with the applicable technical requirements. **FILL AND BACKFILL MATERIAL:** No material shall be moved or compacted without the presence of the Soils Engineer. Material from the required site excavation may be utilized for construction site fills provided prior approval is given by the Soils Engineer. All materials utilized for constructing site fills shall be free from vegetation or other deleterious matter as determined by the Soils Engineer. **PLACEMENT, SPREADING AND COMPACTION:** The placement and spreading of approved fill materials and the processing and compaction of approved fill and native materials shall be the responsibility of the Contractor. However, compaction of fill materials by flooding, ponding, or jetting shall not be permitted unless specifically approved by local code, as well as the Soils Engineer. Both cut and fill areas shall be surface-compacted to the satisfaction of the Soils Engineer prior to final acceptance. **SEASONAL LIMITS:** No fill material shall be placed, spread, or rolled while it is frozen or thawing or during unfavorable wet weather conditions. When the work is interrupted by heavy rains, fill operations shall not be resumed until the Soils Engineer indicates that the moisture content and density of previously placed fill are as specified. #### APPENDIX C #### **PAVEMENT SPECIFICATIONS** 1. **DEFINITIONS** - The term "pavement" shall include asphaltic concrete surfacing, untreated aggregate base, and aggregate subbase. The term "subgrade" is that portion of the area on which surfacing, base, or subbase is to be placed. The term "Standard Specifications": hereinafter referred to is the 2018 Standard Specifications of the State of California, Department of Transportation, and the "Materials Manual" is the Materials Manual of Testing and Control Procedures, State of California, Department of Public Works, Division of Highways. The term "relative compaction" refers to the field density expressed as a percentage of the maximum laboratory density as defined in the applicable tests outlined in the Materials Manual. - 2. SCOPE OF WORK This portion of the work shall include all labor, materials, tools, and equipment necessary for, and reasonably incidental to the completion of the pavement shown on the plans and as herein specified, except work specifically noted as "Work Not Included." - **3. PREPARATION OF THE SUBGRADE** The Contractor shall prepare the surface of the various subgrades receiving subsequent pavement courses to the lines, grades, and dimensions given on the plans. The upper 12 inches of the soil subgrade beneath the pavement section shall be compacted to a minimum relative compaction of 90 percent. The finished subgrades shall be tested and approved by the Soils Engineer prior to the placement of additional pavement courses. - 4. UNTREATED AGGREGATE BASE The aggregate base material shall be spread and compacted on the prepared subgrade in conformity with the lines, grades, and dimensions shown on the plans. The aggregate base material shall conform to the requirements of Section 26 of the Standard Specifications for Class 2 material, 1½ inches maximum size. The aggregate base material shall be spread and compacted in accordance with Section 26 of the Standard Specifications. The aggregate base material shall be spread in layers not exceeding 6 inches and each layer of aggregate material course shall be tested and approved by the Soils Engineer prior to the placement of successive layers. The aggregate base material shall be compacted to a minimum relative compaction of 95 percent. - 5. AGGREGATE SUBBASE The aggregate subbase shall be spread and compacted on the prepared subgrade in conformity with the lines, grades, and dimensions shown on the plans. The aggregate subbase material shall conform to the requirements of Section 25 of the Standard Specifications for Class 2 material. The aggregate subbase material shall be compacted to a minimum relative compaction of 95 percent, and it shall be spread and compacted in accordance with Section 25 of the Standard Specifications. Each layer of aggregate subbase shall be tested and approved by the Soils Engineer prior to the placement of successive layers. 6. ASPHALTIC CONCRETE SURFACING - Asphaltic concrete surfacing shall consist of a mixture of mineral aggregate and paving grade asphalt, mixed at a central mixing plant and spread and compacted on a prepared base in conformity with the lines, grades and dimensions shown on the plans. The viscosity grade of the asphalt shall be PG 64-10. The mineral aggregate shall be Type B, ½ inch maximum size, medium grading and shall conform to the requirements set forth in Section 39. The drying, proportioning and mixing of the materials shall conform to Section 39. The prime coat, spreading and compacting equipment and spreading and compacting mixture shall conform to the applicable chapters of Section 39, with the exception that no surface course shall be placed when the atmospheric temperature is below 50° F. The surfacing shall be rolled with a combination of steel wheel and pneumatic rollers, as described in Section 39-6. The surface course shall be placed with an approved self-propelled mechanical spreading and finishing machine. 