APPENDIX G Noise Assessment #### **ENVIRONMENTAL NOISE ASSESSMENT** ## 1073 WINCHESTER BOULEVARD MIXED-USE DEVELOPMENT SAN JOSE, CALIFORNIA WJVA Report No. 19-052 **PREPARED FOR** EMC PLANNING 301 LIGHTHOUSE AVENUE, SUITE C MONTEREY, CA 93940 **PREPARED BY** WJV ACOUSTICS, INC. VISALIA, CALIFORNIA SEPTEMBER 9, 2020 (REVISED APRIL 26, 2021) #### 1. <u>INTRODUCTION</u> #### **Project Description** The proposed project would consist of the replacement of a 9,762-square-foot office building currently on-site with 61 condominium units and 17,970 square feet of office space. A total of 115 parking spaces will be provided on site. Access to and from the project site would be provided via one right-in/right-out driveway along Winchester Boulevard. The project site plan is provided as Figure 1. #### **Environmental Noise Assessment** This environmental noise assessment has been prepared to determine if significant noise impacts would be produced by the project and to describe mitigation measures for noise if significant impacts are determined. The environmental noise assessment, prepared by WJV Acoustics, Inc. (WJVA), is based upon the project site plan design and construction package (dated 4-6-20), project-related traffic data provided by Hexagon Transportation Consultants, Inc. and a project site visit on January 28 and 29, 2020. Revisions to the site plan, project-related traffic data or other project-related information available to WJVA at the time the analysis was prepared may require a reevaluation of the findings and/or recommendations of the report. Appendix A provides definitions of the acoustical terminology used in this report. Unless otherwise stated, all sound levels reported in this analysis are A-weighted sound pressure levels in decibels (dB). A-weighting de-emphasizes the very low and very high frequencies of sound in a manner similar to the human ear. Most community noise standards utilize A-weighted sound levels, as they correlate well with public reaction to noise. Appendix B provides typical A-weighted sound levels for common noise sources. In terms of human perception, a 5 dB increase or decrease is considered to be a noticeable change in noise levels. Additionally, a 10 dB increase or decrease is perceived by the human ear as half as loud or twice as loud. In terms of perception, generally speaking the human ear cannot perceive an increase (or decrease) in noise levels less than 3 dB. #### 2. THRESHOLDS OF SIGNIFICANCE The CEQA Guidelines apply the following questions for the assessment of significant noise impacts for a project: - a. Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies? - b. Would the project result in generation of excessive groundborne vibration or groundborne noise levels? - c. For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels? #### a. Noise Level Standards #### City of San Jose #### **General Plan** The Environmental Leadership Chapter of the Envision San Jose 2040 General Plan¹ (adopted November 1, 2011) establishes land use compatibility criteria in terms of the Day-Night Average Level (L_{dn}/DNL). The L_{dn} represents the time-weighted energy average noise level for a 24-hour day, with a 10 dB penalty added to noise levels occurring during the nighttime hours (10:00 p.m.-7:00 a.m.). The L_{dn} represents cumulative exposure to noise over an extended period of time and are therefore calculated based upon *annual average* conditions. The General Plan establishes noise exposure criteria for specific land use types. The Noise level criteria established in the General Plan are provided below. #### Goal EC-1 – Community Noise Levels and Land Use Compatibility Minimize the impact of noise on people through noise reduction and suppression techniques, and through appropriate land use policies. Policies – Community Noise Levels and Land Use Compatibility **EC-1.1** Locate new development in areas where noise levels are appropriate for the proposed uses. Consider federal, state and City noise standards and guidelines as a part of new development review. Applicable standards and guidelines for land uses in San José include: #### **Interior Noise Levels** • The City's standard for interior noise levels in residences, hotels, motels, residential care facilities, and hospitals is 45 dBA DNL. Include appropriate site and building design, building construction and noise attenuation techniques in new development to meet this standard. For sites with exterior noise levels of 60 dBA DNL or more, an acoustical analysis following protocols in the City-adopted California Building Code is required to demonstrate that development projects can meet this standard. The acoustical analysis shall base required noise attenuation techniques on expected Envision General Plan traffic volumes to ensure land use compatibility and General Plan consistency over the life of this plan. #### **Exterior Noise Levels** - The City's acceptable exterior noise level objective is 60 dBA DNL or less for residential and most institutional land uses (Table EC-1). The acceptable exterior noise level objective is established for the City, except in the environs of the San José International Airport and the Downtown, as described below: - For new multi-family residential projects and for the residential component of mixed-use development, use a standard of 60 dBA DNL in usable outdoor activity areas, excluding balconies and residential stoops and porches facing existing roadways. Some common use areas that meet the 60 dBA DNL exterior standard will be available to all residents. Use noise attenuation techniques such as shielding by buildings and structures for outdoor common use areas. On sites subject to aircraft overflights or adjacent to elevated roadways, use noise attenuation techniques to achieve the 60 dBA DNL standard for noise from sources other than aircraft and elevated roadway segments. - For single family residential uses, use a standard of 60 dBA DNL for exterior noise in private usable outdoor activity areas, such as backyards. Although not explicitly stated in the General Plan, exterior noise level standards are typically applied to "outdoor activity areas". Outdoor activity areas are generally considered to be backyards of single-family residential land uses, common use outdoor areas and individual patios and balconies of multi-family residential land uses, and common use outdoor areas for transient lodging land uses. Table EC-1: Land Use Compatibility Guidelines for Community Noise in San José **EC-1.2** Minimize the noise impacts of new development on land uses sensitive to increased noise levels (Categories 1, 2, 3 and 6) by limiting noise generation and by requiring use of noise attenuation measures such as acoustical enclosures and sound barriers, where feasible. The City considers significant noise impacts to occur if a project would: - Cause the DNL at noise sensitive receptors to increase by five dBA DNL or more where the noise levels would remain "Normally Acceptable" - Cause the DNL at noise sensitive receptors to increase by three dBA DNL or more where the noise levels would equal or exceed the "Normally Acceptable" level. **EC-1.3** Mitigate noise generation of new nonresidential land uses to 55 dBA DNL at the property line when located adjacent to existing