CITY PARKING GARAGE AIR QUALITY & GREENHOUSE GAS ASSESSMENT

San José, California

October 29, 2021 Revised November 15, 2021

Prepared for:

Jodi Starbird Principal Consultant Starbird Consulting LLC

Prepared by:

Zachary Palm & James Reyff

ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality

I&R Project#: 21-147

Introduction

The purpose of this report is to address air quality, community health risk, and greenhouse gas (GHG) emissions associated with the proposed City Parking Garage Development located along Saint John Street between N. Autumn and N. Montgomery Streets in the Diridon Station Area Plan of Downtown San José, California. The air quality impacts and GHG emissions from this project would be associated with construction of the new parking garage. Air pollutant and GHG emissions associated with construction and operation of the project were predicted using appropriate computer models. In addition, the potential project health risk impacts (including construction and operation) and the impact of existing toxic air contaminant (TAC) sources affecting the nearby sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).¹ BAAQMD recommends using a 1,000-foot screening radius around the project site for purposes of identifying community health risk from existing sources of TACs.

Project Description

The approximately 2.41-acre project site is currently ten individual land parcels that are occupied by four main buildings, two garages and sheds, and associated pavement. The project proposes to demolish the existing buildings and pavement to construct a seven-story, approximately 398,000-square-foot (sf) parking garage with 1,200 parking spaces. The proposed structure would contain electric vehicle (EV) charging stations and bicycle parking, consistent with the existing zoning requirements. Elevators would provide access to the below grade and above grade levels of the parking structure. Other features would include, but are not be limited to, an emergency diesel generator, ventilation, stairs, striping, lighting, and signage as required by applicable laws and City design standards.

This analysis assumes that one of the seven stories will be below-grade, with six above-grade stories. This configuration results in higher emission rates due to increased grading requirements when compared to construction of all seven stories above-grade. Construction is proposed to begin in January 2023 and be completed by April 2024.

Setting

The project is located in Santa Clara County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM_{10}), and fine particulate matter ($PM_{2.5}$).

Air Pollutants of Concern

High ozone levels are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO_X). These precursor pollutants react under certain meteorological conditions to form high ozone levels. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ozone levels. The highest ozone levels in the Bay Area occur in

¹ Bay Area Air Quality Management District, *CEQA Air Quality Guidelines*, May 2017.

the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone levels aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant of the Bay Area. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM₁₀) and fine particulate matter where particles have a diameter of 2.5 micrometers or less (PM_{2.5}). Elevated concentrations of PM₁₀ and PM_{2.5} are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter levels aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

Toxic Air Contaminants

TACs are a broad class of compounds known to cause morbidity or mortality (usually because they cause cancer) and include, but are not limited to, the criteria air pollutants. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about threequarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs. The most recent Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines were published in February of 2015.² See *Attachment 1* for a detailed description of the community risk modeling methodology used in this assessment.

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, the elderly over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site

² OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

are in the adjacent single-family residences to the north of the project site. This project would not introduce new sensitive receptors (i.e., residents) to the area.

In addition, near the project site is the upcoming Google Downtown West (Google West) development site. Google West would introduce sensitive receptors to the west, southwest, and south (at a further distance) of this project site. These receptors may or may not be present when construction of the project occurs.

Regulatory Setting

Federal Regulations

The United States Environmental Protection Agency (EPA) sets nationwide emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA also sets nationwide fuel standards. California also has the ability to set motor vehicle emission standards and standards for fuel used in California, as long as they are the same or more stringent than the Federal standards.

In the past decade the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel engines are a significant source of nitrogen oxides, or NO_X, and particulate matter (PM₁₀ and PM_{2.5}) and because the EPA has identified diesel particulate matter as a probable carcinogen. Implementation of the heavy-duty diesel on-road vehicle standards and the non-road diesel engine standards are estimated to reduce PM and NO_X emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.³

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. The new standards reduced the amount of sulfur allowed by 97 percent for highway diesel fuel (from 500 parts per million by weight [ppmw] to 15 ppmw), and by 99 percent for off-highway diesel fuel (from about 3,000 ppmw to 15 ppmw). The low sulfur highway fuel (15 ppmw sulfur), also called ultra-low sulfur diesel (ULSD), is currently required for use by all vehicles in the U.S.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

State Regulations

³ USEPA, 2000. *Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements*. EPA420-F-00-057. December.

To address the issue of diesel emissions in the state, CARB developed the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.⁴ In addition to requiring more stringent emission standards for new on-road and off-road mobile sources and stationary diesel-fueled engines to reduce particulate matter emissions by 90 percent, a significant component of the plan involves application of emission control strategies to existing diesel vehicles and equipment. Many of the measures of the Diesel Risk Reduction Plan have been approved and adopted, including the federal on-road and non-road diesel engine emission standards for new engines, as well as adoption of regulations for low sulfur fuel in California.

CARB has adopted and implemented a number of regulations for stationary and mobile sources to reduce emissions of DPM. Several of these regulatory programs affect medium and heavy-duty diesel trucks that represent the bulk of DPM emissions from California highways. CARB regulations require on-road diesel trucks to be retrofitted with particulate matter controls or replaced to meet 2010 or later engine standards that have much lower DPM and PM_{2.5} emissions. This regulation will substantially reduce these emissions between 2013 and 2023. While new trucks and buses will meet strict federal standards, this measure is intended to accelerate the rate at which the fleet either turns over so there are more cleaner vehicles on the road, or is retrofitted to meet similar standards. With this regulation, older, more polluting trucks would be removed from the roads sooner.

CARB has also adopted and implemented regulations to reduce DPM and NO_X emissions from inuse (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce particulate matter and NO_X exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleetaveraged emission rates. Implementation of this regulation, in conjunction with stringent federal off-road equipment engine emission limits for new vehicles, will significantly reduce emissions of DPM and NO_X.

Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the National Ambient Air Quality Standards and California Ambient Air Quality Standards. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

⁴ California Air Resources Board, 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. October.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area.⁵ The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program is being implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses will be used to focus emission reduction measures in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. Overburdened communities are areas located (i) within a census tract identified by the California Communities Environmental Health Screening Tool (CalEnviroScreen), Version 4.0 implemented by OEHHA, as having an overall CalEnviroScreen score at or above the 70th percentile, or (ii) within 1,000 feet of any such census tract.⁶ The BAAQMD has identified six communities as impacted: Concord, Richmond/San Pablo, Western Alameda County, San José, Redwood City/East Palo Alto, and Eastern San Francisco. The project site is within the San José CARE area but not within a CalEnviroScreen overburdened area.

The BAAQMD California Environmental Quality Act (*CEQA*) Air Quality Guidelines⁷ were prepared to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They also include assessment methodologies for air toxics, odors, and greenhouse gas emissions. Attachment 1 includes detailed community risk modeling methodology.

San José Envision 2040 General Plan

The San José Envision 2040 General Plan includes goals, policies, and actions to reduce exposure of the City's sensitive population to exposure of air pollution and toxic air contaminants or TACs. The following goals, policies, and actions are applicable to the proposed project and this assessment:

Applicable Goals – Air Pollutant Emission ReductionGoal MS-10Minimize emissions from new development.

Applicable Policies – Air Pollutant Emission Reduction

⁶ See BAAQMD: <u>https://www.baaqmd.gov/~/media/dotgov/files/rules/reg-2-permits/2021-</u>

⁵ See BAAQMD: <u>https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program</u>, accessed 2/18/2021.

 $[\]underline{amendments/documents/20210722_01_appendixd_mapsofoverburdenedcommunities-pdf.pdf?la=en}, accessed 10/1/2021.$

⁷ Bay Area Air Quality Management District, 2017. *CEQA Air Quality Guidelines*. May.

- MS-10.1 Assess projected air emissions from new development in conformance with the Bay Area Air Quality Management District (BAAQMD) CEQA Guidelines and relative to state and federal standards. Identify and implement feasible air emission reduction measures.
- MS-10.2 Consider the cumulative air quality impacts from proposed developments for proposed land use designation changes and new development, consistent with the region's Clean Air Plan and State law.
- MS-10.3 Promote the expansion and improvement of public transportation services and facilities, where appropriate, to both encourage energy conservation and reduce air pollution.

Applicable Goals – Toxic Air Contaminants

Goal MS-11 Minimize exposure of people to air pollution and toxic air contaminants such as ozone, carbon monoxide, lead, and particulate matter.

Applicable Policies – Toxic Air Contaminants

- MS-11.2 For projects that emit toxic air contaminants, require project proponents to prepare health risk assessments in accordance with BAAQMD-recommended procedures as part of environmental review and employ effective mitigation to reduce possible health risks to a less than significant level. Alternatively, require new projects (such as, but not limited to, industrial, manufacturing, and processing facilities) that are sources of TACs to be located an adequate distance from residential areas and other sensitive receptors.
- MS-11.4 Encourage the installation of appropriate air filtration at existing schools, residences, and other sensitive receptor uses adversely affected by pollution sources.
- MS-11.5 Encourage the use of pollution absorbing trees and vegetation in buffer areas between substantial sources of TACs and sensitive land uses.

Actions – Toxic Air Contaminants

- MS-11.7 Consult with BAAQMD to identify stationary and mobile TAC sources and determine the need for and requirements of a health risk assessment for proposed developments.
- MS-11.8 For new projects that generate truck traffic, require signage which reminds drivers that the State truck idling law limits truck idling to five minutes.

Applicable Goals – Construction Air Emissions

Goal MS-13 Minimize air pollutant emissions during demolition and construction activities

Applicable Policies – Construction Air Emissions

MS-13.1 Include dust, particulate matter, and construction equipment exhaust control measures as conditions of approval for subdivision maps, site development and planned development permits, grading permits, and demolition permits. At minimum, conditions shall conform to construction mitigation measures recommended in the current BAAQMD CEQA Guidelines for the relevant project size and type.

Applicable Actions – Construction Air Emissions

MS-13.4 Adopt and periodically update dust, particulate, and exhaust control standard measures for demolition and grading activities to include on project plans as conditions of approval based upon construction mitigation measures in the BAAQMD CEQA Guidelines.

Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA and these significance thresholds were contained in the District's 2011 *CEQA Air Quality Guidelines*. These thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA. The thresholds were challenged through a series of court challenges and were mostly upheld. BAAQMD updated the *CEQA Air Quality Guidelines* in 2017 to include the latest significance thresholds that were used in this analysis are summarized in Table 1. Community risks are considered significant if they exceed these levels.

	Construction Thresholds Operational Thresholds				
Criteria Air Pollutant	Average Daily Emissions (lbs./day)	Average Daily Emissions (lbs./day)	Annual Average Emissions (tons/year)		
ROG	54	54	10		
NO _x	54	54	10		
PM ₁₀	82 (Exhaust)	82	15		
PM _{2.5}	54 (Exhaust)	54	10		
СО	Not Applicable	9.0 ppm (8-hour average) or 20.0 ppm (1-hour average)			
Fugitive Dust	Construction Dust Ordinance or other Best Management Practices	e None			
Health Risks and Hazards	Single Sources Within 1,000-foot Zone of Influence	in Combined Sources (Cumulative fro sources within 1000-foot zone of infl			
Excess Cancer Risk	10 per one million	100 per 0	one million		
Hazard Index	1.0	1	0.0		
Incremental annual PM _{2.5}	0.3 µg/m ³	0.8	µg/m ³		
Greenhouse Gas Emiss	ions				
Land Use Projects – direct and indirectCompliance with a Qualified GHG Reduction Strategy ORemissions1.100 metric tons annually or 4.6 metric tons per capita (for 2020) *					
Note: ROG = reactive organic gases, NOx = nitrogen oxides, PM_{10} = course particulate matter or particulates with an aerodynamic diameter of 10 micrometers (μ m) or less, $PM_{2.5}$ = fine particulate matter or particulates with an aerodynamic diameter of 2.5 μ m or less. GHG = greenhouse gases. *BAAQMD does not have a recommended post-2020 GHG threshold.					

Table 1.BAAQMD CEQA Significance Thresholds

Source: Bay Area Air Quality Management District, 2017

AIR QUALITY IMPACTS AND MITIGATION MEASURES

Impact AIR-1: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

The Bay Area is considered a non-attainment area for ground-level O₃ and PM_{2.5} under both the Federal Clean Air Act and the California Clean Air Act. The area is also considered non-attainment for PM₁₀ under the California Clean Air Act, but not the federal act. The area has attained both State and Federal ambient air quality standards for carbon monoxide. As part of an effort to attain and maintain ambient air quality standards for O₃, PM_{2.5} and PM₁₀, the BAAQMD has established thresholds of significance for these air pollutants and their precursors. These thresholds are for O₃ precursor pollutants (ROG and NOx), PM₁₀, and PM_{2.5} and apply to both construction period and operational period impacts.

Construction Period Emissions

The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size, and anticipated construction schedule were input to CalEEMod. The CARB EMission FACtors 2021 (EMFAC2021) model was used to predict emissions from construction traffic, which includes worker travel, vendor trucks, and haul trucks.⁸ The CalEEMod model output along with construction inputs are included in *Attachment 2* and EMFAC2021 vehicle emissions modeling outputs are included in *Attachment 3*.