7. FOG SEAL COAT - The fog seal (mixing type asphaltic emulsion) shall conform to and be applied in accordance with the requirements of Section 37. # APPENDIX D LIQUEFACTION ANALYSIS # LIQUEFACTION ANALYSIS San Jose Senior Living - San Jose Magnitude=7.51 Acceleration=0.697g CivilTech Software USA 60 - 70 ******************* LIQUEFACTION ANALYSIS SUMMARY Copyright by CivilTech Software www.civiltechsoftware.com ****************** Licensed to Krazan, 2/10/2020 10:58:08 AM Input File Name: C:\Liquefy5\04219031B4.liq Title: San Jose Senior Living - San Jose Subtitle: Boring B4 Surface Elev.= Hole No.=B4 Depth of Hole= 51.00 ft Water Table during Earthquake= 10.00 ft Water Table during In-Situ Testing= 24.00 ft Max. Acceleration= 0.7 g Earthquake Magnitude= 7.51 #### Input Data: Surface Elev.= Hole No.=B4 Depth of Hole=51.00 ft Water Table during Earthquake= 10.00 ft Water Table during In-Situ Testing= 24.00 ft Max. Acceleration=0.7 g Earthquake Magnitude=7.51 No-Liquefiable Soils: CL, OL are Non-Liq. Soil - 1. SPT or BPT Calculation. - 2. Settlement Analysis Method: Tokimatsu/Seed - 3. Fines Correction for Liquefaction: Modify Stark/Olson - 4. Fine Correction for Settlement: During Liquefaction* - 5. Settlement Calculation in: All zones* - 6. Hammer Energy Ratio, Ce = 1.25 7. Borehole Diameter, Cb= 1 Cs= 1 8. Sampling Method, 9. User request factor of safety (apply to CSR) , User= 1 Plot one CSR curve (fs1=User) - 10. Use Curve Smoothing: Yes* - * Recommended Options #### In-Situ Test Data: Depth SPT gamma Fines ft pcf % | 0.00 | 27.00 | 127.00 | 28.00 | |-------|-------|-------------|-------| | 4.00 | 17.00 | 99.00 NoLiq | | | 8.00 | 40.00 | 130.00 | NoLiq | | 13.00 | 24.00 | 126.00 | 72.00 | | 18.00 | 12.00 | 119.00 | 68.00 | | 23.00 | 13.00 | 134.00 | 95.00 | | 28.00 | 7.00 | 129.00 | 80.00 | | 33.00 | 8.00 | 124.00 | 51.00 | | 38.00 | 53.00 | 118.00 | 11.00 | | 43.00 | 54.00 | 119.00 | 10.00 | | 48.00 | 51.00 | 123.00 | 11.00 | | 51.00 | 51.00 | 123.00 | 11.00 | | | | | | #### Output Results: Settlement of Saturated Sands=1.93 in. Settlement of Unsaturated Sands=0.01 in. Total Settlement of Saturated and Unsaturated Sands=1.94 in. Differential Settlement=0.968 to 1.278 in. 1.99 0.45 5.00 1.93 0.00 1.93 2.90 ``` 2.95 1.99 0.45 5.00 1.93 0.00 1.93 3.00 1.99 0.45 5.00 1.93 0.00 1.93 1.99 0.45 5.00 1.93 3.05 0.00 1.93 1.99 0.45 5.00 1.93 0.00 3.10 1.93 3.15 1.99 0.45 5.00 1.93 0.00 1.93
5.00 1.93 0.00 1.93 3.20 1.99 0.45 3.25 1.99 0.45 5.00 1.93 0.00 1.93 3.30 0.45 5.00 1.93 0.00 1.93 1.99 3.35 1.99 0.45 5.00 1.93 0.00 1.93 3.40 1.99 0.45 5.00 1.93 0.00 1.93 3.45 1.99 0.45 5.00 1.93 0.00 1.93 1.99 0.45 5.00 1.93 0.00 1.93 3.50 1.99 0.45 5.00 1.93 0.00 1.93 3.55 1.99 0.45 5.00 1.93 0.00 1.93 3.60 3.65 1.99 0.45 5.00 1.93 0.00 1.93 3.70 1.99 0.45 5.00 1.93 0.00 1.93 3.75 1.99 0.45 5.00 1.93 0.00 1.93 1.99 0.45 5.00 1.93 0.00 1.93 3.80 3.85 1.99 0.45 5.00 1.93 0.00 1.93 0.00 1.93 3.90 1.99 0.45 5.00 1.93 1.99 0.45 5.00 1.93 3.95 0.00 1.93 0.00 1.93 4.00 1.99 0.45 5.00 1.93 4.05 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 4.10 4.15 2.00 0.45 5.00 1.93 0.00 1.93 0.00 1.93 4.20 2.00 0.45 5.00 1.93 4.25 2.00 0.45 5.00 1.93 0.00 1.93 4.30 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 4.35 0.00 1.93 2.00 0.45 5.00 1.93 4.40 2.00 4.45 0.45 5.00 1.93 0.00 1.93 0.00 1.93 4.50 2.00 0.45 5.00 1.93 4.55 2.00 0.45 5.00 1.93 0.00 1.93 4.60 2.00 0.45 5.00 1.93 0.00 1.93 4.65 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 4.70 4.75 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 4.80 4.85 2.00 0.45 5.00 1.93 0.00 1.93 4.90 2.00 0.45 5.00 1.93 0.00 1.93 4.95 2.00 0.45 5.00 1.93 0.00 1.93 5.00 2.00 0.45 5.00 1.93 0.00 1.93 5.05 2.00 0.45 5.00 1.93 0.00 1.93 5.10 2.00 0.45 5.00 1.93 0.00 1.93 0.00 1.93 5.15 2.00 0.45 5.00 1.93 5.20 2.00 0.45 5.00 1.93 0.00 1.93 5.25 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 5.30 0.00 1.93 0.00 1.93 5.35 2.00 0.45 5.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 5.40 0.00 1.93 5.45 2.00 0.45 5.00 1.93 5.50 2.00 0.45 5.00 1.93 0.00 1.93 0.00 1.93 5.55 2.00 0.45 5.00 1.93 5.60 2.00 0.45 5.00 1.93 0.00 1.93 0.00 1.93 5.65 2.00 0.45 5.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 5.70 2.00 0.45 5.00 1.93 0.00 1.93 5.75 5.80 2.00 0.45 5.00 1.93 0.00 1.93 1.93 0.00 1.93 5.85 2.00 0.45 5.00 0.00 1.93 5.90 2.00 0.45 5.00 1.93 0.45 5.00 1.93 0.00 1.93 5.95 2.00 2.00 0.45 5.00 1.93 0.00 1.93 6.00 0.45 5.00 1.93 0.00 1.93 6.05 2.00 ``` ``` 6.10 2.00 0.45 5.00 1.93 0.00 1.93 6.15 2.00 0.45 5.00 1.93 0.00 1.93 0.00 1.93 6.20 2.00 0.45 5.00 1.93 6.25 2.00 0.45 5.00 1.93 0.00 1.93 0.00 1.93 6.30 2.00 0.45 5.00 1.93 6.35 2.00 0.45 5.00 1.93 0.00 1.93 6.40 2.00 0.45 5.00 1.93 0.00 1.93 6.45 2.00 0.45 5.00 1.93 0.00 1.93 6.50 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 6.55 6.60 2.00 0.45 5.00 1.93 0.00 1.93 6.65 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 6.70 2.00 0.45 5.00 1.93 0.00 1.93 6.75 2.00 0.45 5.00 1.93 0.00 1.93 6.80 2.00 0.45 5.00 1.93 0.00 1.93 6.85 6.90 2.00 0.45 5.00 1.93 0.00 1.93 6.95 2.00 0.45 5.00 1.93 0.00 1.93 7.00 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 7.05 2.00 0.45 5.00 1.93 0.00 1.93 7.10 2.00 0.45 5.00 1.93 0.00 1.93 7.15 7.20 2.00 0.45 5.00 1.93 0.00 1.93 7.25 2.00 0.45 5.00 1.93 0.00 1.93 7.30 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 0.00 1.93 7.35 2.00 0.45 5.00 1.93 0.00 1.93 7.40 2.00 0.45 5.00 1.93 0.00 1.93 7.45 7.50 2.00 0.45 5.00 1.93 0.00 1.93 7.55 2.00 0.45 5.00 1.93 0.00 1.93 2.00 0.45 5.00 1.93 7.60 0.00 1.93 0.44 5.00 1.93 0.00 1.93 7.65 2.00 2.00 0.44 5.00 1.93 0.00 1.93 7.70 7.75 2.00 0.44 5.00 1.93 0.00 1.93 7.80 2.00 0.44 5.00 1.93 0.00 1.93 7.85 2.00 0.44 5.00 1.93 0.00 1.93 7.90 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 7.95 8.00 2.00 0.44 5.00 1.93 0.