or planned noise sensitive residential and public/quasi-public land uses. #### **Municipal Code** Section 20.40.600 (Performance Standards) of the City of San Jose Municipal Code provides additional noise standards for stationary noise sources applicable to the project. The Municipal Code states that noise levels associated with commercially zoned properties cannot exceed 55 dB L_{max} (maximum) at adjacent residential property lines. #### b. Construction Noise and Vibration The General Plan provides establishes the following guidelines related to construction activities: **EC-1.7** Require construction operations within San José to use best available noise suppression devices and techniques and limit construction hours near residential uses per the City's Municipal Code. The City considers significant construction noise impacts to occur if a project located within 500 feet of residential uses or 200 feet of commercial or office uses would: Involve substantial noise generating activities (such as building demolition, grading, excavation, pile driving, use of impact equipment, or building framing) continuing for more than 12 months. For such large or complex projects, a construction noise logistics plan that specifies hours of construction, noise and vibration minimization measures, posting or notification of construction schedules, and designation of a noise disturbance coordinator who would respond to neighborhood complaints will be required to be in place prior to the start of construction and implemented during construction to reduce noise impacts on neighboring residents and other uses. Additionally, section 20.100.450 of the City of San Jose Municipal code provides the following: Unless otherwise expressly allowed in a development permit or other planning approval, no applicant or agent of an applicant shall suffer or allow any construction activity on a site located within 500 feet of a residential unit before 7:00 a.m. or after 7:00 p.m., Monday through Friday, or at any time on weekends. The General Plan also provides some guidance and guidelines associated with vibration. #### **Goal EC-2 - Vibration** Minimize vibration impacts on people, residences,
and business operations. #### EC-2.3 Require new development to minimize continuous vibration impacts to adjacent uses during demolition and construction. For sensitive historic structures, including ruins and ancient monuments or building that are documented to be structurally weakened, a continuous vibration limit of 0.08 in/sec PPV (peak particle velocity) will be used to minimize the potential for cosmetic damage to a building. A continuous vibration limit of 0.20 in/sec PPV will be used to minimize the potential for cosmetic damage at buildings of normal conventional construction. Equipment or activities typical of generating continuous vibration include but are not limited to: excavation equipment; static compaction equipment; vibratory pile drivers; pile-extraction equipment; and vibratory compaction equipment. Avoid use of impact pile drivers within 125 feet of any buildings, and within 300 feet of historical buildings, or buildings in poor condition. On a project-specific basis, this distance of 300 feet may be reduced where warranted by a technical study by a qualified professional that verifies that there will be virtually no risk of cosmetic damage to sensitive buildings from the new development during demolition and construction. Transient vibration impacts may exceed a vibration limit of 0.08 in/sec PPV only when and where warranted by a technical study by a qualified professional that verifies that there will be virtually no risk of cosmetic damage to sensitive buildings from the new development during demolition and construction. Additional guidance is provided by the Caltrans Transportation and Construction Vibration Guidance Manual³. The Manual provides guidance for determining annoyance potential criteria and damage potential threshold criteria. These criteria are provided below in Table I and Table II, and are presented in terms of peak particle velocity (PPV) in inches per second (in/sec). | TABLE I | | | | | | | |--|----------------------|---|--|--|--|--| | GUIDELINE VIBRATION ANNOYANCE POTENTIAL CRITERIA | | | | | | | | | Maximum PPV (in/sec) | | | | | | | Human Response | Transient Sources | Continuous/Frequent
Intermittent Sources | | | | | | Barely Perceptible | 0.04 | 0.01 | | | | | | Distinctly Perceptible | 0.25 | 0.04 | | | | | | Strongly Perceptible | 0.9 | 0.1 | | | | | | Severe | 2.0 | 0.4 | | | | | | Source: Caltrans | | | | | | | | TABLE II GUIDELINE VIBRATION DAMAGE POTENTIAL THRESHOLD CRITERIA | | | | | | | |--|-------------------|----------------------|--|--|--|--| | Maximum PPV (in/sec) | | | | | | | | Structure and Condition | Transient Sources | Continuous/Frequent | | | | | | | Transient Sources | Intermittent Sources | | | | | | Extremely fragile, historic buildings, ancient monuments | 0.12 | 0.08 | | | | | | Fragile buildings | 0.2 | 0.1 | | | | | | Historic and some old buildings | 0.5 | 0.25 | | | | | | Older residential structures | 0.5 | 0.3 | | | | | | New residential structures | 1.0 | 0.5 | | | | | | Modern industrial/commercial buildings | 2.0 | 0.5 | | | | | | Source: Caltrans | | | | | | | #### 3. <u>SETTING</u> The proposed project would consist of the replacement of a 9,762-square-foot office building currently on-site with 61 condominium units and 17,970 square feet of office space. The project site is located at 1073 S. Winchester Boulevard, in San Jose. The project site is located along the west side of Winchester Boulevard, approximately 600 feet south of Williams Road. Sensitive receptors located in the project vicinity include single-family residential land uses located adjacent to the project site to both the north and the west. Additional multi-family residential land uses are located to the east, across S. Winchester Boulevard. Existing office buildings border the project site to the south. #### a. Background Noise Level Measurements Existing ambient noise levels in the project vicinity are dominated by traffic noise along S. Winchester Boulevard. Additional sources of noise observed during site inspection included aircraft overflights, birds, barking dogs, construction activities and landscaping activities. Measurements of existing ambient noise levels in the project vicinity were conducted on January 28 and January 29, 2020. Long-term (24-hour) ambient noise level measurements were conducted at two (2) locations (sites LT-1 and LT-2). Site LT-1 was located at the rear of the existing office building, adjacent to existing residential land uses. Site LT-1 was exposed to traffic noise associated with vehicles on S. Winchester Blvd as well as nearby local roadways, and noise associated with residential activities, including landscaping activities. Site LT-2 was located within the project site, near Winchester Boulevard. Site LT-2 was exposed to traffic noise associated with S. Winchester Blvd, and noise associated with the office use activities. Both sites were also exposed to occasional aircraft overflights. Additionally, short-term (15-minute) ambient noise level measurements were conducted at five (5) locations (Sites ST-1 through ST-5). Two (2) individual measurements