CalEEMod Modeling

Land Use Inputs

The proposed project land uses were entered into CalEEMod as described in Table 2.

Table 2.Summary of Project Land Use Inputs

Project Land Uses	Size	Units	Square Feet (sf)	Acreage
Enclosed Parking with Elevator	1,200	Parking Space	398,000	2.41

Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size, and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario, including equipment list and schedule, were based on information provided by the applicant. The applicant also provided other information such as hauling quantities, asphalt quantities, and concrete trips.

Within each phase, the quantity of equipment to be used along with the average hours per day and total number of workdays was set to the values provided by the applicant. The construction schedule assumed that the earliest possible start date would be January 2023 and would be built out over a period of approximately 16 months, or 329 construction workdays. The earliest year of full operation was assumed to be 2025.

Construction Truck Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the estimate of demolition material to be exported, soil material imported and/or exported to the site, and the estimate of cement and asphalt truck trips. CalEEMod

⁸ See CARB's EMFAC2021 Emissions Inventory at <u>https://arb.ca.gov/emfac/emissions-inventory</u>.

provides daily estimates of worker and vendor trips for each applicable phase. The total trips for those were computed by multiplying the daily trip rate by the number of days in that phase. Haul trips for demolition and grading were estimated from the provided demolition and grading volumes by assuming each truck could carry 10 tons per load. The number of concrete and asphalt total round haul trips were provided for the project and converted to total one-way trips, assuming two trips per delivery.

The latest version of the CalEEMod model is based on the older version of the CARB EMFAC2017 motor vehicle emission factor model. This model has been superseded by the EMFAC2021 model; however, CalEEMod has not been updated to include EMFAC2021. Therefore, the construction traffic information was combined with EMFAC2021 motor vehicle emissions factors. EMFAC2021 provides aggregate emission rates in grams per mile for each vehicle type. The vehicle mix for this study was based on CalEEMod default assumptions, where worker trips are assumed to be comprised of light-duty autos (EMFAC category LDA) and light duty trucks (EMFAC category LDT1 and LDT2). Vendor trips are comprised of delivery and large trucks (EMFAC category MHDT and HHDT) and haul trips, including cement trucks, are comprised of large trucks (EMFAC category HHDT). Travel distances are based on CalEEMod default lengths, which are 10.8 miles for worker travel, 7.3 miles for vendor trips and 20 miles for hauling (soil import/export). Each trip was assumed to include an idle time of 5 minutes. Emissions associated with vehicle starts were also included. On road emissions in Santa Clara County for the years 2023 - 2024 were used in these calculations. Table 3 provides the traffic inputs that were combined with the EMFAC2021 emission database to compute vehicle emissions.

CalEEMod Run/Land	alEEMod Run/Land Trips by Trip Type			
Uses and Construction	Total	Total	Total	
Phase	Worker ¹	Vendor ¹	Haul ²	Notes
Vehicle mix ¹	67.8% LDA 4.7% LDT1 27.5% LDT2	32.6% MHDT 67.4% HHDT	100% HHDT	
Trip Length (miles)	10.8	7.3	20.0	CalEEMod default distance with 5-min truck idle time.
Demolition	75	-	315	29,600-sf building demolition. 900 tons pavement demolition. CalEEMod default worker trips.
Site Preparation	70	-	-	CalEEMod default worker
Grading	780	-	6,375	51,000-cy soil export. CalEEMod default worker trips.
Trenching	500	-	-	CalEEMod default worker trips.
Building Construction	30,060	11,700	2,000	1,000 cement round trips. CalEEMod default worker and vendor trips.
Architectural Coating	3,960	-	-	CalEEMod default worker trips
Paving	300	-	72	300-cy asphalt. CalEEMod default worker trips.
Notes: ¹ Based on 2023 - 2024 EMFAC2021 light-duty vehicle fleet mix for Santa Clara County. ² Includes demolition and grading trips estimated by CalEEMod based on amount of material to be removed. Cement and asphalt trips estimated based on data provided by the applicant.				

Table 3.Construction Traffic Data Used for EMFAC2021 Model Runs

Summary of Computed Construction Period Emissions

Average daily emissions were annualized for each year of construction by dividing the annual construction emissions by the number of active construction workdays that year. Table 4 shows the annualized average daily construction emissions of ROG, NO_X, PM₁₀ exhaust, and PM_{2.5} exhaust during construction of the project. As indicated in Table 4, predicted annualized project construction emissions would not exceed the BAAQMD significance thresholds during any year of construction.

Year	ROG	NOx	PM ₁₀ Exhaust	PM _{2.5} Exhaust
Construction	n Emissions Per	Year (Tons)		
2023	0.23	2.09	0.11	0.08
2024	0.10	0.54	0.03	0.02
Average Daily Constru	ction Emissions	Per Year (pounds	s/day)	
2023 (260 construction workdays)	1.79	16.11	0.82	0.62
2024 (69 construction workdays)	2.89	15.51	0.76	0.56
BAAQMD Thresholds (pounds per day)	54 lbs./day	54 lbs./day	82 lbs./day	54 lbs./day
Exceed Threshold?	No	No	No	No

Table 4.Construction Period Emissions

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM₁₀ and PM_{2.5}. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less-than-significant if best management practices are implemented to reduce these emissions. *Mitigation Measure AQ-1 would implement BAAQMD-recommended best management practices*.

Mitigation Measure AQ-1: Include measures to control dust and exhaust during construction.

During any construction period ground disturbance, the applicant shall ensure that the project contractor implement measures to control dust and exhaust. Implementation of the measures recommended by BAAQMD and listed below would reduce the air quality impacts associated with grading and new construction to a less-than-significant level. Additional measures are identified to reduce construction equipment exhaust emissions. The contractor shall implement the following best management practices that are required of all projects:

- 1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- 6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.
- 7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- 8. Post a publicly visible sign with the telephone number and person to contact at the Lead Agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number shall also be visible to ensure compliance with applicable regulations.

Effectiveness of Recommended Measure AQ-1

The measures above are consistent with BAAQMD-recommended basic control measures for reducing fugitive particulate matter that are contained in the BAAQMD CEQA Air Quality Guidelines.

Operational Period Emissions

Operational air emissions from the project would be generated primarily from energy requirements to power the parking garage and elevators. CalEEMod was used to estimate emissions from operation of the proposed project assuming full build-out.

CalEEMod Inputs

Land Uses

The project land uses were input to CalEEMod as described above for the construction period modeling.

Model Year

Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CalEEMod. The earliest year of full operation would be 2025 if construction begins in 2023. Emissions associated with build-out later than 2025 would be lower.

Traffic Information

CalEEMod allows the user to enter specific vehicle trip generation rates. A trip generation for this project was not provided since a parking garage does not generate trips, so the CalEEMod default trip generation rates of 0.0 were assumed. The default trip types and lengths specified by CalEEMod were also used.

Standby Generator

The project would include a standby generator to provide electricity in the event of a power disruption. Detailed plans are not available but preliminary information indicates a generator that would provide about 200 kilowatts, powered by a diesel engine. A 268-horsepower generator was assumed. The generator would be tested periodically and power the building in the event of a power failure. For modeling purposes, it was assumed that the generator would be operated primarily for testing and maintenance purposes. CARB and BAAQMD requirements limit these engine operations to 50 hours each per year of non-emergency operation. During testing periods, the engine would typically be run for less than one hour. The engine would be required to meet CARB and EPA emission standards and consume commercially available California low-sulfur diesel fuel. Additionally, the generators would have to meet BAAQMD BACT requirements for IC Engine-Compression Ignition: Stationary Emergency, non-Agricultural, non-direct drive fire

pump sources. The generator's emissions were modeled using CalEEMod.

Energy

It is assumed the project would use San Jose Clean Energy (SJCE) for their energy provider. SJCE states that their "GreenSource" service is the default service for commercial customers. SJCE has published their 2020 Emission Factor for their GreenSource service.⁹ The rate of 177.69 pounds of CO₂ per megawatt of electricity produced was entered into CalEEMod.

Existing Uses

The existing site is occupied but an existing use CalEEMod model run was not created to net out existing emissions.

Summary of Computed Operational Period Emissions

Annual emissions were predicted using CalEEMod. The daily emissions were calculated assuming 365 days of operation. Table 5 shows average daily emissions of ROG, NO_X, total PM₁₀, and total PM_{2.5} during operation of the project. The operational period emissions would not exceed the BAAQMD significance thresholds.

Scenario	ROG	NOx	PM ₁₀	PM _{2.5}
2025 Project Operational Emissions (tons/year)	0.05	0.03	< 0.01	< 0.01
BAAQMD Thresholds (tons /year)	10 tons	10 tons	15 tons	10 tons
Exceed Thresholds?	No	No	No	No
2025 Project Operational Emissions (<i>lbs./day</i>) ¹	0.3	0.2	< 0.01	< 0.01
BAAQMD Thresholds (lbs./day)	54 lbs.	54 lbs.	82 lbs.	54 lbs.
Exceed Threshold?	No	No	No	No

Table 5.Operational Period Emissions

Notes: ¹ Assumes 365-day operation.

Impact AIR-2: Expose sensitive receptors to substantial pollutant concentrations?

Project impacts related to increased community risk can occur either by introducing a new source of TACs with the potential to adversely affect existing sensitive receptors in the project vicinity or by significantly exacerbating existing cumulative TAC impacts. This project would introduce new sources of TACs during construction (i.e., on-site construction and truck hauling emissions) and operation (i.e., mobile sources).

Project construction activity would generate dust and equipment exhaust that would affect nearby sensitive receptors. The project would not include the installation of any emergency generators powered by a diesel engine. Traffic generated by the project would consist of mostly light-duty gasoline-powered vehicles, which would produce TAC and air pollutant emissions.

⁹ San Jose Clean Energy: <u>https://sanjosecleanenergy.org/commercial-rates/</u>

Project impacts to existing sensitive receptors were addressed for temporary construction activities and long-term operational conditions. There are also several sources of existing TACs and localized air pollutants in the vicinity of the project. The impact of the existing sources of TAC was also assessed in terms of the cumulative risk which includes the project contribution, as well as the risk on the new sensitive receptors introduced by the project.

Community Risk Methodology for Construction and Operation

Community risk impacts are addressed by predicting increased lifetime cancer risk, the increase in annual PM_{2.5} concentrations, and computing the Hazard Index (HI) for non-cancer health risks. The risk impacts from the project are the combination of risks from construction and operation sources. These sources include on-site construction activity, construction truck hauling, and increased traffic from the project. To evaluate the increased cancer risks from the project, a 30-year exposure period was used, per BAAQMD guidance,¹⁰ with the sensitive receptors being exposed to both project construction and operation emissions during this timeframe.

The project increased cancer risk is computed by summing the project construction cancer risk and operation cancer risk contributions. Unlike, the increased maximum cancer risk, the annual PM_{2.5} concentration and HI values are not additive but based on the annual maximum values for the entirety of the project. The project maximally exposed individual (MEI) is identified as the sensitive receptor that is most impacted by the project's construction and operation.

The methodology for computing community risks impacts is contained in *Attachment 1*. This involved the calculation of TAC and PM_{2.5} emissions, dispersion modeling of these emissions, and computations of cancer risk and non-cancer health effects.

Modeled Sensitive Receptors

Receptors for this assessment included locations where sensitive populations would be present for extended periods of time (i.e., chronic exposures). This includes the existing residences to the northwest and southwest of the site, as shown in Figure 1. Residential receptors are assumed to include all receptor groups (i.e., third trimester, infants, children, and adults) with almost continuous exposure to project emissions.

Community Health Risk from Project Construction

Construction equipment and associated heavy-duty truck traffic generates diesel exhaust, which is a known TAC. These exhaust emissions pose health risks for sensitive receptors such as surrounding residents. The primary community risk impact issues associated with construction emissions are cancer risk and exposure to PM_{2.5}. Diesel exhaust poses both a potential health and nuisance impact to nearby receptors. A health risk assessment of the project construction activities was conducted that evaluated potential health effects to nearby sensitive receptors from construction emissions of DPM and $PM_{2.5}$.¹¹ This assessment included dispersion modeling to

¹⁰ BAAQMD, 2016. *BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines*. December 2016.

¹¹ DPM is identified by California as a toxic air contaminant due to the potential to cause cancer.

predict the offsite concentrations resulting from project construction, so that lifetime cancer risks and non-cancer health effects could be evaluated.

Construction Emissions

The CalEEMod model and EMFAC2021 emissions provided total annual PM_{10} exhaust emissions (assumed to be DPM) for the off-road construction equipment and for exhaust emissions from onroad vehicles, with total emissions from all construction stages as 0.09 tons (180 pounds). The onroad emissions are a result of haul truck travel during grading activities, worker travel, and vendor deliveries during construction. A trip length of one mile was used to represent vehicle travel while at or near the construction site. It was assumed that these emissions from on-road vehicles traveling at or near the site would occur at the construction site. Fugitive $PM_{2.5}$ dust emissions were calculated by CalEEMod as 0.01 tons (23 pounds) for the overall construction period.