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 8.05 8.10 2.00 0.44 5.00 1.93 0.00 1.93 8.15 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 8.20 2.00 0.44 5.00 1.93 0.00 1.93 8.25 8.30 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 8.35 8.40 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 8.45 8.50 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 8.55 8.60 2.00 0.44 5.00 1.93 0.00 1.93 8.65 2.00 0.44 5.00 1.93 0.00 1.93 8.70 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 8.75 8.80 2.00 0.44 5.00 1.93 0.00 1.93 8.85 2.00 0.44 5.00 1.93 0.00 1.93 8.90 2.00 0.44 5.00 1.93 0.00 1.93 8.95 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 9.00 9.05 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 9.10 9.15 2.00 0.44 5.00 1.93 0.00 1.93 2.00 0.44 5.00 1.93 0.00 1.93 9.20 ``` ``` 2.00 0.44 5.00 1.93 0.00 1.93 9.25 2.00 0.44 5.00 1.93 0.00 1.93 9.30 5.00 1.93 9.35 2.00 0.44 0.00 1.93 0.44 5.00 1.93 0.00 1.93 9.40 2.00 1.93 9.45 2.00 0.44 5.00 1.93 0.00 9.50 2.00 0.44 5.00 1.93 0.00 1.93 5.00 1.93 0.00 1.93 9.55 2.00 0.44 0.44 5.00 1.93 0.00 1.93 9.60 2.00 2.00 0.44 5.00 1.93 0.00 1.93 9.65 0.44 5.00 1.93 0.00 1.93 9.70 2.00 9.75 2.00 0.44 5.00 1.93 0.00 1.93 9.80 2.00 0.44 5.00 1.93 0.00 1.93 5.00 1.93 0.00 1.93 9.85 2.00 0.44 5.00 1.93 0.00 1.93 9.90 2.00 0.44 0.00 1.93 9.95 2.00 0.44 5.00 1.93 0.44 5.00 1.93 0.00 1.93 10.00 2.00 10.05 2.00 0.44 5.00 1.93 0.00 1.93 10.10 2.00 0.44 5.00 1.93 0.00 1.93 0.45 5.00 1.93 0.00 1.93 10.15 2.00 5.00 1.93 0.00 1.93 10.20 2.00 0.45 10.25 2.00 0.45 5.00 1.93 0.00 1.93 0.00 1.93 10.30 2.00 0.45 5.00 1.93 10.35 2.00 0.45 5.00 1.93 0.00 1.93 10.40 2.00 0.45 5.00 1.93 0.00 1.93 10.45 2.00 0.45 5.00 1.93 0.00 1.93 10.50 2.00 0.45 5.00 1.93 0.00 1.93 0.45 5.00 1.93 0.00 1.93 10.55 2.00 10.60 2.00 0.46 5.00 1.93 0.00 1.93 10.65 2.00 0.46 5.00 1.93 0.00 1.93 10.70 2.00 0.46 5.00 1.93 0.00 1.93 1.93 10.75 2.00 0.46 5.00 1.93 0.00 0.00 1.93 10.80 2.00 0.46 5.00 1.93 10.85 2.00 0.46 5.00 1.93 0.00 1.93 10.90 2.00 0.46 5.00 1.93 0.00 1.93 10.95 2.00 0.46 5.00 1.93 0.00 1.93 11.00 2.00 0.46 5.00 1.93 0.00 1.93 11.05 2.00 0.46 5.00 1.93 0.00 1.93 0.47 5.00 1.93 0.00 1.93 11.10 2.00 1.93 11.15 2.00 0.47 5.00 1.93 0.00 1.93 0.00 1.93 11.20 2.00 0.47 5.00 11.25 2.00 0.47 5.00 1.93 0.00 1.93 11.30 2.00 0.47 5.00 1.93 0.00 1.93 0.47 5.00 1.93 0.00 1.93 11.35 2.00 0.47 5.00 1.93 0.00 1.93 11.40 2.00 0.00 1.93 0.47 5.00 1.93 11.45 2.00 11.50 2.00 0.47 5.00 1.93 0.00 1.93 1.93 11.55 2.00 0.47 5.00 1.93 0.00 11.60 2.00 0.48 5.00 1.93 0.00 1.93 11.65 2.00 0.48 5.00 1.93 0.00 1.93 11.70 2.00 0.48 5.00 1.93 0.00 1.93 0.48 5.00 1.93 0.00 1.93 11.75 2.00 11.80 2.00 0.48 5.00 1.93 0.00 1.93 0.00 1.93 11.85 2.00 0.48 5.00 1.93 11.90 2.00 0.48 5.00 1.93 0.00 1.93 0.00 1.93 11.95 2.00 0.48 5.00 1.93 12.00 2.00 0.48 5.00 1.93 0.00 1.93 12.05 2.00 0.48 5.00 1.93 0.00 1.93 12.10 2.00 0.48 5.00 1.93 0.00 1.93 0.49 5.00 1.93 0.00 1.93 12.15 2.00 12.20 2.00 0.49 5.00 1.93 0.00 1.93 0.49 5.00 1.93 0.00 1.93 12.25 2.00 12.30 2.00 0.49 5.00 1.93 0.00 1.93 12.35 2.00 0.49 5.00 1.93 0.00 1.93 ``` ``` 12.40 2.00 0.49 5.00 1.93 0.00 1.93 12.45 2.00 0.49 5.00 1.93 0.00 1.93 12.50 2.00 0.49 5.00 1.93 0.00 1.93 12.55 2.00 0.49 5.00 1.93 0.00 1.93 12.60 2.00 0.49 5.00 1.93 0.00 1.93 12.65 2.00 0.49 5.00 1.93 0.00 1.93 12.70 2.00 0.49 5.00 1.93 0.00 1.93 0.50 5.00 1.93 0.00 12.75 2.00 1.93 12.80 2.00 0.50 5.00 1.93 0.00 1.93 12.85 2.00 0.50 5.00 1.93 0.00 1.93 12.90 2.00 0.50 5.00 1.93 0.00 1.93 12.95 2.00 0.50 5.00 1.93 0.00 1.93 13.00 1.99 0.50 3.99 1.93 0.00 1.93 13.05 1.99 0.50 3.98 1.93 0.00 1.93 13.10 1.99 0.50 3.97 1.93 0.00 1.93 13.15 1.99 0.50 3.97 1.93 0.00 1.93 13.20 1.99 0.50 3.96 1.93 0.00 1.93 13.25 1.99 0.50 3.96 1.93 0.00 1.93 13.30 1.99 0.50 3.95 1.93 0.00 1.93 13.35 1.99 0.51 3.94 1.93 0.00 1.93 13.40 1.99 0.51 3.94 1.93 0.00 1.93 13.45 1.99 0.51 3.93 1.93 0.00 1.93 13.50 1.99 0.51 3.93 1.93 0.00 1.93 13.55 1.99 0.51 3.92 1.93 0.00 1.93 13.60 1.99 0.51 3.91 1.93 0.00 1.93 13.65 1.99 0.51 3.91 1.93 0.00 1.93 13.70 1.99 0.51 3.90 1.93 0.00 1.93 13.75 1.99 0.51 3.90 1.93 0.00 1.93 13.80 1.99 0.51 3.89 1.93 0.00 1.93 13.85 1.99 0.51 3.89 1.93 0.00 1.93 13.90 1.99 0.51 3.88 1.93 0.00 1.93 13.95 1.99 0.51 3.87 1.93 0.00 1.93 14.00 1.99 0.51 3.87 1.93 0.00 1.93 14.05 1.99 0.52 3.86 1.93 0.00 1.93 14.10 1.99 0.52 3.86 1.93 0.00 1.93 14.15 1.99 0.52 3.85 1.93 0.00 1.93 14.20 1.99 0.52 3.85 1.93 0.00 1.93 14.25 1.99 0.52 3.84 1.93 0.00 1.93 14.30 1.99 0.52 3.84 1.93 0.00 1.93 14.35 1.99 0.52 3.83 0.00 1.93 1.93 14.40 1.99 0.52 3.83 1.93 0.00 1.93 14.45 1.99 0.52 3.82 1.93 0.00 1.93 14.50 1.99 0.52 3.82 1.93 0.00 1.93 14.55 1.99 0.52 3.81 1.93 0.00 1.93 0.00 1.93 14.60 1.99 0.52 3.81 1.93 0.00 1.93 14.65 1.99 0.52 3.80 1.93 0.00 1.93 14.70 1.99 0.52 3.80 1.93 14.75 1.99 0.53 3.79 1.93 0.00 1.93 14.80 1.99 0.53 3.79 1.93 0.00 1.93 14.85 1.99 0.53 3.78 1.93 0.00 1.93 14.90 1.99 0.53 3.78 1.93 0.00 1.93 14.95 1.99 0.53 3.77 0.00 1.93 1.93 15.00 1.99 0.53 3.77 1.93 0.00 1.93 15.05 1.99 0.53 3.76 1.93 0.00 1.93 15.10 1.99 0.53 3.76 1.93 0.00 1.93 15.15 1.99 0.53 3.75 1.93 0.00 1.93 15.20 1.99 0.53 3.75 0.00 1.93 1.93 15.25 1.99 0.53 3.74 1.93 