were taken at each of the five short-term sites to quantify ambient noise levels in the morning and afternoon hours. The project vicinity and locations of the noise monitoring sites are shown on Figure 2. Noise monitoring equipment consisted of Larson-Davis Laboratories Model LDL-820 sound level analyzers equipped with B&K Type 4176 1/2" microphones. The equipment complies with the specifications of the American National Standards Institute (ANSI) for Type I (Precision) sound level meters. The meters were calibrated with a B&K Type 4230 acoustic calibrator to ensure the accuracy of the measurements. Measured hourly energy average noise levels (L_{eq}) at site LT-1 ranged from a low of 45.7 dB between 1:00 a.m. and 2:00 a.m. to a high of 58.1 dB between 7:00 a.m. and 8:00 a.m. Hourly maximum (L_{max}) noise levels at site LT-1 ranged from 54.5 to 72.9 dB. Residual noise levels at the monitoring site, as defined by the L_{90} statistical descriptor ranged from 42.8 to 55.3 dB. The L_{90} is a statistical descriptor that defines the noise level exceeded 90% of the time during each hour of the sample period. The L_{90} is generally considered to represent the residual (or background) noise level in the absence of identifiable single noise events from traffic, aircraft and other local noise sources. The measured L_{dn} value at site LT-1 during the 24-hour noise measurement period was 58.4 dB L_{dn} . Figure 3 graphically depicts hourly variations in ambient noise levels at the LT-1 long-term monitoring site as well as a site photograph. Measured hourly energy average noise levels (L_{eq}) at site LT-2 ranged from a low of 51.6 dB between 1:00 a.m. and 2:00 a.m. to a high of 66.5 dBA between 3:00 p.m. and 4:00 p.m. Hourly maximum (L_{max}) noise levels at site LT-2 ranged from 71.0 to 90.7 dB. Residual noise levels at the monitoring site, as defined by the L_{90} , ranged from 40.0 to 57.3 dB. The measured L_{dn} value at site LT-2 during the 24-hour noise measurement period was 65.9 dB L_{dn} . Figure 4 graphically depicts hourly variations in ambient noise levels at the LT-2 long-term monitoring site as well as a site photograph. The short-term site noise measurement data included energy average (L_{eq}) maximum (L_{max}) as well as five (5) individual statistical parameters. Observations were made of the dominant noise sources affecting the measurements. The statistical parameters describe the percent of time a noise level was exceeded during the measurement period. Table III summarizes short-term noise measurement results. #### TABLE III #### SUMMARY OF SHORT-TERM NOISE MEASUREMENT DATA 1073 S. WINCHESTER BOULEVARD SAN JOSE, CALIFORNIA JANUARY 28 & 29, 2020 | Cito | Time o | A-Weighted Decibels, dBA | | | | | | | Carriage | |------|-----------|--------------------------|------------------|----------------|----------------|-----------------|-----------------|-----------------|--------------| | Site | Time | L _{eq} | L _{max} | L ₂ | L ₈ | L ₂₅ | L ₅₀ | L ₉₀ | Sources | | ST-1 | 8:35 a.m. | 66.1 | 76.5 | 71.0 | 69.0 | 67.6 | 64.1 | 56.9 | TR, AC | | ST-1 | 3:45 p.m. | 65.0 | 71.5 | 70.2 | 68.7 | 66.7 | 64.0 | 56.7 | TR, V, D | | ST-2 | 8:55 a.m. | 55.9 | 71.0 | 63.3 | 60.5 | 56.8 | 52.1 | 47.9 | TR, AC, V, L | | ST-2 | 4:05 p.m. | 56.8 | 65.6 | 64.1 | 60.3 | 57.1 | 54.8 | 51.2 | TR, V, D | | ST-3 | 9:15 a.m. | 64.2 | 72.0 | 70.6 | 69.1 | 63.3 | 59.8 | 55.5 | TR, AC, C | | ST-3 | 4:35 p.m. | 63.3 | 73.7 | 71.7 | 68.4 | 62.8 | 59.8 | 56.4 | TR, V | | ST-4 | 9:35 a.m. | 59.8 | 81.2 | 75.6 | 73.0 | 68.5 | 62.2 | 54.8 | TR, D | | ST-4 | 4:55 p.m. | 57.1 | 79.7 | 74.4 | 72.8 | 68.2 | 61.1 | 52.9 | TR, AC | | ST-5 | 9:55 a.m. | 56.4 | 74.7 | 65.2 | 55.5 | 51.6 | 49.6 | 45.4 | TR, C, B, D | | ST-5 | 5:15 p.m. | 54.1 | 71.3 | 63.7 | 53.9 | 51.1 | 49.2 | 46.9 | TR, D, V | TR: Traffic AC: Aircraft V: Voices D: Dogs Barking B: Birds R: L: Landscaping Activities C: Construction Source: WJV Acoustics, Inc. Short-term noise measurements were conducted for 15-minute periods. Sites ST-1, ST-3 and ST-4 were located adjacent to or in close proximity to W. Winchester Blvd. Dominant sources of noise at ST-1, ST-2 and ST-4 were traffic from vehicles on W. Winchester Blvd and aircraft overflights. Site ST-2 was located within a residential neighborhood west of the project site. Dominant sources of noise at site ST-2 was traffic from local roadways, aircraft overflights, barking dogs, landscaping activities and voices. Site ST-5 was located at the rear of a multi-family residential development, approximately 500 feet east of S. Winchester Blvd. Dominant sources of noise at ST-5 was traffic on Winchester Blvd,
construction activities, barking dogs and voices. The overall noise measurement data indicate that noise in the project vicinity is highly influenced by vehicular traffic on S. Winchester Blvd. #### 4. PROJECT IMPACTS AND MITIGATION MEASURES ### a. Project Traffic Noise Impacts on Existing Noise-Sensitive Land Uses Outside Project Site (No Impact) WJVA utilized the FHWA Traffic Noise Model⁴ to quantify expected project-related increases in traffic noise exposure at representative noise-sensitive receptor locations in the project vicinity. Traffic noise exposure levels for Existing, Existing Plus Project, Background No Project and Background Plus Project traffic conditions were calculated based upon the FHWA Model and traffic volumes provided by Hexagon Transportation Consultants. Background traffic volumes were estimated by adding to existing peak hour volumes the projected volumes from approved but not yet completed developments. The day/night distribution of traffic and the percentages of trucks on the roadways used for modeling were obtained from previous studies WJVA has conducted along similar roadways. The Noise modeling assumptions used to calculate project traffic noise are provided as Appendix C. Project-related significant impacts would occur if an increase in traffic noise associated with the project would result in noise levels exceeding the City's applicable noise level standards at the location(s) of sensitive receptors. For the purpose of this analysis a significant impact is also assumed to occur if traffic noise levels were to increase by 3 dB at sensitive receptor locations where noise levels already exceed the City's applicable noise level standards (without the project), as 3 dB generally represents the threshold of perception in change for the human ear. This analysis of project traffic noise focuses on residential land uses, as they represent the most restrictive noise level criteria by land use type provided in the General Plan. The City's exterior noise level standard for residential land uses is 60 dB L_{dn}. Traffic noise was modeled at eight (8) receptor locations (R-1 through R-8). The eight modeled receptors are located at roadway setback distances representative of the sensitive receptors (residences) along each analyzed roadway segment. The receptor locations are described below and provided graphically on Figure 5. - R-1: Approximately 120 feet from the centerline of Winchester Blvd, north of Williams Rd - R-2: Approximately 60 feet from the centerline of Williams Rd, west of Winchester Blvd. - R-3: Approximately 130 feet from the centerline of Williams Rd, east of Winchester