Dispersion Modeling

The U.S. EPA AERMOD dispersion model was used to predict concentrations of DPM and PM_{2.5} concentrations at sensitive receptors in the vicinity of the project construction area. The AERMOD dispersion model is a BAAQMD-recommended model for use in modeling analysis of these types of emission activities for CEQA projects.¹² Emission sources for the construction site were grouped into two categories: exhaust emissions of DPM and fugitive PM_{2.5} dust emissions.

Construction Sources

Combustion equipment DPM exhaust emissions were modeled as a series of point sources with a nine-foot release height (construction equipment exhaust stack height) placed at 23 feet (7 meter) intervals throughout the construction site. This resulted in 191 individual point sources being used to represent mobile equipment DPM exhaust emissions in the respective construction area, with DPM emissions occurring throughout the project construction site. In addition, the following stack parameters were used: a vertical release, a stack diameter of 2.5 inches, an exhaust temperature of 918°F, and an exit velocity of 309 feet per second. Since these are point sources plume rise is calculated by the AERMOD dispersion model. Emissions from vehicle travel on- and off-site were also distributed among the point sources throughout the site. The locations of the point sources used for the modeling are identified in Figure 1.

For modeling fugitive PM_{2.5} emissions, a near-ground level release height of 7 feet (2 meters) was used for the area source. Fugitive dust emissions at construction sites come from a variety of sources, including truck and equipment travel, grading activities, truck loading (with loaders) and unloading (rear or bottom dumping), loaders and excavators moving and transferring soil and other materials, etc. All of these activities result in fugitive dust emissions at various heights at the point(s) of generation. Once generated, the dust plume will tend to rise as it moves downwind across the site and exit the site at a higher elevation than when it was generated. For all these reasons, a 7-foot release height was used as the average release height across the construction site.

¹² Bay Area Air Quality Management District (BAAQMD), 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May.

Emissions from the construction equipment and on-road vehicle travel were distributed throughout the modeled area sources.

AERMOD Inputs and Meteorological Data

The modeling used a five-year data set (2013 - 2017) of hourly meteorological data from the San Jose International Airport prepared for use with the AERMOD model by BAAQMD. Construction emissions were modeled as occurring Monday through Friday between 7:00 a.m. to 4:00 p.m., when the majority of construction activity is expected to occur. Annual DPM and PM_{2.5} concentrations from construction activities during the 2023-2024 period were calculated using the model. DPM and PM_{2.5} concentrations were calculated at nearby sensitive receptors. Receptor heights of 5 feet (1.5 meters) were used to represent the breathing height on the first floor of nearby single-family residences.¹³ For the Vespaio multi-family residence building west of the project site, a receptor height of 25 feet was used (7.6 meters) since the first floor of residences begin on the third floor of the building.

Summary of Construction Community Risk Impacts

The maximum increased cancer risks were calculated using the modeled TAC concentrations combined with the Office of Environmental Health Hazard Assessment (OEHHA) guidance for age sensitivity factors and exposure parameters as recommended by BAAQMD (see *Attachment 1*). Non-cancer health hazards and maximum PM_{2.5} concentrations were also calculated and identified. Age-sensitivity factors reflect the greater sensitivity of infants and small children to cancer causing TACs. Third trimester, infant, child, and adult exposures were assumed to occur at all residences during the entire construction period.

The maximum modeled annual $PM_{2.5}$ concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI value was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation referce exposure level of 5 μ g/m³.

Operational Sources

The project proposes to include one stand-by emergency diesel generator. The generator will be located away from the norther boundary of the project, at a distance of over 100 feet from the nearest sensitive receptors. The generator would be 200-kW powered by a 268-HP diesel engine. Annual emissions from this generator were predicted using the CalEEMod model.

This diesel engine would be subject to CARB's Stationary Diesel Airborne Toxics Control Measure (ATCM) and require permits from the BAAQMD, since it will be equipped with an engine larger than 50-HP. BACT requirements would apply to these generators that would limit DPM emissions. As part of the BAAQMD permit requirements for toxics screening analysis, the engine emissions will have to meet Best Available Control Technology for Toxics (BACT) and pass the toxic risk screening level of less than ten in a million. The risk assessment would be

¹³ Bay Area Air Quality Management District, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: <u>https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</u>

prepared by BAAQMD. Depending on results, BAAQMD would set limits for DPM emissions (e.g., more restricted engine operation periods). Sources of air pollutant emissions complying with all applicable BAAQMD regulations generally will not be considered to have a significant air quality community risk impact.

To obtain an estimate of potential cancer risks and PM_{2.5} impacts from operation of the emergency generator, the U.S. EPA AERMOD dispersion model was used to calculate the maximum annual DPM concentration at off-site sensitive receptor locations (nearby residences). The same receptors, breathing heights, and BAAQMD San José International Airport meteorological data used in the construction dispersion modeling were used for the generator models. Stack parameters (exhaust flow rate, and exhaust gas temperature) for modeling the generator were based on BAAQMD default parameters for emergency generators¹⁴. Annual average DPM and PM_{2.5} concentrations were modeled assuming that generator testing could occur at any time of the day (24 hours per day, 365 days per year).

Summary of Predicted Health Risks

The maximum modeled annual DPM and $PM_{2.5}$ concentrations, which includes both the DPM and fugitive $PM_{2.5}$ concentrations, were identified at nearby sensitive receptors (as shown in Figure 1) to find the maximally exposed individuals (MEI). Results of this assessment indicated that the construction MEI was located on the first floor (5 feet above ground) of an adjacent single-family home northwest of the project site. Table 6 summarizes the maximum cancer risks, $PM_{2.5}$ concentrations, and health hazard indexes for project related construction activities affecting the construction MEI. *Attachment 4* to this report includes the emission calculations used for the construction area source modeling and the cancer risk calculations.

Source		Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index
	Project Impact			
Project Construction	Unmitigated	8.01 (infant)	0.08	0.01
Project Operation (200kw Diesel Generator)		0.16	< 0.01	< 0.01
Total Project (Construction + Operation)		8.17	< 0.09	< 0.02
BAAQMD Single-Source Threshold		10	0.3	1.0
Exceed Threshold?	Unmitigated	No	No	No

Table 6.Health Risk Impacts at the Off-site MEI

¹⁴ The San Francisco Community Risk Reduction Plan: Technical Support Document, BAAQMD, San Francisco Dept. of Public Health, and San Francisco Planning Dept., December 2012

Figure 1. Locations of Project Construction Site, Off-Site Sensitive Receptors, and Maximum TAC Impact

Cumulative Community Risks of all TAC Sources at the Offsite Project MEI

Community health risk assessments typically look at all substantial sources of TACs that can affect sensitive receptors that are located within 1,000 feet of a project site (i.e., influence area). These sources include rail lines, highways, busy surface streets, and stationary sources identified by BAAQMD.

A review of the project area and based on traffic information for a past nearby project indicated that three roadways; State Route 87, Julian Street, and W Santa Clara Street within the influence area would have traffic exceeding 10,000 vehicles per day. A review of the project area indicates that Zone 4 of the CalTrain line passes through the influence area. A review of BAAQMD's stationary source geographic information systems (GIS) map tool identified five stationary sources with the potential to affect the project site and MEI. Figure 2 shows the project area included within the influence area and the location of the MEI. Details of the modeling and community risk calculations are included in *Attachment 5*.

Figure 2. Project Site and Nearby TAC and PM_{2.5} Sources

Highways - State Route 87 (S.R. 87)

The project MEI is located near State Route 87 (S.R. 87). A refined analysis of the impacts of TACs and $PM_{2.5}$ to the MEI receptor is necessary to evaluate potential cancer risks and $PM_{2.5}$ concentrations from S.R. 87. A review of the traffic information reported by Caltrans indicates that S.R. 87 traffic includes 124,000 vehicles per day (based on an annual average)¹⁵ that are about 3.7 percent trucks, of which 1.0 percent are considered diesel heavy duty trucks and 2.7 percent are medium duty trucks.¹⁶

Railways - CalTrain Zone 4

The project MEI is approximately 550 feet northeast of Zone 4 of the CalTrain railway. Screening data reported by BAAQMD for railways were incorporated into this analysis. BAAQMD provided raster files with cancer risk and PM_{2.5} values for all highways/freeways, roadways (ADT > 30,000), and rail lines within the Bay Area. The risk values shown in the raster files were modeled in AERMOD in 20x20-meter grid cells. The files incorporate AADT for the highway using EMFAC2014 data for fleet mix and include the OEHHA 2015 factor. These raster files were used to screen Zone 4 of the CalTrain railway risks and hazards upon the MEI. The railway screening level impacts are listed in Table 7 and included in *Attachment 5*. Note that the cancer risk value is not adjusted for age sensitivity or exposure duration. It is conservatively higher than adjusted cancer risk values. Refined modeling of the railway would have resulted in even lower risk values. Note that BAAQMD has found that non-cancer hazards were found to be minimal, so an HI value is not included.

Local Roadways - Julian Street and W. Santa Clara Street

A refined analysis of potential health impacts from vehicle traffic on Julian Street and W. Santa Clara Street was conducted. The refined analysis involved predicting emissions for the traffic volume and mix of vehicle types on the roadways near the project site and using an atmospheric dispersion model to predict exposure to TACs. The associated cancer risks are then computed based on the modeled exposures. *Attachment 1* includes a description of how community risk impacts, including cancer risk are computed.

Emission Rates

This analysis involved the development of DPM, organic TACs, and PM_{2.5} emissions for traffic on both roadways and S.R. 87 using the Caltrans version of the EMFAC2017 emissions model, known as CT-EMFAC2017. CT-EMFAC2017 provides emission factors for mobile source criteria pollutants and TACs, including DPM. Emission processes modeled include running exhaust for DPM, PM_{2.5} and total organic compounds (e.g., TOG), running evaporative losses for TOG, and tire and brake wear and fugitive road dust for PM_{2.5}. All PM_{2.5} emissions from all vehicles were used, rather than just the PM_{2.5} fraction from diesel powered vehicles, because all vehicle types (i.e., gasoline and diesel powered) produce PM_{2.5}. Additionally, PM_{2.5} emissions from vehicle tire and brake wear and from re-entrained roadway dust were included in these emissions. DPM

¹⁵ Caltrans. 2021. 2019 Traffic Volumes California State Highways.

¹⁶ Caltrans. 2021. 2020 Annual Average Daily Truck Traffic on the California State Highway System.

emissions are projected to decrease in the future and are reflected in the CT-EMFAC2017 emissions data. Inputs to the model include region (Santa Clara County), type of road (freeway, major/collector), local truck mix on S.R. 87 and truck percentage for non-state highways in Santa Clara County (3.51 percent) for both local roadways¹⁷, year of analysis (2023 – construction start year), and season (annual).

In order to estimate TAC and PM_{2.5} emissions over the 30-year exposure period used for calculating the increased cancer risks for sensitive receptors at the MEI and project site, the CT-EMFAC2017 model was used to develop vehicle emission factors for the year 2023 (project construction start year). Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CT-EMFAC2017. Year 2023 emissions were conservatively assumed as being representative of future conditions over the time period that cancer risks are evaluated since, as discussed above, overall vehicle emissions, and in particular diesel truck emissions, will decrease in the future.

The average daily traffic (ADT) for Julian Street and W. Santa Clara Street was calculated based on traffic data provided for a prior, nearby project located at 292 Stockton Avenue, approximately 800 feet west of the project site. The estimated ADT on W. Santa Clara Street was 19,793 vehicles, and 9,833 vehicles on Julian Street. Average hourly traffic distributions for Santa Clara County roadways were developed using the EMFAC model,¹⁸ which were then applied to the ADT volumes to obtain estimated hourly traffic volumes and emissions for the roadway. An average travel speed of 30 miles per hour (mph) on both streets was used for all hours of the day based on posted speed limit signs on each roadway.

Average daily traffic (ADT) volumes and truck percentages were based on Caltrans data for S.R. 87. Traffic volumes were assumed to increase 1 percent per year for a total of 128,960 vehicles. Hourly traffic distributions specific to these segments of S.R. 87 were obtained from Caltrans Performance Measurement System (PeMS). PeMS data is collected in real-time from nearly 40,000 individual detectors spanning the freeway system across all major metropolitan areas of California.¹⁹ The fraction of traffic volume each hour was calculated and applied to the 2023 average daily traffic volumes estimate to estimate hourly traffic emission rates for S.R. 87.

Based on traffic data from the Caltrans PeMS, traffic speeds during the daytime and nighttime periods were identified. For northbound traffic from 6:00 a.m. until 3:00 p.m., an average speed of 55 miles per hour (mph) was assumed for all vehicles. From 3:00 p.m. until 6:00 a.m., an average speed of 60 mph was assumed for all vehicles.

¹⁷ Bay Area Air Quality Management District, 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May. Web: <u>https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</u>

¹⁸ The Burden output from EMFAC2007, a previous version of CARB's EMFAC model, was used for this since the current web-based version of EMFAC2021 does not include Burden type output with hour by hour traffic volume information.