0.00 1.93 15.30 1.99 0.53 3.74 1.93 0.00 1.93 0.53 3.73 1.93 0.00 1.93 15.35 1.99 15.40 1.99 0.53 3.73 1.93 0.00 1.93 15.45 1.99 0.53 3.73 1.93 0.00 1.93 15.50 1.99 0.54 3.72 1.93 0.00 1.93 ``` ``` 15.55 1.99 0.54 3.72 1.93 0.00 1.93 15.60 1.99 0.54 3.71 1.93 0.00 15.65 1.99 0.54 3.71 1.93 0.00 1.93 15.70 1.99 0.54 3.70 1.93 0.00 1.93 15.75 1.99 0.54 3.70 1.93 0.00 1.93 15.80 1.99 0.54 3.70 1.93 0.00 1.93 15.85 1.99 0.54 3.69 1.93 0.00 1.93 3.69 1.93 15.90 1.99 0.54 0.00 1.93 0.00 1.93 15.95 1.99 0.54 3.68 1.93 16.00 1.99 0.54 3.68 1.93 0.00 1.93 16.05 1.99 0.54 3.67 1.93 0.00 1.93 16.10 1.99 0.54 3.67 1.93 0.00 1.93 16.15 1.99 0.54 3.67 1.93 0.00 1.93 16.20 1.99 0.54 3.66 1.93 0.00 1.93 16.25 1.99 0.54 3.66 1.93 0.00 1.93 16.30 1.99 0.55 3.65 1.93 0.00 1.93 16.35 1.99 0.55 3.65 1.92 0.00 1.92 16.40 1.99 0.55 3.65 1.92 0.00 1.92 16.45 1.99 0.55 3.64 1.92 0.00 1.92 16.50 1.99 0.55 3.64 1.92 0.00 1.92 16.55 1.99 0.55 3.63 1.92 0.00 1.92 16.60 1.99 0.55 3.63 1.92 0.00 1.92 16.65 1.99 0.55 3.63 1.92 0.00 1.92 16.70 1.99 0.55 3.62 1.92 0.00 1.92 16.75 1.99 0.55 3.62 1.92 0.00 1.92 16.80 1.99 0.55 3.62 1.92 0.00 1.92 0.55 3.61 1.91 0.00 1.91 16.85 1.99 16.90 1.99 0.55 3.61 1.91 0.00 1.91 16.95 1.99 0.55 3.60 1.91 0.00 1.91 17.00 1.99 0.55 3.60 1.91 0.00 1.91 17.05 1.99 0.55 3.60 1.91 0.00 1.91 17.10 1.99 0.55 3.59 1.90 0.00 1.90 17.15 1.99 0.56 3.59 1.90 0.00 1.90 17.20 1.99 0.56 3.59 1.90
0.00 1.90 17.25 1.99 0.56 3.58 1.90 0.00 1.90 17.30 1.99 0.56 3.58 1.89 0.00 1.89 17.35 1.99 0.56 3.58 1.89 0.00 1.89 17.40 1.99 0.56 3.57 1.89 0.00 1.89 0.56 3.57 1.88 17.45 1.99 0.00 1.88 17.50 1.99 0.56 3.56 1.88 0.00 1.88 17.55 1.99 0.56 3.56 1.88 0.00 1.88 17.60 1.99 0.56 3.56 1.87 0.00 1.87 17.65 1.99 0.56 3.55 1.87 0.00 1.87 17.70 1.99 0.56 3.55 1.86 0.00 1.86 17.75 0.48 0.56 0.85* 1.86 0.00 1.86 17.80 0.44 0.56 0.78* 1.86 0.00 1.86 17.85 0.42 0.56 0.74* 1.85 0.00 1.85 17.90 0.40 0.56 0.71* 1.85 0.00 1.85 17.95 0.39 0.56 0.69* 1.84 0.00 1.84 0.56 0.68* 1.84 0.00 18.00 0.38 1.84 18.05 0.39 0.56 0.68* 1.83 0.00 1.83 0.57 0.69* 1.83 0.00 1.83 18.10 0.39 18.15 0.39 0.57 0.69* 1.82 0.00 1.82 0.57 0.70* 1.82 0.00 18.20 0.40 1.82 18.25 0.40 0.57 0.70* 1.81 0.00 1.81 0.57 0.71* 1.81 18.30 0.40 0.00 1.81 0.57 0.72* 1.80 0.00 18.35 0.41 1.80 0.57 0.72* 1.80 0.00 1.80 18.40 0.41 18.45 0.42 0.57 0.73* 1.79 0.00 1.79 18.50 0.42 0.57 0.74* 1.79 0.00 1.79 1.78 18.55 0.43 0.57 0.76* 1.78 0.00 0.57 0.77* 1.78 0.00 1.78 18.60 0.44 18.65 0.45 0.57 0.79* 1.77 0.00 1.77 ``` ``` 18.70 0.46 0.57 0.81* 1.77 0.00 1.77 18.75 0.48 0.57 0.84* 1.76 0.00 18.80 1.99 0.57 3.48 1.76 1.76 0.00 18.85 1.99 0.57 3.48 1.76 0.00 1.76 3.48 1.75 0.00 18.90 1.99 0.57 1.75 18.95 1.99 0.57 3.47 1.75 0.00 1.75 1.74 19.00 1.99 0.57 3.47 0.00 1.74 19.05 1.99 0.57 3.47 1.74 0.00 1.74 3.46 19.10 1.99 0.58 1.73 0.00 1.73 19.15 1.99 0.58 3.46 1.73 0.00 1.73 3.46 1.73 19.20 1.99 0.58 0.00 1.73 19.25 1.99 0.58 3.46 1.72 0.00 1.72 19.30 1.99 0.58 3.45 1.72 0.00 1.72 19.35 1.99 0.58 3.45 1.71 0.00 1.71 19.40 1.99 0.58 3.45 1.71 0.00 1.71 19.45 1.99 0.58 3.45 1.71 0.00 1.71 19.50 1.99 0.58 3.44 1.70 0.00 1.70 19.55 1.99 0.58 3.44 1.70 0.00 1.70 19.60 1.99 0.58 3.44 1.69 0.00 1.69 19.65 1.99 0.58 3.43 1.69 0.00 1.69 19.70 1.99 0.58 3.43 1.69 0.00 1.69 19.75 1.99 0.58 3.43 1.68 0.00 1.68 19.80 1.99 0.58 3.43 1.68 0.00 1.68 19.85 1.99 0.58 3.42 1.68 0.00 1.68 19.90 1.99 0.58 3.42 1.67 0.00 1.67 19.95 1.99 0.58 3.42 1.67 0.00 1.67 20.00 1.99 0.58 3.42 1.67 0.00 1.67 20.05 1.99 0.58 3.41 1.66 0.00 1.66 20.10 1.99 0.58 3.41 1.66 0.00 1.66 20.15 1.99 0.58 3.41 1.66 0.00 1.66 20.20 1.99 0.58 3.41 0.00 1.65 1.65 20.25 1.99 0.59 3.40 1.65 0.00 1.65 20.30 1.99 0.59 3.40 1.65 0.00 1.65 20.35 1.99 0.59 3.40 1.64 0.00 1.64 20.40 1.99 0.59 3.40 1.64 0.00 1.64 20.45 1.99 0.59 3.40 1.64 0.00 1.64 20.50 1.99 0.59 3.39 1.64 0.00 1.64 20.55 1.99 0.59 3.39 1.63 0.00 1.63 20.60 1.99 0.59 3.39 0.00 1.63 1.63 20.65 1.99 0.59 3.39 1.63 0.00 1.63 20.70 1.99 0.59 3.38 1.62 0.00 1.62 20.75 1.99 0.59 3.38 1.62 0.00 1.62 20.80 1.99 0.59 3.38 1.62 0.00 1.62 20.85 1.99 0.59 3.38 1.62 0.00 1.62 20.90 1.99 0.59 3.38 1.61 0.00 1.61 20.95 1.99 0.59 3.37 1.61 0.00 1.61 21.00 1.99 0.59 3.37 1.61 0.00 1.61 21.05 1.99 0.59 3.37 1.61 0.00 1.61 21.10 1.99 0.59 3.37 1.61 0.00 1.61 21.15 1.99 0.59 3.36 1.60 0.00 1.60 21.20 1.99 0.59 3.36 0.00 1.60 1.60 21.25 1.99 0.59 3.36 1.60 0.00 1.60 21.30 1.99 0.59 3.36 1.60 0.00 1.60 21.35 1.99 0.59 3.36 1.60 0.00 1.60 21.40 1.99 0.59 3.35 1.59 0.00 1.59 21.45 1.99 0.59 3.35 1.59 0.00 1.59 21.50 1.99 0.59 3.35 1.59 0.00 1.59 21.55 1.99 0.59 3.35 1.59 1.59 0.00 21.60 1.99 0.60 3.35 1.59 0.00 1.59 21.65 1.99 0.60 3.34 1.59 0.00 1.59 21.70 1.99 0.60 3.34 1.59 0.00 1.59 21.75 1.99 0.60 3.34 1.58 0.00 1.58 21.80 1.99 0.60 3.34 1.58 0.00 1.58 ``` ``` 21.85 1.99 0.60 3.34 1.58 0.00 1.58 21.90 1.99 0.60 3.34 1.58 0.00 1.58 21.95 1.99 0.60 3.33 1.58 0.00 22.00 1.99 0.60 3.33 1.58 0.00 1.58 22.05 1.99 0.60 3.33 1.58 0.00 1.58 22.10 1.99 0.60 3.33 1.58 0.00 1.58 22.15 1.99 0.60 3.33 1.58 0.00 1.58 22.20 1.99 0.60 3.32 1.57 0.00 1.57 22.25 1.99 0.60 3.32 1.57 0.00 1.57 22.30 1.99 0.60 3.32 1.57 0.00 1.57 22.35 1.99 0.60 3.32 1.57 0.00 1.57 22.40 1.99 0.60 3.32 1.57 0.00 1.57 22.45 1.99 0.60 3.32 1.57 0.00 1.57 22.50 1.99 0.60 3.31 1.57 0.00 1.57 22.55 1.99 0.60 3.31 1.57 0.00 1.57 22.60 1.99 0.60 3.31 1.57 0.00 1.57 22.65 1.99 0.60 3.31 1.57 0.00 1.57 22.70 1.99 0.60 3.31 1.56 0.00 1.56 22.75 1.99 0.60 