Blvd. - R-4: Approximately 115 feet from the centerline of Walgrove Wy, east of Winchester Blvd. - R-5: Approximately 140 feet from the centerline of Winchester Blvd, south of Walgrove Wy. - R-6: Approximately 140 feet from the centerline of Payne Ave, west of Winchester Blvd. - R-7: Approximately 115 feet from the centerline of Payne Ave, east of Winchester Blvd. - R-8: Approximately 240 feet from the centerline of Winchester Blvd, south of Payne Ave. Table IV provides a comparison of traffic noise levels at the eight (8) modeled receptor locations for Existing, Existing Plus Project, Cumulative and Cumulative Plus Project traffic conditions. As described in Table IV, project-related traffic is not expected to result in noise levels at any sensitive receptors to exceed the City's noise level standard, nor result in an increase of 3 dB in any sensitive receptor locations where noise levels already exceed the County's noise level standard without the implementation of the project. Project-related traffic is not expected to increase traffic noise levels at any roadway. Therefore, project-related increases in traffic noise exposure is considered to be no impact. TABLE IV PROJECT-RELATED INCREASES IN TRAFFIC NOISE, dB, Ldn 1073 S. WINCHESTER MIXED-USE DEVELOPMENT | Modeled
Receptor | Existing | Existing
Plus Project | Cumulative | Cumulative
Plus Project | Change
(Maximum) | Significant
Impact? | |---------------------|----------|--------------------------|------------|----------------------------|---------------------|------------------------| | R-1 | 64 | 64 | 64 | 64 | 0 | No | | R-2 | 64 | 64 | 65 | 65 | 0 | No | | R-3 | 53 | 53 | 54 | 54 | 0 | No | | R-4 | 54 | 54 | 54 | 54 | 0 | No | | R-5 | 62 | 62 | 63 | 63 | 0 | No | | R-6 | 58 | 58 | 59 | 59 | 0 | No | | R-7 | 56 | 56 | 57 | 57 | 0 | No | | R-8 | 59 | 59 | 59 | 59 | 0 | No | Source: WJV Acoustics, Inc. **Hexagon Transportation Consultants** #### b. Noise Impacts from On-Site Noise Sources (No Impact) Sources of operational noise from the proposed mixed-use development would typically be limited to parking lot vehicle movements, outdoor human activity (voices) and Mechanical/HVAC systems. The project design does not include any loading docks or trash compactors. However, the project will include an off-street loading space for commercial and residential uses. #### **Vehicle Movements** Vehicles accessing the project site would enter and exit via a one right-in/right-out driveway along Winchester Boulevard. The project would incorporate approximately 115 parking spaces, of which 77 would be located at ground level and 38 would be located below ground level in a subterranean parking structure below the proposed office building. All parking spaces will be located within an underground parking structure below the building. Noise due to traffic in parking lots is typically limited by low speeds and is not usually considered to be significant. Human activity in parking lots that can produce noise includes voices, stereo systems and the opening and closing of car doors and trunk lids. The noise levels associated with these activities cannot be precisely defined due to variables such as the number of parking movements, time of day and other factors. It is typical for a passing car in a parking lot to produce a maximum noise level of 60 to 65 dBA at a distance of 50 feet, which is comparable to the level of a raised voice. However, all project parking spaces will be located within the structure of the building, below ground level, and noise associated with vehicle movements would not be audible at any nearby sensitive receptor locations. #### **Truck Movements** On-site truck movements would occur between the project site access area and the off-street loading space area, located at the south side of the building, near the entrance to the parking area. This area would be utilized for both commercial and residential loading (move in, move out, etc.). WJVA has conducted measurements of the noise levels produced by slowly moving trucks for a number of studies. Such truck movements would be expected to produce noise levels in the range of 71-77 dBA at a distance of 50 feet. The range in measured truck noise levels is due to differences in the size of trucks, their speed of movement and whether they have refrigeration units in operation during the pass-by. Such levels would be in the range of approximately 65-71 dB at the office buildings located south of the project site. These levels would not exceed any applicable City of San Jose noise level standard, and are below existing maximum (Lmax) noise levels measured at site LT-2 during each of the 24-hour monitoring period. #### **HVAC** Although a location was not specifically shown in the project plans provided to WJVA, it is assumed that the project would include roof-mounted Mechanical/HVAC units on the building. Based upon data collected by WJVA for previous acoustical studies, it is estimated that noise levels from roof-mounted HVAC units at the closest off-site sensitive receptor locations to the project site (residential land uses to the north and to the west) would be in the range of 45-50 dBA. These levels would generally not be audible above existing ambient noise levels at adjacent land-uses and would not exceed any City of San Jose noise level standards. #### **Outdoor Common Use Areas** The project would include two (2) outdoor common use seating areas located at the second floor and one (1) outdoor common use seating area located on the rooftop. The second-floor areas are open to the north and south. Noise associated with the use of these seating areas would typically be limited to that of human voice, and would not result in an impact at any nearby sensitive receptor locations. #### c. Noise From Construction (Less Than Significant With Mitigation) Policy EC-1.7 of the General Plan requires construction operations within the City to use best available noise suppression devices and techniques and limit construction hours near residential uses per the City's Municipal Code. The City considers significant construction noise impacts to occur if a project located within 500 feet of residential uses or 200 feet of commercial or office uses would involve substantial noise generating activities (such as building demolition, grading, excavation, pile driving, use of impact equipment, or building framing) continuing for more than twelve months. For such large or complex projects, a construction noise logistics plan that specifies hours of construction, noise and vibration minimization measures, posting or notification of construction schedules, and designation of a noise disturbance coordinator who would respond to neighborhood complaints will be required to be in place prior to the start of construction and implemented during construction to reduce noise impacts on neighboring residents and other uses. Section 20.100.450 of the City of San Jose Municipal code requires any construction activity on a site located within 500 feet of a residential unit must occur between the hours of 7:00 a.m. to 7:00 p.m., Monday through Friday, and no construction activities are allowed on weekends. Construction noise would occur at various locations within and near the project site through the build-out period.