¹⁹ https://dot.ca.gov/programs/traffic-operations/mpr/pems-source

For southbound traffic from 3:00 a.m. until 12:00 a.m., an average speed of 55 miles per hour (mph) was assumed for all vehicles. From 12:00 a.m. until 3:00 a.m., an average speed of 60 mph was assumed for all vehicles.

This analysis involved the development of DPM, organic TACs, and PM_{2.5} emissions for future traffic on S.R. 87, Julian Street, and W Santa Clara Street and using these emissions with an air quality dispersion model to calculate TAC and PM_{2.5} concentrations at the project MEI receptor locations. Maximum increased lifetime cancer risks and annual PM_{2.5} concentrations for the receptors were then computed using modeled TAC and PM_{2.5} concentrations and BAAQMD methods and exposure parameters described in *Attachment 1*.

Dispersion Modeling

Dispersion modeling of TAC and PM_{2.5} emissions was conducted using the EPA AERMOD air quality dispersion model, which is recommended by the BAAQMD for this type of analysis.²⁰ TAC and PM_{2.5} emissions from traffic on S.R. 87, Julian Street, and W. Santa Clara Street within 1,000 feet of the project site were evaluated. Vehicle traffic on the roadways were modeled using a series of adjacent volume sources along a line (line volume sources); with line segments used for each travel direction on all streets. The same meteorological data and off-site sensitive receptors used in the previous dispersion modeling were used in the roadway modeling. Other inputs to the model included road geometry, hourly traffic emissions, and receptor locations. Annual TAC and PM_{2.5} concentrations for 2023 from traffic on all three roadways were calculated using the model. Concentrations were calculated at the project MEI with receptor heights of 5 feet (1.5 meters) to represent the breathing heights of residents in the home.

Figure 2 shows the roadway segments modeled and residential receptor locations used in the modeling. Table 7 lists the risks and hazards from the roadway. The emission rates and roadway calculations used in the analysis are shown in *Attachment 5*.

BAAQMD Permitted Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's *Permitted Stationary Sources 2018* GIS website,²¹ which identifies the location of nearby stationary sources and their estimated risk and hazard impacts, including emissions and adjustments to account for new OEHHA guidance. Five sources were identified using this tool, a non-retail gas dispensing facility that also has a generator, three autobody coating operations, and one source with two generators. Google's Downtown West campus will also have operational emissions upon completion of that project. Those emissions are included in this analysis.

The screening level risks and hazards provided by BAAQMD for the stationary source was adjusted for distance using BAAQMD's *Distance Adjustment Multiplier Tool for Gasoline Dispending Facilities*. Community risk impacts from the stationary source upon the MEI are reported in Table 7.

 ²⁰ BAAQMD. Recommended Methods for Screening and Modeling Local Risks and Hazards. May 2012
²¹ BAAQMD,

https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=2387ae674013413f987b1071715daa65

Summary of Cumulative Health Risk Impact at Construction MEI

Table 7 reports both the project and cumulative community risk impacts at the sensitive receptors most affected by construction (i.e., the MEI). Without mitigation, the project's community risk from project construction activities would not exceed the maximum increased cancer risk, annual PM_{2.5} concentration, and hazard risk value single-source thresholds. In addition, the combined unmitigated cancer risk, PM_{2.5} concentration, and HI values would not exceed their respective cumulative thresholds.

Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index
Project Impacts	5		
Project Construction Unmitigated	8.01 (infant)	0.08	0.01
Project Operation (200kw Diesel Generator)	0.16	< 0.01	< 0.01
Total Project (Construction + Operation)	8.17	< 0.09	< 0.02
BAAQMD Single-Source Threshold	10	0.3	1.0
<i>Exceed Threshold?</i> Unmitigated	No	No	No
Cumulative Source	es		
S.R. 87, ADT 128,960	0.16	0.01	< 0.01
CalTrain Zone 4 BAAQMD Raster Data, MEI at 550 feet northeast	34.84	0.06	-
Julian St., ADT 9,833	0.45	0.04	< 0.01
W Santa Clara St., ADT 19,793	0.27	0.02	< 0.01
Century Collision & Repair (Facility ID #8417, Auto Body Coating Operation), MEI at 950 feet	< 0.01	-	< 0.01
Fleet Body Worx Inc (Facility ID #11819, Auto Body Coating Operation), MEI at 950 feet	<0.01	-	< 0.01
County of Santa Clara (Facility ID #20411, Generator), MEI at 1000+ feet	0.10	< 0.01	< 0.01
S & S Toy Shop (Facility ID #200395, Auto Body Coating Operation), MEI at 880 feet	<0.01	-	< 0.01
Pacific Gas and Electric Company (Facility ID #3100, Non- retail gas dispensing facility and generator), MEI at 1000+ feet	0.01	<0.01	< 0.01
Google Downtown West Campus, MEI at 300 feet ¹	1.4	0.26	0.01
Combined Sources Unmitigated	<45.43	< 0.50	< 0.11
BAAQMD Cumulative Source Threshold	100	0.8	10.0
Exceed Threshold? Unmitigated	No	No	No

Table 7.Impacts from Combined Sources at Project MEI

¹ Values not adjusted for distance. MEI distance approximated due to large campus size.

GREENHOUSE GAS EMISSIONS

<u>Setting</u>

Gases that trap heat in the atmosphere, GHGs, regulate the earth's temperature. This phenomenon, known as the greenhouse effect, is responsible for maintaining a habitable climate. The most common GHGs are carbon dioxide (CO₂) and water vapor but there are also several others, most importantly methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). These are released into the earth's atmosphere through a variety of natural processes and human activities. Sources of GHGs are generally as follows:

- CO₂, CH₄, and N₂O are byproducts of fossil fuel combustion.
- N₂O is associated with agricultural operations such as fertilization of crops.
- CH₄ is commonly created by off-gassing from agricultural practices (e.g., keeping livestock) and landfill operations.
- Chlorofluorocarbons (CFCs) were widely used as refrigerants, propellants, and cleaning solvents but their production has been stopped by international treaty.
- HFCs are now used as a substitute for CFCs in refrigeration and cooling.
- PFCs and sulfur hexafluoride emissions are commonly created by industries such as aluminum production and semi-conductor manufacturing.

Each GHG has its own potency and effect upon the earth's energy balance. This is expressed in terms of a global warming potential (GWP), with CO₂ being assigned a value of 1 and sulfur hexafluoride being several orders of magnitude stronger. In GHG emission inventories, the weight of each gas is multiplied by its GWP and is measured in units of CO₂ equivalents (CO₂e).

An expanding body of scientific research supports the theory that global climate change is currently affecting changes in weather patterns, average sea level, ocean acidification, chemical reaction rates, and precipitation rates, and that it will increasingly do so in the future. The climate and several naturally occurring resources within California are adversely affected by the global warming trend. Increased precipitation and sea level rise will increase coastal flooding, saltwater intrusion, and degradation of wetlands. Mass migration and/or loss of plant and animal species could also occur. Potential effects of global climate change that could adversely affect human health include more extreme heat waves and heat-related stress; an increase in climate-sensitive diseases; more frequent and intense natural disasters such as flooding, hurricanes and drought; and increased levels of air pollution.

Recent Regulatory Actions for GHG Emissions

Executive Order S-3-05 – California GHG Reduction Targets

Executive Order (EO) S-3-05 was signed by Governor Arnold Schwarzenegger in 2005 to set GHG emission reduction targets for California. The three targets established by this EO are as follows: (1) reduce California's GHG emissions to 2000 levels by 2010, (2) reduce California's GHG emissions to 1990 levels by 2020, and (3) reduce California's GHG emissions by 80 percent below 1990 levels by 2050.

Assembly Bill 32 – California Global Warming Solutions Act (2006)

Assembly Bill (AB) 32, the Global Warming Solutions Act of 2006, codified the State's GHG emissions target by directing CARB to reduce the State's global warming emissions to 1990 levels by 2020. AB 32 was signed and passed into law by Governor Schwarzenegger on September 27, 2006. Since that time, the CARB, CEC, California Public Utilities Commission (CPUC), and Building Standards Commission have all been developing regulations that will help meet the goals of AB 32 and Executive Order S-3-05, which has a target of reducing GHG emissions 80 percent below 1990 levels.

A Scoping Plan for AB 32 was adopted by CARB in December 2008. It contains the State's main strategies to reduce GHGs from business-as-usual emissions projected in 2020 back down to 1990 levels. Business-as-usual (BAU) is the projected emissions in 2020, including increases in emissions caused by growth, without any GHG reduction measures. The Scoping Plan has a range of GHG reduction actions, including direct regulations, alternative compliance mechanisms, monetary and non-monetary incentives, voluntary actions, and market-based mechanisms such as a cap-and-trade system.

As directed by AB 32, CARB has also approved a statewide GHG emissions limit. On December 6, 2007, CARB staff resolved an amount of 427 million metric tons (MMT) of CO₂e as the total statewide GHG 1990 emissions level and 2020 emissions limit. The limit is a cumulative statewide limit, not a sector- or facility-specific limit. CARB updated the future 2020 BAU annual emissions forecast, in light of the economic downturn, to 545 MMT of CO₂e. Two GHG emissions reduction measures currently enacted that were not previously included in the 2008 Scoping Plan baseline inventory were included, further reducing the baseline inventory to 507 MMT of CO₂e. Thus, an estimated reduction of 80 MMT of CO₂e is necessary to reduce statewide emissions to meet the AB 32 target by 2020.

Executive Order B-30-15 & Senate Bill 32 GHG Reduction Targets – 2030 GHG Reduction Target

In April 2015, Governor Brown signed EO B-30-15, which extended the goals of AB 32, setting a greenhouse gas emissions target at 40 percent of 1990 levels by 2030. On September 8, 2016, Governor Brown signed Senate Bill (SB) 32, which legislatively established the GHG reduction target of 40 percent of 1990 levels by 2030. In November 2017, CARB issued *California's 2017 Climate Change Scoping Plan.*²² While the State is on track to exceed the AB 32 scoping plan 2020 targets, this plan is an update to reflect the enacted SB 32 reduction target.

SB 32 was passed in 2016, which codified a 2030 GHG emissions reduction target of 40 percent below 1990 levels. CARB is currently working on a second update to the Scoping Plan to reflect the 2030 target set by Executive Order B-30-15 and codified by SB 32. The proposed Scoping Plan Update was published on January 20, 2017 as directed by SB 32 companion legislation AB 197. The mid-term 2030 target is considered critical by CARB on the path to obtaining an even

²² California Air Resource Board, 2017. *California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Targets*. November. Web: https://ww2.arb.ca.gov/sites/default/files/classic//cc/scopingplan/scoping_plan_2017.pdf

deeper GHG emissions target of 80 percent below 1990 levels by 2050, as directed in Executive Order S-3-05. The Scoping Plan outlines the suite of policy measures, regulations, planning efforts, and investments in clean technologies and infrastructure, providing a blueprint to continue driving down GHG emissions and obtain the statewide goals.

The new Scoping Plan establishes a strategy that will reduce GHG emissions in California to meet the 2030 target (note that the AB 32 Scoping Plan only addressed 2020 targets and a long-term goal). Key features of this plan are:

- Cap and Trade program places a firm limit on 80 percent of the State's emissions;
- Achieving a 50-percent Renewable Portfolio Standard by 2030 (currently at about 29 percent statewide);
- Increase energy efficiency in existing buildings;
- Develop fuels with an 18-percent reduction in carbon intensity;
- Develop more high-density, transit-oriented housing;
- Develop walkable and bikeable communities;
- Greatly increase the number of electric vehicles on the road and reduce oil demand in half;
- Increase zero-emissions transit so that 100 percent of new buses are zero emissions;
- Reduce freight-related emissions by transitioning to zero emissions where feasible and near-zero emissions with renewable fuels everywhere else; and
- Reduce "super pollutants" by reducing methane and hydrofluorocarbons or HFCs by 40 percent.

In the updated Scoping Plan, CARB recommends statewide targets of no more than 6 metric tons (MT) CO₂e per capita (statewide) by 2030 and no more than 2 metric tons CO₂e per capita by 2050. The statewide per capita targets account for all emissions sectors in the State, statewide population forecasts, and the statewide reductions necessary to achieve the 2030 statewide target under SB 32 and the longer-term State emissions reduction goal of 80 percent below 1990 levels by 2050.

Executive Order B-55-18 – Carbon Neutrality

In 2018, a new statewide goal was established to achieve carbon neutrality as soon as possible, but no later than 2045, and to maintain net negative emissions thereafter. CARB and other relevant state agencies are tasked with establishing sequestration targets and create policies/programs that would meet this goal.