3.31 1.56 0.00 1.56 22.80 1.99 0.60 3.30 1.56 0.00 1.56 22.85 1.99 0.60 3.30 1.56 0.00 1.56 0.00 1.56 22.90 1.99 0.60 3.30 1.56 22.95 1.99 0.60 3.30 1.56 0.00 1.56 23.00 1.99 0.60 3.30 1.56 0.00 1.56 23.05 1.99 0.60 3.30 1.56 0.00 1.56 23.10 1.99 0.60 3.30 1.56 0.00 1.56 23.15 1.99 0.60 3.29 1.56 0.00 1.56 23.20 1.99 0.61 3.29 1.55 0.00 1.55 23.25 1.99 0.61 3.29 1.55 0.00 1.55 23.30 1.99 0.61 3.29 1.55 0.00 1.55 23.35 1.99 0.61 3.29 1.55 0.00 1.55 23.40 1.99 0.61 3.29 1.55 0.00 1.55 23.45 1.99 0.61 3.28 1.55 1.55 0.00 23.50 1.99 0.61 3.28 1.55 0.00 1.55 23.55 1.99 0.61 3.28 1.55 0.00 1.55 23.60 1.99 0.61 3.28 1.55 0.00 1.55 23.65 1.99 0.61 3.28 1.55 0.00 1.55 23.70 1.99 0.61 3.28 1.54 0.00 1.54 23.75 1.99 0.61 3.28 1.54 0.00 1.54 23.80 1.99 0.61 3.27 1.54 0.00 1.54 23.85 1.99 0.61 3.27 1.54 0.00 1.54 23.90 1.99 0.61 3.27 1.54 0.00 1.54 23.95 1.99 0.61 3.27 1.54 0.00 1.54 24.00 1.99 0.61 3.27 1.53 0.00 1.53 24.05 1.99 0.61 3.27 1.53 0.00 1.53 24.10 1.99 0.61 3.27 1.53 0.00 1.53 24.15 1.99 0.61 3.26 1.53 0.00 1.53 24.20 1.99 0.61 3.26 1.53 1.53 0.00 24.25 1.99 0.61 3.26 1.52 0.00 1.52 24.30 1.99 0.61 3.26 1.52 0.00 1.52 24.35 1.99 0.61 3.26 1.52 0.00 1.52 24.40 1.99 0.61 3.26 1.51 0.00 1.51 24.45 1.99 0.61 3.26 1.51 0.00 1.51 24.50 1.99 0.61 3.26 1.51 0.00 1.51 24.55 1.99 0.61 3.25 1.51 0.00 1.51 24.60 1.99 0.61 3.25 1.50 0.00 1.50 24.65 1.99 0.61 3.25 1.50 0.00 1.50 24.70 1.99 0.61 3.25 1.50 0.00 1.50 24.75 1.99 0.61 3.25 1.49 0.00 1.49 24.80 1.99 0.61 3.25 0.00 1.49 1.49 24.85 1.99 0.61 3.25 1.48 0.00 1.48 24.90 1.99 0.61 3.24 1.48 0.00 1.48 24.95 1.99 0.61 3.24 1.48 0.00 1.48 ``` ``` 25.00 1.99 0.61 3.24 1.47 0.00 1.47 1.47 0.00 1.47 25.05 1.99 0.61 3.24 25.10 1.99 0.62 3.24 1.47 0.00 1.47 3.24 1.46 25.15 1.99 0.62 0.00 1.46 25.20 1.99 0.62 3.24 1.46 0.00 1.46 25.25 1.99 0.62 3.24 1.45 0.00 1.45 0.62 0.80* 1.45 0.00 25.30 0.49 25.35 0.46 0.62 0.75* 1.44 0.00 1.44 25.40 0.44 0.62 0.72* 1.44 0.00 1.44 25.45 0.43 0.62 0.69* 1.44 0.00 1.44 25.50 0.42 0.62 0.67* 1.43 0.00 1.43 0.66* 1.43 25.55 0.41 0.62 0.00 1.43 25.60 0.40 0.65* 1.42 0.00 1.42 0.62 25.65 0.39 0.62 0.64* 1.42 0.00 1.42 0.62 0.63* 1.41 0.00 1.41 25.70 0.39 0.62 0.62* 1.41 0.00 1.41 25.75 0.38 0.62 0.61* 1.40 0.00 1.40 25.80 0.38 25.85 0.37 0.62 0.60* 1.40 0.00 1.40 0.62 0.60* 1.39 25.90 0.37 0.00 1.39 0.62 0.59* 1.39 25.95 0.37 0.00 1.39 26.00 0.36 0.62 0.59* 1.38 0.00 1.38 0.62 0.58* 1.37 0.00 1.37 26.05 0.36 0.62 0.57* 1.37 0.00 1.37 26.10 0.36 0.62 0.57* 1.36 0.00 1.36 26.15 0.35 26.20 0.35 0.62 0.56* 1.36 0.00 1.36 26.25 0.35 0.62 0.56* 1.35 0.00 1.35 0.62 0.56* 1.35 0.00 1.35 26.30 0.34 0.62 0.55* 1.34 0.00 1.34 26.35 0.34 26.40 0.34 0.62 0.55* 1.33 0.00 1.33 0.62 0.54* 1.33 0.00 1.33 26.45 0.34 0.62 0.54* 1.32 26.50 0.33 0.00 1.32 26.55 0.33 0.62 0.53* 1.32 0.00 1.32 0.62 0.53* 1.31 0.00 1.31 26.60 0.33 0.62 0.53* 1.30 0.00 1.30 26.65 0.33 26.70 0.33 0.62 0.52* 1.30 0.00 1.30 0.62 0.52* 1.29 0.00 1.29 26.75 0.32 26.80 0.32 0.62 0.51* 1.28 0.00 1.28 26.85 0.32 0.62 0.51* 1.28 0.00 1.28 0.62 0.51* 1.27 0.00 1,27 26.90 0.32 0.62 0.50* 1.27 0.00 1.27 26.95 0.31 0.62 0.50* 1.26 0.00 1.26 27.00 0.31 27.05 0.31 0.62 0.50* 1.25 0.00 1.25 27.10 0.31 0.62 0.49* 1.25 0.00 1.25 0.62 0.49* 1.24 27.15 0.31 0.00 1.24 27.20 0.30 0.62 0.49* 1.23 0.00 1.23 27.25 0.30 0.62 0.48* 1.23 0.00 1.23 27.30 0.30 0.62 0.48* 1.22 0.00 1.22 0.63 0.48* 1.21 0.00 1.21 27.35 0.30 27.40 0.30 0.63 0.48* 1.21 0.00 1.21 27.45 0.30 0.63 0.47* 1.20 0.00 1.20 27.50 0.29 0.63 0.47* 1.19 0.00 1.19 0.63 0.47* 1.19 0.00 1.19 27.55 0.29 27.60 0.29 0.63 0.46* 1.18 0.00 1.18 0.63 0.46* 1.17 0.00 1.17 27.65 0.29 27.70 0.29 0.63 0.46* 1.16 0.00 1.16 27.75 0.29 0.63 0.46* 1.16 0.00 1.16 27.80 0.28 0.63 0.45* 1.15 0.00 1.15 27.85 0.28 0.63 0.45* 1.14 0.00 1.14 27.90 0.29 0.63 0.46* 1.14 0.00 1.14 0.63 1.13 27.95 0.29 0.45* 1.13 0.00 1.12 28.00 0.28 0.63 0.45* 1.12 0.00 28.05 0.28 0.63 0.45* 1.12 0.00 1.12 28.10 0.28 0.63 0.45* 1.11 0.00 1.11 ``` ``` 28.15 0.28 0.63 0.45* 1.10 0.00 1.10 28.20 0.28 0.63 0.44* 1.09 0.00 1.09 28.25 0.28 0.63 0.44* 1.09 0.00 1.09 28.30 0.28 0.63 0.44* 1.08 0.00 1.08 0.44* 1.07 0.00 1.07 28.35 0.28 0.63 28.40 0.28 0.63 0.44* 1.06 0.00 1.06 0.44* 1.06 28.45 0.27 0.63 0.00 1.06 28.50 0.27 0.63 0.43* 1.05 0.00 1.05 28.55 0.27 0.63 0.43* 1.04 0.00 1.04 28.60 0.27 0.63 0.43* 1.04 0.00 1.04 0.00 28.65 0.27 0.63 0.43 * 1.03 1.03 1.02 28.70 0.27 0.63 0.43* 1.02 0.00 28.75 0.27 0.63 0.43* 1.01 0.00 1.01 0.63 0.43* 1.01 0.00 1.01 28.80 0.27 28.85 0.27 0.63 0.43* 1.00 0.00 1.00 0.63 0.42* 0.99 0.00 0.99 28.90 0.27 28.95 0.27 0.63 0.42* 0.98 0.00 0.98 0.63 0.42* 0.98 0.00 0.98 29.00 0.27 0.63 0.42* 0.97 0.97 29.05 0.26 0.00 29.10 0.26 0.63 0.42* 0.96 0.00 0.96 29.15 0.26 0.63 0.42* 0.95 0.00 0.95 0.41* 0.95 0.00 0.95 29.20 0.26 0.63 29.25 0.26 0.63 0.41* 0.94 0.00 0.94 0.41* 0.93 0.00 0.93 29.30 0.26 0.63 29.35 0.26 0.63 0.41* 0.92 0.00 0.92 0.00 29.40 0.26 0.63 0.41* 0.91 0.91 29.45 0.26 0.63 0.41* 0.91 0.00 0.91 29.50 0.26 0.63 0.40* 0.90 0.00 0.90 29.55 0.26 0.63 0.40* 0.89 0.00 0.89 0.40* 0.88 0.00 0.88 29.60 0.25 0.63 29.65 0.25 0.63 0.40* 0.88 0.00 0.88 29.70 0.25 0.63 0.40* 0.87 0.00 0.87 29.75 0.25 0.63 0.40* 0.86 0.00 0.86 0.40* 0.85 0.00 0.85 29.80 0.25 0.63 29.85 0.25 0.63 0.39* 0.84 0.00 0.84 0.63 0.39* 0.84 0.00 0.84 29.90 0.25 29.95 0.25 0.63 0.39* 0.83 0.00 0.83 30.00 0.25 0.64 0.39* 0.82 0.00 0.82 30.05 0.25 0.63 0.39* 0.81 0.00 0.81 0.39* 0.80 0.00 0.80 30.10 0.25 0.63 30.15 0.24 0.63 0.39* 0.80 0.00 0.80 0.38* 0.79 0.00 0.79 30.20 0.24 0.63 30.25 0.24 0.63 0.38* 0.78 0.00 0.78 0.38* 0.77 30.30 0.24 0.63 0.00 0.77 30.35 0.24 0.63 0.38* 0.76 0.00 0.76 0.38* 0.76 0.00 0.76 30.40 0.24 0.63 30.45 0.24 0.63 0.38* 0.75 0.00 0.75 0.63 0.38* 0.74 0.00 0.74 30.50 0.24 30.55 0.24 0.63 0.37* 0.73 0.00 0.73 30.60 0.24 0.63 0.37* 0.72 0.00 0.72 30.65 0.24 0.63 0.37* 0.71 0.00 0.71 30.70 0.24 0.63 0.37* 0.71 0.00 0.71 0.37* 0.70 0.70 30.75 0.23 0.63 0.00 30.80 0.23 0.63 0.37* 0.69 0.00 0.69 0.37* 0.68 0.68 30.85 0.23 0.63 0.00 30.90 0.23