The distance from the closest residences to the project site is approximately 100 feet. Table V provides typical construction-related noise levels at distances of 100 feet, 200 feet, and 300 feet. | TABLE V TYPICAL CONSTRUCTION EQUIPMENT MAXIMUM NOISE LEVELS, dBA | | | | | | | |--|---------|---------|---------|--|--|--| | Type of Equipment | 100 Ft. | 200 Ft. | 300 Ft. | | | | | Concrete Saw | 84 | 78 | 74 | | | | | Crane | 75 | 69 | 65 | | | | | Excavator | 75 | 69 | 65 | | | | | Front End Loader | 73 | 67 | 63 | | | | | Jackhammer | 83 | 77 | 73 | | | | | Paver | 71 | 65 | 61 | | | | | Pneumatic Tools | 79 | 73 | 69 | | | | | Dozer | 76 | 70 | 66 | | | | | Rollers | 74 | 68 | 64 | | | | | Trucks | 80 | 72 | 70 | | | | | Pumps | 74 | 68 | 64 | | | | | Scrapers | 81 | 75 | 71 | | | | | Portable Generators | 74 | 68 | 64 | | | | | Backhoe | 80 | 74 | 70 | | | | | Grader | 80 | 74 | 70 | | | | Source: FHWA Noise Control for Buildings and Manufacturing Plants, Bolt, Beranek & Newman, 1987 Noise impacts associated with construction activities typically depend on the noise levels generated by the type of equipment in use, the duration of usage of the equipment and the distance at which the equipment is used in respect to nearby sensitive receptors. Noise impacts typically occur when construction activities occur beyond the limited hours of construction and/or within close proximity to sensitive receptors (residential land uses). The anticipated duration of project construction was not known at the time this analysis was prepared. However, construction activities will occur within 500 feet of residential land uses and within 200 feet of office uses. Construction noise is typically not considered to be a significant impact if construction is limited to the daytime hours and construction equipment is adequately maintained and muffled. Extraordinary noise-producing activities (e.g., pile driving) are not anticipated. In this case, all project construction activity must be confined to the hours of 7:00 a.m. to 7:00 p.m., Monday through Friday. Construction noise impacts could result in annoyance or sleep disruption for nearby residents if nighttime operations were to occur or if equipment is not properly muffled or maintained. If construction activities that involved substantial noise generating activities (such as building demolition, grading, excavation, pile driving, use of impact equipment, or building framing) for a duration greater than twelve months, a substantial impact would occur. **Potential Impact:** If the overall duration of construction activities were to occur over a period greater than twelve months, a noise impact would occur, as determined by the City of San Jose Municipal Code. Mitigation Measure/Construction Noise Logistics Plan: Prior to the issuance of any grading or demolition permits, the project applicant shall submit and implement a construction noise logistics plan that specifies hours of construction, noise and vibration minimization measures, posting and notification of construction schedules, equipment to be used, and designation of a noise disturbance coordinator. The noise disturbance coordinator shall respond to neighborhood complaints and shall be in place prior to the start of construction and implemented during construction to reduce noise impacts on neighboring residents and other uses. The noise logistic plan shall be submitted to the Director of Planning or Director's designee of the Department of Planning, Building, and Code Enforcement prior to the issuance of any grading or demolition permits. As a part of the noise logistic plan and project, construction activities for the proposed project shall include, but is not limited to, the following best management practices: - In accordance with Policy EC-1.7 of the City's General Plan, utilize the best available noise suppression devices and techniques during construction activities. - Limit construction hours to between 7:00 a.m. and 7:00 p.m., Monday through Friday, unless permission is granted with a development permit or other planning approval. No construction activities are permitted on the weekends at sites within 500 feet of a residence. - Construct solid plywood fences around ground level construction sites adjacent to operational businesses, residences, or other noise-sensitive land uses. - Equip all internal combustion engine-driven equipment with intake and exhaust mufflers that are in good condition and appropriate for the equipment. - Prohibit unnecessary idling of internal combustion engines. - Locate stationary noise-generating equipment such as air compressors or portable power generators as far as possible from sensitive receptors. Construct temporary noise barriers to screen stationary noise-generating equipment when located near adjoining sensitive land uses. - Utilize "quiet" air compressors and other stationary noise sources where technology exists. - Control noise from construction workers' radios to a point where they are not audible at existing residences bordering the project site. - Notify all adjacent business, residences, and other noise-sensitive land uses of the construction schedule, in writing, and provide a written schedule of "noisy" construction activities to the adjacent land uses and nearby residences. - If complaints are received or excessive noise levels cannot be reduced using the measures above, erect a temporary noise control blanket barrier along surrounding building facades that face the construction sites. - Designate a "disturbance coordinator" who shall be responsible for responding to any complaints about construction noise. The disturbance coordinator shall determine the cause of the noise complaint (e.g., bad muffler, etc.) and shall require that reasonable measures be implemented to correct the problem. Conspicuously post a telephone number for the disturbance coordinator at the construction site and include it in the notice sent to neighbors regarding the construction schedule. - Limit