Senate Bill 375 – California's Regional Transportation and Land Use Planning Efforts (2008)

California enacted legislation (SB 375) to expand the efforts of AB 32 by controlling indirect GHG emissions caused by urban sprawl. SB 375 provides incentives for local governments and applicants to implement new conscientiously planned growth patterns. This includes incentives for creating attractive, walkable, and sustainable communities and revitalizing existing communities. The legislation also allows applicants to bypass certain environmental reviews under CEQA if they build projects consistent with the new sustainable community strategies. Development of more alternative transportation options that would reduce vehicle trips and miles traveled, along with

traffic congestion, would be encouraged. SB 375 enhances CARB's ability to reach the AB 32 goals by directing the agency in developing regional GHG emission reduction targets to be achieved from the transportation sector for 2020 and 2035. CARB works with the metropolitan planning organizations (e.g. Association of Bay Area Governments [ABAG] and Metropolitan Transportation Commission [MTC]) to align their regional transportation, housing, and land use plans to reduce vehicle miles traveled and demonstrate the region's ability to attain its GHG reduction targets. A similar process is used to reduce transportation emissions of ozone precursor pollutants in the Bay Area.

Senate Bill 350 - Renewable Portfolio Standards

In September 2015, the California Legislature passed SB 350, which increases the states Renewables Portfolio Standard (RPS) for content of electrical generation from the 33 percent target for 2020 to a 50 percent renewables target by 2030.

Senate Bill 100 – Current Renewable Portfolio Standards

In September 2018, SB 100 was signed by Governor Brown to revise California's RPS program goals, furthering California's focus on using renewable energy and carbon-free power sources for its energy needs. The bill would require all California utilities to supply a specific percentage of their retail sales from renewable resources by certain target years. By December 31, 2024, 44 percent of the retails sales would need to be from renewable energy sources, by December 31, 2026 the target would be 40 percent, by December 31, 2017 the target would be 52 percent, and by December 31, 2030 the target would be 60 percent. By December 31, 2045, all California utilities would be required to supply retail electricity that is 100 percent carbon-free and sourced from eligible renewable energy resource to all California end-use customers.

California Building Standards Code – Title 24 Part 11 & Part 6

The California Green Building Standards Code (CALGreen Code) is part of the California Building Standards Code under Title 24, Part 11.²³ The CALGreen Code encourages sustainable construction standards that involve planning/design, energy efficiency, water efficiency resource efficiency, and environmental quality. These green building standard codes are mandatory statewide and are applicable to residential and non-residential developments. The most recent CALGreen Code (2019 California Building Standard Code) was effective as of January 1, 2020.

The California Building Energy Efficiency Standards (California Energy Code) is under Title 24, Part 6 and is overseen by the California Energy Commission (CEC). This code includes design requirements to conserve energy in new residential and non-residential developments, while being cost effective for homeowners. This Energy Code is enforced and verified by cities during the planning and building permit process. The current energy efficiency standards (2019 Energy Code) replaced the 2016 Energy Code as of January 1,2020. Under the 2019 standards, single-family homes are predicted to be 53 percent more efficient than homes built under the 2016 standard due more stringent energy-efficiency standards and mandatory installation of solar photovoltaic

²³ See: <u>https://www.dgs.ca.gov/BSC/Resources/Page-Content/Building-Standards-Commission-Resources-List-Folder/CALGreen#:~:text=CALGreen%20is%20the%20first%2Din,to%201990%20levels%20by%202020.</u>

systems. For nonresidential developments, it is predicted that these buildings will use 30 percent less energy due to lightening upgrades.²⁴

Federal and Statewide GHG Emissions

The U.S. EPA reported that in 2018, total gross nationwide GHG emissions were 6,676.6 million metric tons (MMT) carbon dioxide equivalent (CO₂e).²⁵ These emissions were lower than peak levels of 7,416 MMT that were emitted in 2007. CARB updates the statewide GHG emission inventory on an annual basis where the latest inventory includes 2000 through 2017 emissions.²⁶ In 2017, GHG emissions from statewide emitting activities were 424 MMT. The 2017 emissions have decreased by 14 percent since peak levels in 2004 and are 7 MMT below the 1990 emissions level and the State's 2020 GHG limit. Per capita GHG emissions in California have dropped from a 2001 peak of 14.1 MT per person to 10.7 MT per person in 2017. The most recent Bay Area emission inventory was computed for the year 2011.²⁷ The Bay Area GHG emission were 87 MMT. As a point of comparison, statewide emissions were about 444 MMT in 2011

Climate Smart San José

Climate Smart San José is a plan to reduce air pollution, save water, and create a stronger and healthier community. The City approved goals and milestones in February 2018 to ensure the City can substantially reduce GHG emissions through reaching the following goals and milestones:

- All new residential buildings will be Zero Net Carbon Emissions (ZNE) by 2020 and all new commercial buildings will be ZNE by 2030 (Note that ZNE buildings would be all electric with a carbon-free electricity source).
- San José Clean Energy (SJCE) will provide 100-percent carbon-free base power by 2021.
- One gigawatt of solar power will be installed in San José by 2040.
- 61 percent of passenger vehicles will be powered by electricity by 2030.

The California Energy Commission (CEC) updates the California Building Energy Efficiency Standards every three years, in alignment with the California Code of regulations. Title 24 Parts 6 and 11 of the California Building Energy Efficiency Standards and the California Green Building Standards Code (CALGreen) address the need for regulations to improve energy efficiency and combat climate change. The 2019 CAL Green standards include some substantial changes intended to increase the energy efficiency of buildings. For example, the code encourages the installation of solar and heat pump water heaters in low-rise residential buildings. The 2019 California Code went before City Council in October 2019 for approval, with an effective date of January 1, 2020. As part of this action, the City adopted a "reach code" that requires development projects to exceed

²⁴ See: <u>https://www.energy.ca.gov/sites/default/files/2020-03/Title_24_2019_Building_Standards_FAQ_ada.pdf</u>

²⁵ United States Environmental Protection Agency, 2020. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2018*. April. Web: <u>https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf</u>

²⁶ CARB. 2019. 2019 Edition, California Greenhouse Gas Emission Inventory: 2000 – 2017. Web: https://ww3.arb.ca.gov/cc/inventory/pubs/reports/2000_2017/ghg_inventory_trends_00-17.pdf

²⁷ BAAQMD. 2015. Bay Area Emissions Inventory Summary Report: Greenhouse Gases Base Year 2011. January. Web: <u>http://www.baaqmd.gov/~/media/files/planning-and-research/emission-inventory/by2011_ghgsummary.pdf</u> accessed Nov. 26, 2019.

the minimum Building Energy Efficiency requirements.²⁸ The City's reach code applies only to new residential and non-residential construction in San José. It incentivizes all-electric construction, requires increased energy efficiency and electrification-readiness for those choosing to maintain the presence of natural gas. The code requires that non-residential construction include solar readiness. It also requires additional EV charging readiness and/or electric vehicle service equipment (EVSE) installation for all development types.

San José 2030 Greenhouse Gas Reduction Strategy

The 2030 Greenhouse Gas Reduction Strategy (GHGRS)²⁹ is a comprehensive update to the City of San José's original GHGRS and builds on the Envision San José 2040 General Plan and Climate Smart San José [2018], which expanded the City's Green Vision to advance the City towards urban sustainability and reduce GHG emissions through a combination of City initiatives. It was prepared by the City to build on the goals of the previous GHGRS and to further the strategies embedded in other City plans to align with the state's 2030 GHG target (SB 32) and with consideration for the state's long-term emissions goal. The 2030 GHGRS proposes strategies designed to reduce the City's GHG emissions levels to 40 percent below 1990 levels by the year 2030 to meet the long-term target of carbon neutrality by 2045 [Executive Order B-55-18]. The 2030 GHGRS does not have a specific metric ton GHG threshold for project-level construction or operation. The 2030 GHGRS did develop an interim emissions reduction target of 2.94 MT CO₂e/SP by 2030, which was derived through guidance from ARB and OPR to demonstrate consistency with the state's adopted 2030 GHG target (SB 32). Service population (SP) is defined as the number of residents plus the number of people working within San José.

Significance Thresholds

The 2030 GHGRS serves as a Qualified Climate Action Plan for purposes of tiering and streamlining under the CEQA. The Attachment A Development Compliance Checklist serves to apply the relevant General Plan and 2030 GHGRS policies through a streamlined review process for proposed new development projects that are subject to discretionary review and that trigger environmental review under the CEQA. Conformance of the Development Compliance Checklist would mean the project plans to include GHG reduction measures as part of the project, complying with the City's GHG reduction goals, and would then not have an exceedance of GHG emissions. *Attachment* 6 includes the 2030 GHGRS Development Compliance Checklist.

Impact GHG-1: Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

GHG emissions associated with development of the proposed project would occur over the shortterm from construction activities, consisting primarily of emissions from equipment exhaust and worker and vendor trips. There would also be long-term operational emissions associated with vehicular traffic within the project vicinity, energy and water usage, and solid waste disposal. The

²⁸ City of San José Transportation and Environmental Committee, *Building Reach Code for New Construction Memorandum*, August 2019.

²⁹ City of San José. 2030 Greenhouse Gas Reduction Strategy. August 2020. Web: https://www.sanjoseca.gov/Home/ShowDocument?id=63605

impact of GHG emissions are determined through the conformance with the GHGRS Checklist. Emissions from the project were computed for informational purposes. Emissions for the proposed project are discussed below and were analyzed using the methodology recommended in the BAAQMD CEQA Air Quality Guidelines.

CalEEMod Modeling

CalEEMod was used to predict GHG emissions from operation of the site assuming full build-out of the project. The project land use types and size and other project-specific information were input to the model, as described above within the operational period emissions. CalEEMod output is included in *Attachment 2*.

Construction GHG Emissions

GHG emissions associated with construction were computed at 881 MT of CO₂e for the total construction period. These are the emissions from on-site operation of construction equipment, vendor and hauling truck trips, and worker trips. Neither the City nor BAAQMD have an adopted threshold of significance for construction-related GHG emissions, though BAAQMD recommends quantifying emissions and disclosing that GHG emissions would occur during construction. BAAQMD also encourages the incorporation of best management practices to reduce GHG emissions during construction where feasible and applicable.

Operational GHG Emissions

The CalEEMod model, along with the project vehicle trip generation rates, was used to estimate daily emissions associated with operation of the fully-developed site under the proposed project. As shown in Table 8, annual GHG emissions resulting from operation of the proposed project are predicted to be 177 metric tons (MT) of CO₂e in 2025 and 177 MT of CO₂e in 2030.

Source Category	Proposed Project in 2025	Proposed Project in 2030
Area	0.02	0.02
Energy Consumption	176.49	176.49
Mobile	0.00	0.00
Solid Waste Generation	0.00	0.00
Water Usage	0.00	0.00
Metric Ton Total (MT CO _{2e} /year)	176.51	176.51

Table 8.Annual Project GHG Emissions (CO2e) in Metric Tons

The impact of GHG emissions was addressed in the *Envisions San José 2040 General Plan* Draft Program EIR. The City of San José concluded that the build-out of the 2040 General Plan would have significant and unavoidable GHG emissions beyond 2020.³⁰ Therefore, this project would not contribute or result in a new GHG impact that has not already been identified. In addition, the project is intending to complete and comply with the City's 2030 GHGRS Development

³⁰ City of San Jose, 2011. "3.15.6 Mitigation and Avoidance Measures for Greenhouse Gas Emission Impacts", *Draft Program Environmental Impact Report for the Envisions San José 2040 General Plan.* June. Web: <u>https://www.sanjoseca.gov/home/showdocument?id=22041</u>

Compliance Checklist, which would facilitate GHG reduction strategies approved by the City to reduce the project's GHG emissions. Some of these GHG reduction strategies which could be incorporated with this project include the following:

- Implement green building measures through construction techniques and architectural design,
- Encourage the installation of solar panels or other clean energy power generation,
- Include electric vehicle charging stations,
- Develop a transportation demand management program to reduce the vehicle trips and vehicle miles generated by the project, and
- Include water and waste reduction features.

Supporting Documentation

Attachment 1 is the methodology used to compute community risk impacts, including the methods to compute lifetime cancer risk from exposure to project emissions.

Attachment 2 includes the CalEEMod output for project construction and operational criteria air pollutant and GHG emissions. The operational outputs for 2030 uses are also included in this attachment. Also included are any modeling assumptions.

Attachment 3 includes the EMFAC2021 emissions modeling. The input files for these calculations are voluminous and are available upon request in digital format.

Attachment 4 is the construction health risk assessment. This includes the summary of the dispersion modeling and the cancer risk calculations for construction. AERMOD dispersion modeling files for this assessment, which are quite voluminous, are available upon request and would be provided in digital format

Attachment 5 includes the cumulative community risk calculations, modeling results, and health risk calculations from sources affecting the construction MEI and project site receptors.

Attachment 6 includes the 2030 GHGRS Development Compliance Checklist.