0.63 0.37* 0.67 0.00 0.67 30.95 0.23 0.63 0.36* 0.66 0.00 0.66 31.00 0.23 0.63 0.36* 0.65 0.00 0.65 0.36* 0.65 0.00 0.65 31.05 0.23 0.63 31.10 0.23 0.63 0.36* 0.64 0.00 0.64 0.36* 0.63 0.63 0.63 31.15 0.23 0.00 31.20 0.23 0.63 0.36* 0.62 0.00 0.62 31.25 0.23 0.63 0.36* 0.61 0.00 0.61 ``` ``` 31.30 0.23 0.63 0.36* 0.60 0.00 0.60 31.35 0.23 0.63 0.35* 0.59 0.00 0.59 31.40 0.22 0.63 0.35* 0.59 0.00 0.59 0.35* 0.58 31.45 0.22 0.63 0.00 0.58 31.50 0.22 0.63 0.35* 0.57 0.00 0.57 31.55 0.22 0.63 0.35* 0.56 0.00 0.56 0.35* 0.55 0.00 0.55 31.60 0.22 0.63 31.65 0.22 0.63 0.35* 0.54 0.00 0.54 0.35* 0.53 31.70 0.22 0.63 0.00 0.53 31.75 0.22 0.63 0.35* 0.52 0.00 0.52 31.80 0.22 0.63 0.34* 0.52 0.00 0.52 31.85 0.22 0.63 0.34* 0.51 0.00 0.51 0.34* 0.50 0.00 0.50 31.90 0.22 0.63 31.95 0.22 0.63 0.34* 0.49 0.00 0.49 32.00 0.22 0.63 0.34* 0.48 0.00 0.48 32.05 0.21 0.63 0.34* 0.47 0.00 0.47 32.10 0.21 0.63 0.34* 0.46 0.00 0.46 32.15 0.21 0.63 0.34* 0.45 0.00 0.45 32.20 0.21 0.63 0.34* 0.44 0.00 0.44 32.25 0.21 0.63 0.33 * 0.43 0.00 0.43 32.30 0.21 0.63 0.33* 0.43 0.00 0.43 32.35 0.21 0.63 0.33* 0.42 0.00 0.42 32.40 0.21 0.63 0.33* 0.41 0.00 0.41 32.45 0.21 0.63 0.33 * 0.40 0.00 0.40 0.63 0.33 * 0.39 0.00 0.39 32.50 0.21 32.55 0.21 0.63 0.33* 0.38 0.00 0.38 32.60 0.21 0.63 0.33* 0.37 0.00 0.37 32.65 0.21 0.63 0.32* 0.36 0.00 0.36 32.70 0.20 0.63 0.32* 0.35 0.00 0.35 32.75 0.20 0.63 0.32* 0.34 0.00 0.34 32.80 0.20 0.63 0.32* 0.33 0.00 0.33 32.85 0.20 0.63 0.32* 0.32 0.00 0.32 32.90 0.20 0.63 0.32* 0.31 0.00 0.31 32.95 0.20 0.63 0.32* 0.30 0.00 0.30 33.00 0.20 0.63 0.32* 0.29 0.00 0.29 33.05 0.20 0.63 0.32* 0.28 0.00 0.28 33.10 0.21 0.63 0.33 * 0.27 0.00 0.27 33.15 0.21 0.63 0.33* 0.27 0.00 0.27 33.20 0.22 0.63 0.34* 0.26 0.00 0.26 33.25 0.22 0.63 0.35* 0.25 0.00 0.25 33.30 0.22 0.63 0.35* 0.24 0.00 0.24 33.35 0.23 0.63 0.36* 0.23 0.00 0.23 33.40 0.23 0.63 0.37* 0.22 0.00 0.22 33.45 0.23 0.63 0.37* 0.21 0.00 0.21 0.63 0.38* 0.20 0.00 0.20 33.50 0.24 33.55 0.24 0.63 0.38* 0.20 0.00 0.20 33.60 0.25 0.63 0.39* 0.19 0.00 0.19 33.65 0.25 0.63 0.40* 0.18 0.00 0.18 33.70 0.26 0.63 0.41* 0.17 0.00 0.17 33.75 0.26 0.63 0.41* 0.16 0.00 0.16 0.63 0.42* 0.16 33.80 0.27 0.00 0.16 33.85 0.27 0.63 0.43* 0.15 0.00 0.15 33.90 0.28 0.63 0.44* 0.14 0.00 0.14 33.95 0.28 0.63 0.44* 0.14 0.00 0.14 0.45* 0.13 0.13 34.00 0.29 0.63 0.00 34.05 0.29 0.63 0.46* 0.12 0.00 0.12 0.47* 0.11 0.00 34.10 0.30 0.63 0.11 34.15 0.30 0.63 0.48* 0.11 0.00 0.11 34.20 0.31 0.63 0.49* 0.10 0.00 0.10 34.25 0.32 0.63 0.50* 0.09 0.00 0.09 34.30 0.32 0.63 0.51* 0.09 0.00 0.09 0.53* 0.08 34.35 0.33 0.63 0.00 0.08 34.40 0.34 0.63 0.54* 0.08 0.00 0.08 ``` | 34.50 0.36 34.55 0.37 34.60 0.39 34.65 0.41 34.70 0.45 34.75 1.97 34.80 1.97 34.85 1.97 34.95 1.97 35.05 1.97 35.05 1.97 35.25 1.97 35.25 1.97 35.35 1.97 35.35 1.97 35.35 1.97 35.35 1.97 35.35 1.97 35.50 1.96 35.55 1.96 35.75 1.96 35.75 1.96 35.95 1.96 35.95 1.96 35.95 1.96 36.10 1.96 36.20 1.96 36.35 1.96 | 0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63 | 0.57* 0.61* 0.65* 3.12 3.12 3.12 3.12 3.12 3.12 3.12 3.12 | 0.05
0.04
0.04
0.03
0.03
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 |
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | | |--|--|---|--|--
--|--| | 37.10 1.96
37.15 1.96
37.20 1.96 | 0.63
0.63
0.63 | 3.12
3.12
3.12 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | | | 37.55 1.95 | 0.63 | 3.12 | 0.00 | 0.00 | 0.00 | | ``` 0.00 0.00 37.60 1.95 0.63 3.12 0.00 37.65 1.95 0.63 3.12 0.00 0.00 0.00 0.00 0.00 0.00 37.70 1.95 0.62 3.12 37.75 1.95 0.62 3.12 0.00 0.00 0.00 37.80 1.95 0.62 3.12 0.00 0.00 0.00 37.85 1.95 0.62 3.12 0.00 0.00 0.00 0.00 0.00 37.90 1.95 0.62 3.12 0.00 37.95 1.95 0.62 3.12 0.00 0.00 0.00 0.62 3.13 0.00 0.00 0.00 38.00 1.95 3.13 0.00 38.05 1.95 0.62 0.00 0.00 38.10 1.95 0.62 3.13 0.00 0.00 0.00 38.15 1.95 0.62 3.13 0.00 0.00 0.00 0.00 38.20 1.95 0.62 3.13 0.00 0.00 38.25 1.95 0.62 3.13 0.00 0.00 0.00 38.30 1.95 0.62 3.13 0.00 0.00 0.00 38.35 1.95 0.62 3.13 0.00 0.00 0.00 0.00 0.00 38.40 1.95 0.62 3.13 0.00 0.62 3.13 0.00 0.00 0.00 38.45 1.95 0.00 0.00 0.00 38.50 1.95 0.62 3.13 38.55 1.95 0.62 3.13 0.00 0.00 0.00 38.60 1.95 0.62 3.13 0.00 0.00 0.00 38.65 1.95 0.62 3.13 0.00 0.00 0.00 38.70 1.95 0.62 3.13 0.00 0.00 0.00 38.75 1.95 0.62 3.13 0.00 0.00 0.00 0.00 0.00 38.80 1.95 0.62 3.13 0.00 38.85 1.95 0.62 3.13 0.00 0.00 0.00 0.00 0.00 0.00 38.90 1.95 0.62 3.13 38.95 1.95 0.62 3.13 0.00 0.00 0.00 39.00 1.95 0.62 3.13 0.00 0.00 0.00 39.05 1.95 0.62 3.13 0.00 0.00 0.00 39.10 1.95 0.62 3.13 0.00 0.00 0.00 0.00 0.00 0.00 39.15 1.95 0.62 3.13 0.00 39.20 1.95 0.62 3.13 0.00 0.00 39.25 1.94 0.62 3.13 0.00 0.00 0.00 0.00 0.00 0.00 39.30 1.94 0.62 3.13 0.62 3.13 0.00 0.00 0.00 39.35 1.94 0.00 0.62 3.13 0.00 0.00 39.40 1.94 39.45 1.94 0.62 3.13 0.00 0.00 0.00 0.00 0.00 39.50 1.94 0.62 3.13 0.00 39.55 1.94 0.62 3.13 0.00 0.00 