construction to the hours of 7:00 a.m. to 7:00 p.m. Monday through Friday for any on-site or off-site work within 500 feet of any residential unit. Construction outside of these hours may be approved through a development permit based on a site-specific "construction noise mitigation plan" and a finding by the Director of Planning, Building and Code Enforcement that the construction noise mitigation plan is adequate to prevent noise disturbance of affected residential uses. Implementation of the Mitigation Measure identified above would reduce impacts related to temporary noise level increase due to the construction of the project. By requiring that a construction noise logistics plan be provided to minimize disruption and annoyance, limit hours, and reduce construction noise emanating from the site, the temporary noise increase in ambient levels would be less than significant. This mitigation would be implemented by the applicant and would be required to be in place prior to issuance of any ground disturbing or grading permits. #### **Vibration Impacts (Less Than Significant)** The dominant sources of man-made vibration are sonic booms, blasting, pile driving, pavement breaking, demolition, diesel locomotives, and rail-car coupling. The highest levels of construction-related vibration are typically associated with pile driving and the use of vibratory rollers. While the project would include pavement breaking and demolition activities, project demolition and construction would not require pile driving or the use of a vibratory roller. Vibration from demolition and construction activities could be detected at the closest sensitive land uses, especially during demolition (pavement/concrete breaking), movements by heavy equipment or loaded trucks and during some paving activities (if they were to occur). Typical vibration levels at distances of 25 feet, 100 feet and 300 feet are summarized by Table VI. These levels would not be expected to exceed any significant threshold levels for annoyance or damage, as provided above in Table I and Table II. | TABLE VI | | | | | | | | |--|-------|--------|--------|--|--|--|--| | TYPICAL VIBRATION LEVELS DURING CONSTRUCTION | | | | | | | | | | | PPV (i | n/sec) | | | | | | Equipment | @ 25 | @ 100′ | @ 300′ | | | | | | Bulldozer (Large) | 0.089 | 0.019 | 0.006 | | | | | | Bulldozer (Small) | 0.003 | 0.0006 | 0.0002 | | | | | | Loaded Truck | 0.076 | 0.017 | 0.005 | | | | | | Jackhammer | 0.035 | 0.008 | 0.002 | | | | | | Vibratory Roller | 0.210 | 0.046 | 0.013 | | | | | | Caisson Drilling | 0.089 | 0.019 | 0.006 | | | | | Project demolition and construction activities would not be expected to produce continuous vibration levels exceeding the City's criterion of 0.20 in/sec PPV at nearby sensitive receptor locations. After full project build out, it is not expected that ongoing operational activities will result in any vibration impacts at nearby sensitive uses. Activities involved in trash bin collection could result in minor on-site vibrations as the bin is placed back onto the ground. Such vibrations would not be expected to be felt at the closest off-site sensitive uses. Additional mitigation is not required. #### e. Noise Impacts from Nearby Airports or Airstrips (No Impact) The Project site is not located within two miles of a public airport or private airstrip. The San Jose International Airport is located approximately 3.5 miles northeast of the project site. ### f. Noise Impacts to On-Site Proposed Noise-Sensitive Uses (Less Than Significant) The General Plan establishes an exterior noise level standard of 60 dB L_{dn} for residential land uses. The exterior noise level standard applies to usable outdoor activity areas, excluding balconies and residential stoops and porches facing existing roadways. The General Plan also establishes an interior
noise level standard of 45 dB L_{dn} (attributable to exterior noise sources) within residential land uses. #### **Exterior Noise** The project would include two (2) common use outdoor seating areas that would be centrally located at the second-floor level. The seating areas would be open-air, but located within the main two portions of the proposed building, and would therefore be acoustically shielded from Winchester Boulevard traffic noise. Based upon the distance from the second-floor outdoor common use areas to S. Winchester Boulevard, and the acoustical shielding provided by the buildings, noise levels would be expected to be approximately 45-50 dB L_{dn} within the seating areas. The project would also include one (1) rooftop common use seating area. The rooftop area as well would be acoustically shielded from most exterior traffic noise, and there would be no line-of-sight between the rooftop seating area and Winchester Boulevard traffic. Based upon the distance from the rooftop seating area to the roadway, and acoustical shielding provided by the building, exterior noise levels at the common use rooftop seating area would be expected to be approximately 50-55 dB $L_{\rm dn}$. #### **Interior Noise** The City's interior noise level standard is $45 \, dB \, L_{dn}$. The worst-case (background plus project traffic conditions) noise exposure at the closest exterior facades to Winchester Boulevard would be approximately $67 \, dB \, L_{dn}$. This means that the proposed residential construction must be capable of providing a minimum outdoor-to-indoor noise level reduction (NLR) of approximately 22 dB (67-45=22). A specific analysis of interior noise levels was not performed. However, it may be assumed that residential construction methods complying with current building code requirements will reduce exterior noise levels by approximately 25 dB or more if windows and doors are closed. This will be sufficient for compliance with the City's 45 dB L_{dn} interior standard at all proposed residential units. Requiring that it be possible for windows and doors to remain closed for sound insulation means that air conditioning or