Attachment 1: Health Risk Calculation Methodology

A health risk assessment (HRA) for exposure to Toxic Air Contaminates (TACs) requires the application of a risk characterization model to the results from the air dispersion model to estimate potential health risk at each sensitive receptor location. The State of California Office of Environmental Health Hazard Assessment (OEHHA) and California Air Resources Board (CARB) develop recommended methods for conducting health risk assessments. The most recent OEHHA risk assessment guidelines were published in February of 2015.³¹ These guidelines incorporate substantial changes designed to provide for enhanced protection of children, as required by State law, compared to previous published risk assessment guidelines. CARB has provided additional guidance on implementing OEHHA's recommended methods.³² This HRA used the 2015 OEHHA risk assessment guidelines and CARB guidance. The BAAQMD has adopted recommended procedures for applying the newest OEHHA guidelines as part of Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants.³³ Exposure parameters from the OEHHA guidelines and the recent BAAQMD HRA Guidelines were used in this evaluation.

Cancer Risk

Potential increased cancer risk from inhalation of TACs is calculated based on the TAC concentration over the period of exposure, inhalation dose, the TAC cancer potency factor, and an age sensitivity factor to reflect the greater sensitivity of infants and children to cancer causing TACs. The inhalation dose depends on a person's breathing rate, exposure time and frequency and duration of exposure. These parameters vary depending on the age, or age range, of the persons being exposed and whether the exposure is considered to occur at a residential location or other sensitive receptor location.

The current OEHHA guidance recommends that cancer risk be calculated by age groups to account for different breathing rates and sensitivity to TACs. Specifically, they recommend evaluating risks for the third trimester of pregnancy to age zero, ages zero to less than two (infant exposure), ages two to less than 16 (child exposure), and ages 16 to 70 (adult exposure). Age sensitivity factors (ASFs) associated with the different types of exposure are an ASF of 10 for the third trimester and infant exposures, an ASF of 3 for a child exposure, and an ASF of 1 for an adult exposure. Also associated with each exposure type are different breathing rates, expressed as liters per kilogram of body weight per day (L/kg-day) or liters per kilogram of body weight per 8-hour period for the case of worker or school child exposures. As recommended by the BAAQMD for residential exposures, 95th percentile breathing rates are used for the third trimester and infant exposures. BAAQMD recommends using the 95th percentile 8-hour breathing rates. Additionally, CARB and the BAAQMD recommend the use of a residential exposure duration of

³¹ OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

³² CARB, 2015. Risk Management Guidance for Stationary Sources of Air Toxics. July 23.

³³ BAAQMD, 2016. BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. December 2016.

30 years for sources with long-term emissions (e.g., roadways). For workers, assumed to be adults, a 25-year exposure period is recommended by the BAAQMD. For school children a 9-year exposure period is recommended by the BAAQMD.

Under previous OEHHA and BAAQMD HRA guidance, residential receptors are assumed to be at their home 24 hours a day, or 100 percent of the time. In the 2015 Risk Assessment Guidance, OEHHA includes adjustments to exposure duration to account for the fraction of time at home (FAH), which can be less than 100 percent of the time, based on updated population and activity statistics. The FAH factors are age-specific and are: 0.85 for third trimester of pregnancy to less than 2 years old, 0.72 for ages 2 to less than 16 years, and 0.73 for ages 16 to 70 years. Use of the FAH factors is allowed by the BAAQMD if there are no schools in the project vicinity have a cancer risk of one in a million or greater assuming 100 percent exposure (FAH = 1.0).

Functionally, cancer risk is calculated using the following parameters and formulas:

Cancer Risk (per million) = *CPF x Inhalation Dose x ASF x ED/AT x FAH x 10*⁶ Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless) Inhalation Dose = $C_{air} x DBR^* x A x (EF/365) x 10^{-6}$ Where: Cair = concentration in air (µg/m³) DBR = daily breathing rate (L/kg body weight-day) 8HrBR = 8-hour breathing rate (L/kg body weight-8 hours) A = Inhalation absorption factor EF = Exposure frequency (days/year) 10⁻⁶ = Conversion factor

The health risk parameters used in this evaluation are summarized as follows:

	Exposure Type ᢣ	Infant		Child	Adult
Parameter	Age Range →	3 rd	0<2	2 < 16	16 - 30
		Trimester			
DPM Cancer Potency Factor (1	ng/kg-day) ⁻¹	1.10E+00	1.10E+00	1.10E+00	1.10E+00
Daily Breathing Rate (L/kg-day	y) 80 th Percentile Rate	273	758	572	261
Daily Breathing Rate (L/kg-day	y) 95 th Percentile Rate	361	1,090	745	335
8-hour Breathing Rate (L/kg-8 hours) 95 th Percentile Rate		-	1,200	520	240
Inhalation Absorption Factor		1	1	1	1
Averaging Time (years)		70	70	70	70
Exposure Duration (years)		0.25	2	14	14*
Exposure Frequency (days/year)		350	350	350	350*
Age Sensitivity Factor		10	10	3	1
Fraction of Time at Home (FAH)		0.85-1.0	0.85-1.0	0.72-1.0	0.73*
* An 8-hour breathing rate (8H	rBR) is used for worker and	school child ex	posures.		

Non-Cancer Hazards

Non-cancer health risk is usually determined by comparing the predicted level of exposure to a chemical to the level of exposure that is not expected to cause any adverse effects (reference exposure level), even to the most susceptible people. Potential non-cancer health hazards from TAC exposure are expressed in terms of a hazard index (HI), which is the ratio of the TAC concentration to a reference exposure level (REL). OEHHA has defined acceptable concentration levels for contaminants that pose non-cancer health hazards. TAC concentrations below the REL are not expected to cause adverse health impacts, even for sensitive individuals. The total HI is calculated as the sum of the HIs for each TAC evaluated and the total HI is compared to the BAAQMD significance thresholds to determine whether a significant non-cancer health impact from a project would occur.

Typically, for residential projects located near roadways with substantial TAC emissions, the primary TAC of concern with non-cancer health effects is diesel particulate matter (DPM). For DPM, the chronic inhalation REL is 5 micrograms per cubic meter ($\mu g/m^3$).

Annual PM2.5 Concentrations

While not a TAC, fine particulate matter (PM_{2.5}) has been identified by the BAAQMD as a pollutant with potential non-cancer health effects that should be included when evaluating potential community health impacts under the California Environmental Quality Act (CEQA). The thresholds of significance for PM_{2.5} (project level and cumulative) are in terms of an increase in the annual average concentration. When considering PM_{2.5} impacts, the contribution from all sources of PM_{2.5} emissions should be included. For projects with potential impacts from nearby local roadways, the PM_{2.5} impacts should include those from vehicle exhaust emissions, PM_{2.5} generated from vehicle tire and brake wear, and fugitive emissions from re-suspended dust on the roads.
Attachment 2: CalEEMod Modeling Inputs and Outputs

	Air Quality/Noise Construction Information Data Request												
Project N	amo:	SAR Cont	or Garago					Complete ALL Portions in Vellow					
riojecti	See Equipment Type TAB for type	e, horsepower ar	nd load factor					Complete ALL Fortions in Tellow					
	Project Size		Dwelling Units	2.41	total projec	t acres distur	bed						
		0	s.f. residential					Pile Driving? N					
		0	s.f. retail										
			s f_office/commercial					Project include OPERATIONAL GENERATOR OR FIRE PUMP on-site? Y/N? <u>N</u>					
								IF VES (if BOTH separate values) ->					
		0	s.f. other, specify:										
		398,000	s.f. parking garage	1200	spaces			Kilowatts/Horsepower:					
		a	s.f. parking lot	C	spaces			Fuel Type:					
								Location in project (Plans Desired if Available):					
	Construction Hours	7	am to	4	l pm								
					T . (.)			DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT					
					Work	Avg. Hours per	Annual						
Quantity	Description	HP	Load Factor	Hours/day	Days	day	Hours	Comments					
	Demolition	Start Date:	1/3/2023	Total phase:	15			Overall Import/Export Volumes					
		End Date:	1/23/2023	un pricoo.	10			erotal imposerport formites					
	Concrete/Industrial Saws	81	0.73			0.0	0	Demolition Volume					
1	Rubber-Tired Dozers	158 247	0.38	8	3 10	0.0	0 7904	y Square rootage or buildings to be demolished (or total tons to be hauled)					
1	Tractors/Loaders/Backhoes	97	0.37	8	3 10	5.3	2871	29,600 square feet or					
	Other Equipment?			I				Any pavement demolished and hauled? 900 tons					
	Site Preparation	Start Date:	1/24/2023	Total phase:	7								
1	Graders	187	0.41	8	3 2	2.3	1227	/					
1	Rubber Tired Dozers	247	0.4	8	3 3	3.4	2371						
1	Off-Highway Trucks (water)	402	0.37	4	4 7	4.0	4020	/					
	Grading / Excavation	Start Date:	2/2/2023	l otal phase:	60			Soil Hauling Volume					
2	Excavators	158	0.38	8	8 60	8.0	57638	Export volume = <u>51,000</u> cubic yards?					
1	Graders Rubber Tired Dezers	187	0.41	8	5	0.7	3067	/ Import volume = <u>0</u> cubic yards?					
	Concrete/Industrial Saws	81	0.73			0.0	0) 					
2	Tractors/Loaders/Backhoes	97	0.37	8	8 60	8.0	34454 977664						
10.00		TOL	0.00			0.0	011001						
	Trenching/Foundation	Start Date:	2/2/2023	Total phase:	100	•							
2	Tractor/Loader/Backhoe	End Date: 97	0.37	8	3 100	8.0	57424						
	Excavators	158	0.38			0.0	0						
	Other Equipment?												
	Building - Exterior	Start Date:	6/22/2023	Total phase:	180	•		Cement Trucks? <u>Y</u> Total Round-Trips <u>1,000</u>					
2	Crawler Tractors	212	0.43	8	3 100	4.4	145856						
4	Forklifts	89	0.2	8	3 100	4.4	56960	Liquid Propane (LPG)? (Y/N) _Y_ Otherwise Assumed diesel					
1	Tractors/Loaders/Backhoes	97	0.74	6	2 <u>2</u> 6 180	6.0	38761	Or temporary line power? (Y/N) <u>Y</u>					
1	Welders	46	0.45	5	5 5	0.1	518	3					
		10	0.40	4	100	2.2	143/0						
Building - Int	erior/Architectural Coating	Start Date:	10/22/2023	Total phase:	120								
1	Air Compressors	78	0.48	4	100	3.3	14976	<u>ا</u>					
2	Aerial Lift Other Equipment?	62	0.31	8	3 120	8.0	36902	2					
	Carlos Equiprione.												
	Paving	Start Date:	12/16/2023	Total phase:	30	•							
	Cement and Mortar Mixers	Start Date:	0.56			0.0	0						
1	Pavers	130	0.42	6	6 15	3.0	4914	Asphalt? <u>300</u> cubic yards or round trips?					
1	Paving Equipment Rollers	132	0.36	6	6 15 6 15	3.0	4277						
1	Tractors/Loaders/Backhoes	97	0.37	6	i 15	3.0	3230						
	Other Equipment?												
	Additional Phases	Start Date:		Total phase:									
		Start Date:				#DIV/01							
						#DIV/0!	0	4) 					
						#DIV/0! #DIV/01	0						
						#DIV/0!	0						
Equipment to	vpes listed in "Equinment Types" w	vorksheet tab											
				Complete	0.000	shoot	for o	ach project component					
Equipment list	ted in this sheet is to provide an examination that water trucks would be used during	npie of inputs		Somplet		JICCL	101 6						
Add or subtra	act phases and equipment, as appl	ropriate											
Modify horse	power or load factor, as appropria	te											

		Construction (Criteria Air Pollut	ants		
Unmitigated	ROG	NOX	PM10 Exhaust	PM2.5 Exhaust	CO2e	
Year			Tons		MT	
2023	0.19	1.54	0.07	0.06	247.31	
2024	0.09	0.39	0.02	0.02	68.35	
			EMFAC			
2023	0.04	0.56	0.04	0.02	447.49	
2024	0.01	0.14	0.01	0.00	117.71	
	Ī	Total Construct	tion Emissions by	Year		
2023	0.23	2.09	0.11	0.08	694.80	
2024	0.10	0.54	0.03	0.02	186.06	
Tons	0.33	2.63	0.13	0.10	880.86	
Pounds/Workdays		Average	Daily Emissions		Worl	kdays
2023	1.79	16.11	0.82	0.62		260
2024	2.89	15.51	0.76	0.56		69
Threshold - lbs/day	54.0	54.0	82.0	54.0		
		Total Const	ruction Emissions			
Pounds	4.68	31.62	1.57	1.18	0.00	
Average	2.02	15.98	0.80	0.60	0.00	329.00
Threshold - lbs/day	54.0	54.0	82.0	54.0		

		Operational C	riteria Air Polluta	ants									
Unmitigated	Inmitigated ROG NOX Total PM10 Total PM2.5												
Year													
Total	0.05	0.03	0.00	0.00									
Total	0.00	0.00	0.00	0.00									
		Net Annual Op	erational Emissio	ons									
Tons/year	0.05	0.03	0.00	0.00									
Threshold - Tons/year	10.0	10.0	15.0	10.0									
Pounds Per Day	0.25	0.17	0.01	0.01									
Threshold - lbs/day	54.0	54.0	82.0	54.0									

Category			CO2e	
	Project	Existing	Project 2030	Existing
Area	0.02	0.00	0.02	0.00
Energy	176.49	0.00	176.49	0.00
Mobile	0.00	0.00	0.00	0.00
Waste	0.00	0.00	0.00	0.00
Water	0.00	0.00	0.00	0.00
TOTAL	176.51	0.00	176.51	0.00
Net GHG Emissions		176.51		176.51

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

21-147 City Parking Garage

Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	1,200.00	Space	2.41	398,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2025
Utility Company	San Jose Clean Energy				
CO2 Intensity (Ib/MWhr)	177.69	CH4 Intensity (Ib/MWhr)	0.033	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - SJCE 2020 default Greensource rate

Land Use - Applicant provided parking space quantity, acreage, and square footage.