0.00 0.00 0.00 0.00 39.60 1.94 0.62 3.13 39.65 1.94 0.62 3.13 0.00 0.00 0.00 0.00 39.70 1.94 0.62 3.13 0.00 0.00 0.62 3.13 0.00 0.00 0.00 39.75 1.94 0.00 0.00 39.80 1.94 0.62 3.13 0.00 39.85 1.94 0.62 3.13 0.00 0.00 0.00 0.62 3.13 0.00 0.00 0.00 39.90 1.94 0.62 3.13 0.00 0.00 0.00 39.95 1.94 0.00 0.62 3.13 0.00 0.00 40.00 1.94 40.05 1.94 0.62 3.13 0.00 0.00 0.00 0.00 0.00 40.10 1.94 0.62 3.13 0.00 40.15 1.94 0.62 3.13 0.00 0.00 0.00 0.62 3.13 0.00 0.00 0.00 40.20 1.94 40.25 1.94 0.62 3.13 0.00 0.00 0.00 0.00 0.00 0.00 0.62 3.13 40.30 1.94 0.62 3.13 0.00 0.00 0.00 40.35 1.94 0.00 0.00 40.40 1.94 0.62 3.13 0.00 40.45 1.94 0.62 3.13 0.00 0.00 0.00 40.50 1.94 0.62 3.13 0.00 0.00 0.00 40.55 1.94 0.62 3.13 0.00 0.00 0.00 0.62 0.00 0.00 0.00 40.60 1.94 3.13 40.65 1.94 0.62 3.13 0.00 0.00 0.00 40.70 1.94 0.62 3.13 0.00 0.00 0.00 ``` | 40.75 1.94
40.80 1.94
40.85 1.94 | 0.62
0.62
0.62 | 3.13
3.13
3.13 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | | |--|----------------------|----------------------|----------------------|----------------------|----------------------|--| | 40.90 1.94
40.95 1.94 | 0.62
0.62 | 3.13 | 0.00 | 0.00 | 0.00 | | | 41.00 1.94 | 0.62 | 3.14 | 0.00 | 0.00 | 0.00 | | | 41.05 1.94
41.10 1.94 | 0.62
0.62 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 41.15 1.94 | 0.62 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 41.20 1.93
41.25 1.93 | 0.62
0.62 | 3.14 | 0.00 | 0.00 | 0.00 | | | 41.30 1.93
41.35 1.93 | 0.62
0.62 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 41.40 1.93 | 0.62 | 3.14 | 0.00 | 0.00 | 0.00 | | | 41.45 1.93
41.50 1.93 | 0.62
0.62 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 41.55 1.93 | 0.62 | 3.14 | 0.00 | 0.00 | 0.00 | | | 41.60 1.93
41.65 1.93 | 0.62
0.62 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 41.70 1.93
41.75 1.93 | 0.62
0.62 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 41.80 1.93 | 0.62 | 3.14 | 0.00 | 0.00 | 0.00 | | | 41.85 1.93
41.90 1.93 | 0.62
0.62 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 41.95 1.93 | 0.61 | 3.14 | 0.00 | 0.00 | 0.00 | | | 42.00 1.93
42.05 1.93 | 0.61
0.61 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 42.10 1.93 | 0.61 | 3.14 | 0.00 | 0.00 | 0.00 | | | 42.15 1.93
42.20 1.93 | 0.61
0.61 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 42.25 1.93 | 0.61
0.61 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 42.30 1.93
42.35 1.93 | 0.61 | 3.14 | 0.00 | 0.00 | 0.00 | | | 42.40 1.93
42.45 1.93 | 0.61
0.61 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 42.50 1.93 | 0.61 | 3.14 | 0.00 | 0.00 | 0.00 | | | 42.55 1.93
42.60 1.93 | 0.61 | 3.14
3.14 | 0.00 | 0.00 | 0.00 | | | 42.65 1.93 | 0.61 | 3.14 | 0.00 | 0.00 | 0.00 | | | 42.70 1.93
42.75 1.93 | | 3.15
3.15 | 0.00 | 0.00 | 0.00 | | | 42.80 1.93 | 0.61 | 3.15 | 0.00 | 0.00 | 0.00 | | | 42.85 1.93
42.90 1.93 | 0.61
0.61 | | 0.00 | 0.00 | 0.00 | | | 42.95 1.93
43.00 1.93 | 0.61
0.61 | 3.15
3.15 | 0.00 | 0.00 | 0.00 | | | 43.05 1.93 | 0.61 | 3.15 | 0.00 | 0.00 | 0.00 | | | 43.10 1.93
43.15 1.92 | 0.61
0.61 | 3.15
3.15 | 0.00 | 0.00 | 0.00 | | | 43.20 1.92 | 0.61 | 3.15 | 0.00 | 0.00 | 0.00 | | | 43.25 1.92
43.30 1.92 | 0.61
0.61 | 3.15
3.15 | 0.00 | 0.00 | 0.00 | | | 43.35 1.92 | 0.61 | 3.15 | 0.00 | 0.00 | 0.00 | | | 43.40 1.92
43.45 1.92 | 0.61 | 3.15
3.15 | 0.00 | 0.00 | 0.00 | | | 43.50 1.92
43.55 1.92 | 0.61
0.61 | 3.15
3.15 | 0.00 | 0.00 | 0.00 | | | 43.60 1.92 | 0.61 | 3.15 | 0.00 | 0.00 | 0.00 | | | 43.65 1.92
43.70 1.92 | 0.61
0.61 | 3.15
3.15 | 0.00 | 0.00 | 0.00 | | | 43.75 1.92 | 0.61 | 3.15 | 0.00 | 0.00 | 0.00 | | | 43.80 1.92
43.85 1.92 | 0.61
0.61 | | 0.00 | 0.00 | 0.00 | | ``` 43.90 1.92 0.61 3.15 0.00 0.00 0.00 0.61 3.15 0.00 0.00 0.00 43.95 1.92 44.00 1.92 0.61 3.16 0.00 0.00 0.00 44.05 1.92 0.61 3.16 0.00 0.00 0.00 3.16 0.00 0.00 0.00 44.10 1.92 0.61 0.61 3.16 0.00 0.00 0.00 44.15 1.92 44.20 1.92 0.61 3.16 0.00 0.00 0.00 0.61 3.16 0.00 0.00 0.00 44.25 1.92 0.00 44.30 1.92 0.61 3.16 0.00 0.00 44.35 1.92 0.61 3.16 0.00 0.00 0.00 44.40 1.92 0.61 3.16 0.00 0.00 0.00 0.61 3.16 0.00 0.00 0.00 44.45 1.92 44.50 1.92 0.61 3.16 0.00 0.00 0.00 0.61 3.16 0.00 0.00 0.00 44.55 1.92 0.00 44.60 1.92 0.61 3.16 0.00 0.00 44.65 1.92 0.61 3.16 0.00 0.00 0.00 44.70 1.92 0.61 3.16 0.00 0.00 0.00 0.00 0.00 44.75 1.92 0.61 3.16 0.00 44.80 1.92 0.61 3.16 0.00 0.00 0.00 0.00 0.00 0.00 44.85 1.92 0.61 3.16 44.90 1.92 0.61 3.16 0.00 0.00 0.00 0.00 0.00 44.95 1.92 0.61 3.16 0.00 0.00 45.00 1.92 0.61 3.16 0.00 0.00 0.00 0.00 45.05 1.92 0.61 3.16 0.00 45.10 1.91 0.61 3.16 0.00 0.00 0.00 0.00 0.00 0.00 45.15 1.91 0.60 3.17 45.20 1.91 0.60 3.17 0.00 0.00 0.00 0.00 0.00 0.00 45.25 1.91 0.60 3.17 45.30 1.91 0.60 3.17 0.00 0.00 0.00 0.00 0.00 0.00 45.35 1.91 0.60 3.17 45.40 1.91 0.60 3.17 0.00 0.00 0.00 0.00 0.00 0.00 45.45 1.91 0.60 3.17 45.50 1.91 0.60 3.17 0.00 0.00 0.00 0.00 0.00 0.00 45.55 1.91 0.60 3.17 45.60 1.91 0.60 3.17 0.00 0.00 0.00 0.00 0.00 0.00 45.65 1.91 0.60 3.17 45.70 1.91 0.60 3.17 0.00 0.00 0.00 0.60 3.17 0.00 0.00 0.00 45.75 1.91 45.80 1.91 0.00 0.60 3.17 0.00 0.00 0.00 0.00 0.00 45.85 1.91 0.60 3.17 45.90 1.91 0.60 3.17 0.00 0.00 0.00 0.60 3.17 0.00 0.00 0.00 45.95 1.91 46.00 1.91 0.60 3.17 0.00 0.00 0.00 46.05 1.91 0.60 3.17 0.00 0.00 0.00 0.00 0.00 46.10 1.91 0.60 3.18 0.00 3.18 0.60 0.00 0.00 0.00 46.15 1.91 0.00 46.20 1.91 0.60 3.18 0.00 0.00 0.00 0.00 0.00 46.25 1.91 0.60 3.18 46.30 1.91 0.60 3.18 0.00 0.00 0.00 0.60 3.18 0.00 0.00 0.00 46.35 1.91 0.00 46.40 1.91 0.60 3.18 0.00 0.00 0.60 3.18 0.00 0.00 0.00 46,45 1.91 0.00 0.00