mechanical ventilation will be required. #### 5. <u>IMPACT SUMMARY</u> This impact summary addresses only the noise impacts determined to be "potentially significant" and summarizes the mitigation measures that would be required to reduce noise levels to a "less than significant" level. Project-related noise levels resulting from the proposed Winchester Boulevard Mixed Use Development project are not expected to exceed any applicable City of San Jose noise level standards if proper mitigation measures are incorporated into project construction operations. Potential impacts and correlating mitigation measures are described in detail above, and summarized below. **Potential Impact:** If the overall duration of construction activities were to occur over a period greater than twelve months, a noise impact would occur, as determined by the City of San Jose Municipal Code. Mitigation Measure/Construction Noise Logistics Plan: Prior to the issuance of any grading or demolition permits, the project applicant shall submit and implement a construction noise logistics plan that specifies hours of construction, noise and vibration minimization measures, posting and notification of construction schedules, equipment to be used, and designation of a noise disturbance coordinator. The noise disturbance coordinator shall respond to neighborhood complaints and shall be in place prior to the start of construction and implemented during construction to reduce noise impacts on neighboring residents and other uses. The noise logistic plan shall be submitted to the Director of Planning or Director's designee of the Department of Planning, Building, and Code Enforcement prior to the issuance of any grading or demolition permits. As a part of the noise logistic plan and project, construction activities for the proposed project shall include, but is not limited to, the following best management practices: - In accordance with Policy EC-1.7 of the City's General Plan, utilize the best available noise suppression devices and techniques during construction activities. - Limit construction hours to between 7:00 a.m. and 7:00 p.m., Monday through Friday, unless permission is granted with a development permit or other planning approval. No construction activities are permitted on the weekends at sites within 500 feet of a residence. - Construct solid plywood fences around ground level construction sites adjacent to operational businesses, residences, or other noise-sensitive land uses. - Equip all internal combustion engine-driven equipment with intake and exhaust mufflers that are in good condition and appropriate for the equipment. - Prohibit unnecessary idling of internal combustion engines. - Locate stationary noise-generating equipment such as air compressors or portable power generators as far as possible from sensitive receptors. Construct temporary noise barriers to screen stationary noise-generating equipment when located near adjoining sensitive land uses. - Utilize "quiet" air compressors and other stationary noise sources where technology exists. - Control noise from construction workers' radios to a point where they are not audible at existing residences bordering the project site. - Notify all adjacent business, residences, and other noise-sensitive land uses of the construction schedule, in writing, and provide a written schedule of "noisy" construction activities to the adjacent land uses and nearby residences. - If complaints are received or excessive noise levels cannot be reduced using the measures above, erect a temporary noise control blanket barrier along surrounding building facades that face the construction sites. - Designate a "disturbance coordinator" who shall be responsible for responding to any complaints about construction noise. The disturbance coordinator shall determine the cause of the noise complaint (e.g., bad muffler, etc.) and shall require that reasonable measures be implemented to correct the problem. Conspicuously post a telephone number for the disturbance coordinator at the construction site and include it in the notice sent to neighbors regarding the construction schedule. - Limit construction to the hours of 7:00 a.m. to 7:00 p.m. Monday through Friday for any on-site or off-site work within 500 feet of any residential unit. Construction outside of these hours may be approved through a development permit based on a site-specific "construction noise mitigation plan" and a finding by the Director of Planning, Building and Code Enforcement that the construction noise mitigation plan is adequate to prevent noise disturbance of affected residential uses. #### 6. SOURCES CONSULTED - 1. Envision San Jose 2040 General Plan, November 2011. - 2. San Jose Municipal Code, 2000. - 3. California Department of Transportation, *Transportation and Construction Vibration Guidance Manual*, September 2013. - 4. Federal Highway Administration, *Traffic Noise Model, Version 2.5,* April 14, 2004 FIGURE 1: PROJECT FLOOR PLAN FIGURE 2: PROJECT VICINITY AND AMBIENT NOISE MONITORING SITES FIGURE 3: HOURLY NOISE LEVELS AT LONG-TERM MONITORING SITE LT-1 FIGURE 4: HOURLY NOISE LEVELS AT LONG-TERM MONITORING SITE LT-2 FIGURE 5: LOCATIONS OF MODELED TRAFFIC NOISE RECEPTORS #### **APPENDIX A-1** #### ACOUSTICAL TERMINOLOGY **AMBIENT NOISE LEVEL:** The composite of noise from all sources near and far. In this context, the ambient noise level constitutes the normal or existing level of environmental noise at a given location. CNEL: Community Noise Equivalent Level. The average equivalent sound > level during a 24-hour day, obtained after addition of approximately five decibels to sound levels in the evening from 7:00 p.m. to 10:00 p.m. and ten decibels to sound levels in the night before 7:00 a.m. and after 10:00 p.m. **DECIBEL, dB:** A unit for describing the amplitude of sound, equal to 20 times the > logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure, which is 20 micropascals (20 micronewtons per square meter). DNL/L_{dn}: Day/Night Average Sound Level. The average equivalent sound > level during a 24-hour day, obtained after addition of ten decibels to sound levels in the night after 10:00 p.m. and before 7:00 a.m. Equivalent Sound Level. The sound level containing the same total energy as a time varying signal over a given sample period. Leg is typically computed over 1, 8 and 24-hour sample periods. NOTE: The CNEL and DNL represent daily levels of noise exposure averaged on an annual basis, while Leg represents the average noise exposure for a shorter time period, typically one hour. The maximum noise level recorded during a noise event. L_{max}: L_{eq}: L_n: The sound level exceeded "n" percent of the time during a sample interval (L₉₀, L₅₀, L₁₀, etc.). For example, L₁₀ equals the level exceeded 10 percent of the time. #### **A-2** #### **ACOUSTICAL TERMINOLOGY** NOISE EXPOSURE CONTOURS: Lines drawn about a noise source indicating constant levels of noise exposure. CNEL and DNL contours are frequently utilized to describe community exposure to noise. NOISE LEVEL REDUCTION (NLR): The noise reduction between indoor and outdoor environments or between two rooms that is the numerical difference, in decibels, of the average sound pressure levels in those areas or rooms. A measurement of Anoise level reduction" combines the effect of the transmission loss performance of the structure plus the effect of acoustic absorption present in the receiving room. **SEL or SENEL:** Sound Exposure Level or Single Event Noise Exposure Level. The level of noise accumulated during a single noise event, such as an aircraft overflight, with reference to a duration of one second. More specifically, it is the time-integrated A-weighted squared sound pressure for a
stated time interval or event, based on a reference pressure of 20 micropascals and a reference duration of one second. **SOUND LEVEL:** The sound pressure level in decibels as measured on a sound level meter using the A-weighting filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the response of the human ear and gives good correlation with subjective reactions to noise. SOUND TRANSMISSION CLASS (STC): The single-number rating of sound transmission loss for a construction element (window, door, etc.) over a frequency range where speech intelligibility largely occurs. ## APPENDIX B EXAMPLES OF SOUND LEVELS **SUBJECTIVE NOISE SOURCE** SOUND LEVEL **DESCRIPTION** 120 dB AMPLIFIED ROCK 'N ROLL > **DEAFENING** JET TAKEOFF @ 200 FT ▶ 100 dB **VERY LOUD** BUSY URBAN STREET > 80 dB **LOUD** FREEWAY TRAFFIC @ 50 FT > CONVERSATION @ 6 FT ▶ 60 dB **MODERATE** TYPICAL OFFICE INTERIOR > 40 dB SOFT RADIO MUSIC > **FAINT** RESIDENTIAL INTERIOR > WHISPER @ 6 FT ▶ 20 dB **VERY FAINT** HUMAN BREATHING > 0 dB # APPENDIX C TRAFFIC NOISE MODELING CALCULATIONS WJV Acoustics, Inc FHWA-RD-77-108 Calculation Sheets August 3, 2020 Contour Levels (dB) 19-052 75 Project #: Description: Existing Ldn/Cnel: Ldn Site Type: Soft Roadway Name **Segment Description** ADT %Day %Evening %Night %Med %Heavy Speed Distance Offset Segment n/o Williams Rd R-1 Winchester Blvd 22550 90 10 2 40 120 40 2 Williams Rd w/o Winchester Blvd R-2 8550 90 10 2 60 Williams Rd e/o Winchester Blvd R-3 2420 90 10 2 40 130 3 40 2 Winchester Blvd 20430 90 240 s/o Payne Ave R-8 10 5 Payne Ave e/o Winchester Blvd R-7 4090 90 10 2 40 115 Payne Ave w/o Winchester Blvd R-6 90 40 140 6 8650 10 2 7 Winchester Blvd s/o Walgrove Wy 20730 90 10 2 40 140 40 Walgrove Way e/o Winchester Blvd R-4 2060 90 115 WJV Acoustics, Inc FHWA-RD-77-108 Calculation Sheets August 3, 2020 Project #: 19-052 Description: Existing + Project Ldn/Cnel: Ldn Site Type: Soft **Contour Levels (dB)** 60 65 70 75 Segment | Roadway Name | Segment Description | ADT | %Day | %Evening | |-----------------|-------------------------|-------|------|----------| | Winchester Blvd | n/o Williams Rd R-1 | 22720 | 90 | | | Villiams Rd | w/o Winchester Blvd R-2 | 8600 | 90 | | | Villiams Rd | e/o Winchester Blvd R-3 | 2430 | 90 | | | Ninchester Blvd | s/o Payne Ave R-8 | 20570 | 90 | | | Payne Ave | e/o Winchester Blvd R-7 | 4100 | 90 | | | Payne Ave | w/o Winchester Blvd R-6 | 8690 | 90 | | | Ninchester Blvd | s/o Walgrove Wy | 20920 | 90 | | | Walgrove Way | e/o Winchester Blvd R-4 | 2180 | 90 | | | , | %Night | %Med | %Heavy | Speed | Distance | Offset | |--------|-------------|--------|-------|----------|--------| | 10 | 2 | 2 | 40 | 120 | | | 10 | 2 | 2 | 40 | 60 | | | 10 | 2
2
2 | 2 | 40 | 130 | | | 10 | 2 | 2 | 40 | 240 | | | 10 | 2 | 2 | 40 | 115 | | | 10 | 2 | 2 | 40 | 140 | | | 10 | 2 | 2 | 40 | 140 | | | 10 | 2 | 2 | 40 | 115 | Ī | _ | | | | | | WJV Acoustics, Inc FHWA-RD-77-108 Calculation Sheets August 3, 2020 19-052 Contour Levels (dB) Project #: 70 75 Description: Background Ldn/Cnel: Ldn Site Type: Soft Segment Roadway Name ADT %Evening %Night **Segment Description** %Med %Heavy Speed Distance Offset Winchester Blvd n/o Williams Rd R-1 26480 90 40 120 Williams Rd w/o Winchester Blvd R-2 40 2 10360 90 10 60 Williams Rd e/o Winchester Blvd R-3 3010 40 130 3 90 10 2 Winchester Blvd 23240 40 s/o Payne Ave R-8 90 240 Payne Ave e/o Winchester Blvd R-7 4210 90 2 40 115 90 40 Payne Ave w/o Winchester Blvd R-6 9200 140 2 Winchester Blvd s/o Walgrove Wy 24220 90 40 140 Walgrove Way e/o Winchester Blvd R-4 2060 90 40 115 WJV Acoustics, Inc FHWA-RD-77-108 Calculation Sheets August 3, 2020 19-052 Contour Levels (dB) Project #: 70 75 Description: Background + Project Ldn/Cnel: Site Type: Soft Segment Roadway Name ADT %Evening %Night **Segment Description** %Med %Heavy Speed Distance Offset Winchester Blvd n/o Williams Rd R-1 26650 90 40 120 Williams Rd w/o Winchester Blvd R-2 40 2 10410 90 10 60 Williams Rd e/o Winchester Blvd R-3 3020 40 130 3 90 10 2 Winchester Blvd 40 s/o Payne Ave R-8 23380 90 240 Payne Ave e/o Winchester Blvd R-7 4220 90 2 40 115 90 40 Payne Ave w/o Winchester Blvd R-6 9240 140 2 Winchester Blvd s/o Walgrove Wy 24410 90 40 140 Walgrove Way e/o Winchester Blvd R-4 2180 90 40 115