Construction Phase - Applicant provided phase lengths and start year.

Off-road Equipment - Construction equipment info provided by applicant.

Off-road Equipment - Construction equipment info provided by applicant.

Off-road Equipment - Construction equipment info provided by applicant.

Off-road Equipment - Construction equipment info provided by applicant.

Off-road Equipment - Construction equipment info provided by applicant.

Off-road Equipment - Construction equipment info provided by applicant.

Trips and VMT - All trips entered into EMFAC2021

Demolition - Square footage provided by applicant

Grading - Material exported provided by applicant

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Construction Off-road Equipment Mitigation - t4i, BMP, CNG forklifts, electric gen set

Stationary Sources - Emergency Generators and Fire Pumps - Diesel generator

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstEquipMitigation	FuelType	Diesel	CNG
tblConstEquipMitigation	FuelType	Diesel	Electrical
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	4.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	9.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstructionPhase	NumDays	10.00	120.00
tblConstructionPhase	NumDays	220.00	180.00
tblConstructionPhase	NumDays	20.00	15.00
tblConstructionPhase	NumDays	6.00	60.00
tblConstructionPhase	NumDays	10.00	30.00
tblConstructionPhase	NumDays	3.00	7.00
tblGrading	MaterialExported	0.00	51,000.00
tblLandUse	LandUseSquareFeet	480,000.00	398,000.00
tblLandUse	LotAcreage	10.80	2.41
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	UsageHours	8.00	5.40
tblOffRoadEquipment	UsageHours	8.00	5.40
tblOffRoadEquipment	UsageHours	8.00	3.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	8.00	1.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	5.00
tblOffRoadEquipment	UsageHours	8.00	1.00
	•		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblOffRoadEquipment	UsageHours	8.00	1.00
tblOffRoadEquipment	UsageHours	6.00	4.00
tblOffRoadEquipment	UsageHours	8.00	3.00
tblOffRoadEquipment	UsageHours	8.00	3.00
tblOffRoadEquipment	UsageHours	8.00	3.00
tblOffRoadEquipment	UsageHours	8.00	3.00
tblProjectCharacteristics	CO2IntensityFactor	807.98	177.69
tblStationaryGeneratorsPumpsEF	CH4_EF	0.07	0.07
tblStationaryGeneratorsPumpsEF	ROG_EF	2.2480e-003	2.2477e-003
tblStationaryGeneratorsPumpsUse	HorsePowerValue	0.00	268.00
tblStationaryGeneratorsPumpsUse	HoursPerYear	0.00	50.00
tblStationaryGeneratorsPumpsUse	NumberOfEquipment	0.00	1.00
tblTripsAndVMT	HaulingTripNumber	135.00	0.00
tblTripsAndVMT	HaulingTripNumber	6,375.00	0.00
tblTripsAndVMT	VendorTripNumber	65.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	0.00
tblTripsAndVMT	WorkerTripNumber	13.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblTripsAndVMT	WorkerTripNumber	167.00	0.00
tblTripsAndVMT	WorkerTripNumber	33.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	0.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

Page 1 of 1

21-147 City Parking Garage - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	is/yr							MT	/yr		
2023	0.1879	1.5378	1.4768	2.8100e-003	0.0316	0.0697	0.1013	8.8300e- 003	0.0646	0.0735	0.0000	245.4709	245.4709	0.0736	0.0000	247.3102
2024	0.0880	0.3934	0.3919	7.8000e-004	0.0000	0.0164	0.0164	0.0000	0.0153	0.0153	0.0000	67.8754	67.8754	0.0189	0.0000	68.3469
Maximum	0.1879	1.5378	1.4768	2.8100e-003	0.0316	0.0697	0.1013	8.8300e- 003	0.0646	0.0735	0.0000	245.4709	245.4709	0.0736	0.0000	247.3102

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	ns/yr							MT.	/yr		
2023	0.0856	0.9800	3.2067	2.7500e-003	0.0142	7.2100e- 003	0.0214	3.9700e- 003	7.2200e- 003	0.0112	0.0000	247.6740	247.6740	0.0756	0.0000	249.5650
2024	0.0628	0.2743	0.9280	7.6000e-004	0.0000	3.9600e- 003	3.9600e-003	0.0000	3.9700e- 003	3.9700e-003	0.0000	68.5669	68.5669	0.0195	0.0000	69.0548
Maximum	0.0856	0.9800	3.2067	2.7500e-003	0.0142	7.2100e- 003	0.0214	3.9700e- 003	7.2200e- 003	0.0112	0.0000	247.6740	247.6740	0.0756	0.0000	249.5650

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	46.19	35.05	-121.26	2.23	55.00	87.04	78.44	55.04	86.01	82.93	0.00	-0.92	-0.92	-2.95	0.00	-0.94
Quarter	Sta	art Date	End	Date	Maxim	um Unmitig	ated ROG + N	OX (tons/qua	arter)	Maxi	mum Mitigate					
1	1-	2-2023	4-1-	2023			0.3062									
2	4-	2-2023	7-1-3	2023			0.2244					0.1798				

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3	7-2-2023	10-1-2023	0.5521	0.2589
4	10-2-2023	1-1-2024	0.6586	0.3793
5	1-2-2024	4-1-2024	0.4578	0.3180
6	4-2-2024	7-1-2024	0.0049	0.0059
		Highest	0.6586	0.3793

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Area	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	174.5061	174.5061	0.0324	3.9300e-003	176.4870
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Stationary	0.0110	0.0307	0.0280	5.0000e-005		1.6200e- 003	1.6200e-003		1.6200e- 003	1.6200e-003	0.0000	5.1027	5.1027	7.2000e- 004	0.0000	5.1206
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0460	0.0308	0.0390	5.0000e-005	0.0000	1.6600e- 003	1.6600e-003	0.0000	1.6600e- 003	1.6600e-003	0.0000	179.6303	179.6303	0.0332	3.9300e-003	181.6304

Mitigated Operational

Page 1 of 1

21-147 City Parking Garage - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Area	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	174.5061	174.5061	0.0324	3.9300e-003	176.4870
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Stationary	0.0110	0.0307	0.0280	5.0000e-005		1.6200e- 003	1.6200e-003		1.6200e- 003	1.6200e-003	0.0000	5.1027	5.1027	7.2000e- 004	0.0000	5.1206
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0460	0.0308	0.0390	5.0000e-005	0.0000	1.6600e- 003	1.6600e-003	0.0000	1.6600e- 003	1.6600e-003	0.0000	179.6303	179.6303	0.0332	3.9300e-003	181.6304

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase	Phase Name	Phase Type	Start Date	End Date	Num Days	Num Days	Phase Description
Number					Week		
1	Demolition	Demolition	1/3/2023	1/23/2023	5	15	
2	Site Preparation	Site Preparation	1/24/2023	2/1/2023	5	7	
3	Grading	Grading	2/2/2023	4/26/2023	5	60	
4	Trenching/Foundation	Trenching	2/2/2023	6/21/2023	5	100	Assume overlap with grading
5	Building Construction	Building Construction	6/22/2023	2/28/2024	5	180	
6	Building Interior	Architectural Coating	10/22/2023	4/5/2024	5	120	Assume overlap with paving

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

				 	
7 Paving	Paving	12/16/2023	1/26/2024	5	30 Assume overlap with interior
· · ·····9	·g			-	••••••••••••••••••••••••••••••••••••••

Acres of Grading (Site Preparation Phase): 3.06

Acres of Grading (Grading Phase): 3.75

Acres of Paving: 2.41

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 23,880 (Architectural

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	5.40	247	0.40
Demolition	Tractors/Loaders/Backhoes	1	5.40	97	0.37
Site Preparation	Graders	1	3.00	187	0.41
Site Preparation	Rubber Tired Dozers	1	4.00	247	0.40
Site Preparation	Scrapers	0	8.00	367	0.48
Site Preparation	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders	1	1.00	187	0.41
Grading	Rubber Tired Dozers	0	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Trenching/Foundation	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Building Construction	Air Compressors	1	3.00	78	0.48
Building Construction	Cranes	1	8.00	231	0.29
Building Construction	Crawler Tractors	2	5.00	212	0.43
Building Construction	Forklifts	4	5.00	89	0.20
Building Construction	Generator Sets	1	1.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Building Construction	Welders	3	1.00	46	0.45

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Building Interior	Aerial Lifts	2	8.00	63	0.31
Building Interior	Air Compressors	1	4.00	78	0.48
Paving	Cement and Mortar Mixers	0	8.00	9	0.56
Paving	Pavers	1	3.00	130	0.42
Paving	Paving Equipment	1	3.00	132	0.36
Paving	Rollers	1	3.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	3.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor Vehicle	Hauling Vehicle
	Count	Number	Number	Number	Length	Length	Length	Class	Class	Class
Demolition	2	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	4	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	5	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Trenching/Foundation	2	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	13	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Interior	3	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	4	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Use Alternative Fuel for Construction Equipment

Use Cleaner Engines for Construction Equipment

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2023 Unmitigated Construction On-Site

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT.	/yr		
Fugitive Dust					0.0146	0.0000	0.0146	2.2100e- 003	0.0000	2.2100e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.2300e- 003	0.0439	0.0270	6.0000e-005		2.0100e- 003	2.0100e-003		1.8500e- 003	1.8500e-003	0.0000	5.1831	5.1831	1.6800e- 003	0.0000	5.2250
Total	4.2300e- 003	0.0439	0.0270	6.0000e-005	0.0146	2.0100e- 003	0.0166	2.2100e- 003	1.8500e- 003	4.0600e-003	0.0000	5.1831	5.1831	1.6800e- 003	0.0000	5.2250

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Fugitive Dust					6.5600e- 003	0.0000	6.5600e-003	9.9000e- 004	0.0000	9.9000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.0600e- 003	0.0182	0.0348	6.0000e-005		1.0000e- 004	1.0000e-004		1.0000e- 004	1.0000e-004	0.0000	5.1831	5.1831	1.6800e- 003	0.0000	5.2250
Total	1.0600e- 003	0.0182	0.0348	6.0000e-005	6.5600e- 003	1.0000e- 004	6.6600e-003	9.9000e- 004	1.0000e- 004	1.0900e-003	0.0000	5.1831	5.1831	1.6800e- 003	0.0000	5.2250

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.3 Site Preparation - 2023

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT.	/yr		
Fugitive Dust					0.0122	0.0000	0.0122	5.9700e- 003	0.0000	5.9700e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.7600e- 003	0.0293	0.0233	5.0000e-005		1.2900e- 003	1.2900e-003		1.1900e- 003	1.1900e-003	0.0000	3.9911	3.9911	1.2900e- 003	0.0000	4.0234
Total	2.7600e- 003	0.0293	0.0233	5.0000e-005	0.0122	1.2900e- 003	0.0135	5.9700e- 003	1.1900e- 003	7.1600e-003	0.0000	3.9911	3.9911	1.2900e- 003	0.0000	4.0234

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT.	/yr		
Fugitive Dust					5.4700e- 003	0.0000	5.4700e-003	2.6900e- 003	0.0000	2.6900e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	8.7000e- 004	0.0157	0.0289	5.0000e-005		7.0000e- 005	7.0000e-005		7.0000e- 005	7.0000e-005	0.0000	3.9911	3.9911	1.2900e- 003	0.0000	4.0233
Total	8.7000e- 004	0.0157	0.0289	5.0000e-005	5.4700e- 003	7.0000e- 005	5.5400e-003	2.6900e- 003	7.0000e- 005	2.7600e-003	0.0000	3.9911	3.9911	1.2900e- 003	0.0000	4.0233

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.4 Grading - 2023 Unmitigated Construction On-Site

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT.	/yr		
Fugitive Dust					4.8700e- 003	0.0000	4.8700e-003	6.5000e- 004	0.0000	6.5000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0218	0.2025	0.3357	5.2000e-004		9.6600e- 003	9.6600e-003		8.8900e- 003	8.8900e-003	0.0000	45.8166	45.8166	0.0148	0.0000	46.1870
Total	0.0218	0.2025	0.3357	5.2000e-004	4.8700e- 003	9.6600e- 003	0.0145	6.5000e- 004	8.8900e- 003	9.5400e-003	0.0000	45.8166	45.8166	0.0148	0.0000	46.1870