46.50 1.91 0.60 3.18 0.00 46.55 1.91 0.60 3.18 0.00 0.00 0.00 46.60 1.91 0.60 3.18 0.00 0.00 0.00 46.65 1.91 0.60 3.18 0.00 0.00 0.00 0.00 0.00 46.70 1.91 0.60 3.18 0.00 46.75 1.91 0.60 0.00 0.00 0.00 3.18 0.00 0.00 46.80 1.91 0.60 3.18 0.00 46.85 1.91 0.60 3.18 0.00 0.00 0.00 46.90 1.91 0.60 3.18 0.00 0.00 0.00 46.95 1.91 0.60 3.18 0.00 0.00 0.00 0.00 0.00 47.00 1.91 0.60 3.19 0.00 ``` | 47.05 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | |------------|------|-------|------|------|------| | 47.10 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.15 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | | 47.20 1.90 | 0.60 | 3.19 | | | | | 47.25 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.30 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.35 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.40 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | | | | | | | | 47.45 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.50 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.55 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.60 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.65 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | | | | | | 0.00 | | 47.70 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | | | 47.75 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.80 1.90 | 0.60 | 3.19 | 0.00 | 0.00 | 0.00 | | 47.85 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 47.90 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 47.95 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | | | | | | | | 48.00 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.05 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.10 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.15 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.20 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | | | | | | | | 48.25 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.30 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.35 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.40 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.45 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | | | 3.20 | | 0.00 | 0.00 | | 48.50 1.90 | 0.59 | | 0.00 | | | | 48.55 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.60 1.90 | 0.59 | 3.20 | 0.00 | 0.00 | 0.00 | | 48.65 1.90 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 48.70 1.90 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 48.75 1.90 | | | | | | | 48.80 1.90 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 48.85 1.90 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 48.90 1.90 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 48.95 1.89 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 49.00 1.89 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | | | 3.21 | 0.00 | 0.00 | 0.00 | | 49.05 1.89 | 0.59 | | | | | | 49.10 1.89 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 49.15 1.89 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 49.20 1.89 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 49.25 1.89 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | 49.30 1.89 | 0.59 | 3.21 | 0.00 | 0.00 | 0.00 | | | | 3.22 | 0.00 | 0.00 | 0.00 | | 49.35 1.89 | 0.59 | | | | | | 49.40 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.45 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.50 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.55 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.60 1.89 | | | | | | | 49.65 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.70 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.75 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.80 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.85 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 49.90 1.89 | | | | | | | 49.95 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 50.00 1.89 | 0.59 | 3.22 | 0.00 | 0.00 | 0.00 | | 50.05 1.89 | 0.59 | 3.23 | 0.00 | 0.00 | 0.00 | | 50.10 1.89 | 0.59 | 3.23 | 0.00 | 0.00 | 0.00 | | 50.15 1.89 | 0.59 | 3.23 | 0.00 | 0.00 | 0.00 | | 50.15 1.05 | 0.09 | دع. د | 5.00 | 5.00 | 5.55 | ``` 50.20 1.89 0.59 3.23 0.00 0.00 0.00 50.25 1.89 0.58 3.23 0.00 0.00 0.00 50.30 1.89 0.58 3.23 0.00 0.00 0.00 50.35 1.89 0.58 3.23 0.00 0.00 0.00 50.40 1.89 0.58 3.23 0.00 0.00 0.00 50.45 1.89 0.58 3.23 0.00 0.00 0.00 50.50 1.89 0.58 3.23 0.00 0.00 0.00 50.55 1.89 0.58 3.23 0.00 0.00 0.00 50.60 1.89 0.58 3.23 0.00 0.00 0.00 50.65 1.89 0.58 3.23 0.00 0.00 0.00 50.70 1.89 0.58 3.23 0.00 0.00 0.00 50.75 1.89 0.58 3.24 0.00 0.00 0.00 50.80 1.89 0.58 3.24 0.00 0.00 0.00 50.85 1.89 0.58 3.24 0.00 0.00 0.00 50.90 1.88 0.58 3.24 0.00 0.00 0.00 50.95 1.88 0.58 3.24 0.00 0.00 0.00 51.00 1.88 0.58 3.24 0.00 0.00 0.00 ``` (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2) Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in. 1 atm (atmosphere) = 1 tsf (ton/ft2) CRRm Cyclic resistance ratio from soils CSRsf Cyclic stress ratio induced by a given earthquake (with user request factor of safety) F.S. Factor of Safety against liquefaction, F.S.=CRRm/CSRsf S_sat Settlement from saturated sands S dry Settlement from Unsaturated Sands S all Total Settlement from Saturated and Unsaturated Sands NoLiq No-Liquefy Soils ^{*} F.S.<1, Liquefaction Potential Zone