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Fugitive Dust					2.1900e- 003	0.0000	2.1900e-003	2.9000e- 004	0.0000	2.9000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	8.4000e- 003	0.2244	0.3888	5.2000e-004		8.5000e- 004	8.5000e-004		8.5000e- 004	8.5000e-004	0.0000	45.8165	45.8165	0.0148	0.0000	46.1870
Total	8.4000e- 003	0.2244	0.3888	5.2000e-004	2.1900e- 003	8.5000e- 004	3.0400e-003	2.9000e- 004	8.5000e- 004	1.1400e-003	0.0000	45.8165	45.8165	0.0148	0.0000	46.1870

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.5 Trenching/Foundation - 2023

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.0151	0.1536	0.2231	3.1000e-004		7.5800e- 003	7.5800e-003		6.9700e- 003	6.9700e-003	0.0000	27.3586	27.3586	8.8500e- 003	0.0000	27.5798
Total	0.0151	0.1536	0.2231	3.1000e-004		7.5800e- 003	7.5800e-003		6.9700e- 003	6.9700e-003	0.0000	27.3586	27.3586	8.8500e- 003	0.0000	27.5798

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
					1 10110	1 10110		1 1012.0	1 11/2.0							

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Category					tons/yr	۷r						MT	/yr		
Off-Road	6.9600e- 003	0.1355	0.2342	3.1000e-004	5.	5.1000e- 004	5.1000e-004	5.1000e- 004	5.1000e-004	0.0000	27.3585	27.3585	8.8500e- 003	0.0000	27.5797
Total	6.9600e- 003	0.1355	0.2342	3.1000e-004	5.	5.1000e- 004	5.1000e-004	5.1000e- 004	5.1000e-004	0.0000	27.3585	27.3585	8.8500e- 003	0.0000	27.5797

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.6 Building Construction - 2023 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Off-Road	0.1032	1.0478	0.7650	1.7100e-003	0.0469	0.0469	0.0436	0.0436	0.0000	149.0993	149.0993	0.0435	0.0000	150.1875
Total	0.1032	1.0478	0.7650	1.7100e-003	0.0469	0.0469	0.0436	0.0436	0.0000	149.0993	149.0993	0.0435	0.0000	150.1875

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Off-Road	0.0303	0.5094	2.4051	1.6500e-003		3.6400e- 003	3.6400e-003		3.6500e- 003	3.6500e-003	0.0000	151.3026	151.3026	0.0456	0.0000	152.4424

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Total	0.0303	0.5094	2.4051	1.6500e-003	3.6400e-	3.6400e-003	3.6500e-	3.6500e-003	0.0000	151.3026	151.3026	0.0456	0.0000	152.4424
					003		003							

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.6 Building Construction - 2024

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.0305	0.3049	0.2374	5.4000e-004		0.0132	0.0132		0.0123	0.0123	0.0000	46.8094	46.8094	0.0136	0.0000	47.1504
Total	0.0305	0.3049	0.2374	5.4000e-004		0.0132	0.0132		0.0123	0.0123	0.0000	46.8094	46.8094	0.0136	0.0000	47.1504

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	9.3600e- 003	0.1596	0.7548	5.2000e-004		1.0800e- 003	1.0800e-003		1.0800e- 003	1.0800e-003	0.0000	47.5009	47.5009	0.0143	0.0000	47.8583
Total	9.3600e- 003	0.1596	0.7548	5.2000e-004		1.0800e- 003	1.0800e-003		1.0800e- 003	1.0800e-003	0.0000	47.5009	47.5009	0.0143	0.0000	47.8583

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.7 Building Interior - 2023 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive Exha PM10 PM1	st PM10 Total)	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr							MT	/yr		
Archit. Coating	0.0346				0.000	0 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.9300e- 003	0.0484	0.0848	1.3000e-004	1.640 003	e- 1.6400e-003	3	1.6000e- 003	1.6000e-003	0.0000	11.6317	11.6317	2.6400e- 003	0.0000	11.6977
Total	0.0395	0.0484	0.0848	1.3000e-004	1.640 003	e- 1.6400e-003	3	1.6000e- 003	1.6000e-003	0.0000	11.6317	11.6317	2.6400e- 003	0.0000	11.6977

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Archit. Coating	0.0346					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.9700e- 003	0.0649	0.0943	1.3000e-004		1.9900e- 003	1.9900e-003		1.9900e- 003	1.9900e-003	0.0000	11.6317	11.6317	2.6400e- 003	0.0000	11.6977
Total	0.0376	0.0649	0.0943	1.3000e-004		1.9900e- 003	1.9900e-003		1.9900e- 003	1.9900e-003	0.0000	11.6317	11.6317	2.6400e- 003	0.0000	11.6977

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.7 Building Interior - 2024 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0484					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	6.6400e- 003	0.0653	0.1187	1.9000e-004		2.0600e- 003	2.0600e-003		2.0100e- 003	2.0100e-003	0.0000	16.2844	16.2844	3.6800e- 003	0.0000	16.3763
Total	0.0551	0.0653	0.1187	1.9000e-004		2.0600e- 003	2.0600e-003		2.0100e- 003	2.0100e-003	0.0000	16.2844	16.2844	3.6800e- 003	0.0000	16.3763

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT	/yr		
Archit. Coating	0.0484					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.1600e- 003	0.0908	0.1320	1.9000e-004		2.7900e- 003	2.7900e-003		2.7900e- 003	2.7900e-003	0.0000	16.2844	16.2844	3.6800e- 003	0.0000	16.3763
Total	0.0526	0.0908	0.1320	1.9000e-004		2.7900e- 003	2.7900e-003		2.7900e- 003	2.7900e-003	0.0000	16.2844	16.2844	3.6800e- 003	0.0000	16.3763

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.8 Paving - 2023 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT.	/yr		
Off-Road	1.2500e- 003	0.0124	0.0179	3.0000e-005		6.2000e- 004	6.2000e-004		5.7000e- 004	5.7000e-004	0.0000	2.3905	2.3905	7.7000e- 004	0.0000	2.4098
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.2500e- 003	0.0124	0.0179	3.0000e-005		6.2000e- 004	6.2000e-004		5.7000e- 004	5.7000e-004	0.0000	2.3905	2.3905	7.7000e- 004	0.0000	2.4098

Unmitigated Construction Off-Site

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	4.4000e- 004	0.0120	0.0206	3.0000e-005		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	2.3905	2.3905	7.7000e- 004	0.0000	2.4098
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	4.4000e- 004	0.0120	0.0206	3.0000e-005		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	2.3905	2.3905	7.7000e- 004	0.0000	2.4098

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.8 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	2.3900e- 003	0.0233	0.0358	5.0000e-005		1.1300e- 003	1.1300e-003		1.0400e- 003	1.0400e-003	0.0000	4.7816	4.7816	1.5500e- 003	0.0000	4.8202
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	2.3900e- 003	0.0233	0.0358	5.0000e-005		1.1300e- 003	1.1300e-003		1.0400e- 003	1.0400e-003	0.0000	4.7816	4.7816	1.5500e- 003	0.0000	4.8202

Unmitigated Construction Off-Site

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	8.9000e- 004	0.0239	0.0412	5.0000e-005		9.0000e- 005	9.0000e-005		9.0000e- 005	9.0000e-005	0.0000	4.7816	4.7816	1.5500e- 003	0.0000	4.8202
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	8.9000e- 004	0.0239	0.0412	5.0000e-005		9.0000e- 005	9.0000e-005		9.0000e- 005	9.0000e-005	0.0000	4.7816	4.7816	1.5500e- 003	0.0000	4.8202

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

4.2 Trip Summary Information

	Ave	erage Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Enclosed Parking with Elevator	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Enclosed Parking with Elevator	0.573651	0.055882	0.186012	0.115369	0.020252	0.005158	0.008030	0.006377	0.000893	0.000372	0.024386	0.000900	0.002720

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	174.5061	174.5061	0.0324	3.9300e-003	176.4870
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	174.5061	174.5061	0.0324	3.9300e-003	176.4870

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000	 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ns/yr							МТ	/yr		
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ns/yr							МТ	/yr		
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		N	IT/yr	
Enclosed Parking with Elevator	2.16512e+ 006	174.5061	0.0324	3.9300e-003	176.4870
Total		174.5061	0.0324	3.9300e-003	176.4870

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		N	IT/yr	
Enclosed Parking with Elevator	2.16512e+ 006	174.5061	0.0324	3.9300e-003	176.4870
Total		174.5061	0.0324	3.9300e-003	176.4870

6.0 Area Detail

6.1 Mitigation Measures Area

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Unmitigated	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr							MT/yr								
Architectural Coating	8.3000e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0257					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.0100e- 003	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Total	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating	8.3000e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0257					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.0100e- 003	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Total	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		M	Г/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e			
Land Use	Mgal		MT/yr					
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000			
Total		0.0000	0.0000	0.0000	0.0000			

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Enclosed Parking with Elevator	0 / 0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Total CO2	CH4	N2O	CO2e
		M	T/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

Waste	Total CO2	CH4	N2O	CO2e
Disposed				

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Land Use	tons	MT/yr							
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000				
Total		0.0000	0.0000	0.0000	0.0000				

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Emergency Generator	1	0	50	268	0.73	Diesel

<u>Boilers</u>

	Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
--	----------------	--------	----------------	-----------------	---------------	-----------

User Defined Equipment

10.1 Stationary Sources

Unmitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					tor	ns/yr							МТ	/yr		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Emergency	0.0110	0.0307	0.0280	5.0000e-005	Ĩ	1.6200e-	1.6200e-003	1.6200e-	1.6200e-003	0.0000	5.1027	5.1027	7.2000e-	0.0000	5.1206
Generator - Diesel						003		003					004		
Total	0.0110	0.0307	0.0280	5.0000e-005		1.6200e-	1.6200e-003	1.6200e-	1.6200e-003	0.0000	5.1027	5.1027	7.2000e-	0.0000	5.1206
						003		003					004		
						••••							•••		

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

21-147 City Parking Garage

Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	1,200.00	Space	2.41	398,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2030
Utility Company	San Jose Clean Energy				
CO2 Intensity (Ib/MWhr)	177.69	CH4 Intensity (Ib/MWhr)	0.033	N2O Intensity (Ib/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics - SJCE 2020 default Greensource rate (0.0806 MT CO2e/MWh)
Land Use - Applicant provided parking space quantity, acreage, and square footage.
Construction Phase - Applicant provided phase lengths and start year.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - Construction equipment info provided by applicant.
Off-road Equipment - All trips entered into EMFAC2021
Demolition - Square footage provided by applicant
Grading - Material exported provided by applicant

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Construction Off-road Equipment Mitigation - t4i, BMP, CNG forklifts, electric gen set

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstEquipMitigation	FuelType	Diesel	CNG
tblConstEquipMitigation	FuelType	Diesel	Electrical
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	4.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	9.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstructionPhase	NumDays	10.00	120.00
tblConstructionPhase	NumDays	220.00	180.00
tblConstructionPhase	NumDays	20.00	15.00
tblConstructionPhase	NumDays	6.00	60.00
tblConstructionPhase	NumDays	10.00	30.00
tblConstructionPhase	NumDays	3.00	7.00
tblGrading	MaterialExported	0.00	51,000.00
tblLandUse	LandUseSquareFeet	480,000.00	398,000.00
tblLandUse	LotAcreage	10.80	2.41
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	UsageHours	8.00	5.40
tblOffRoadEquipment	UsageHours	8.00	5.40
tblOffRoadEquipment	UsageHours	8.00	3.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	8.00	1.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	5.00
tblOffRoadEquipment	UsageHours	8.00	1.00
tblOffRoadEquipment	UsageHours	8.00	1.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblOffRoadEquipment	UsageHours	6.00	4.00
tblOffRoadEquipment	UsageHours	8.00	3.00
tblOffRoadEquipment	UsageHours	8.00	3.00
tblOffRoadEquipment	UsageHours	8.00	3.00
tblOffRoadEquipment	UsageHours	8.00	3.00
tblProjectCharacteristics	CO2IntensityFactor	807.98	177.69
tblTripsAndVMT	HaulingTripNumber	135.00	0.00
tblTripsAndVMT	HaulingTripNumber	6,375.00	0.00
tblTripsAndVMT	VendorTripNumber	65.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	0.00
tblTripsAndVMT	WorkerTripNumber	13.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblTripsAndVMT	WorkerTripNumber	167.00	0.00
tblTripsAndVMT	WorkerTripNumber	33.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	0.00

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Area	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	174.5061	174.5061	0.0324	3.9300e-003	176.4870

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0350	1.0000e-004	0.0110	0.0000	0.0000	4.0000e- 005	4.0000e-005	0.0000	4.0000e- 005	4.0000e-005	0.0000	174.5276	174.5276	0.0325	3.9300e-003	176.5098

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Area	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	174.5061	174.5061	0.0324	3.9300e-003	176.4870
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0350	1.0000e-004	0.0110	0.0000	0.0000	4.0000e- 005	4.0000e-005	0.0000	4.0000e- 005	4.0000e-005	0.0000	174.5276	174.5276	0.0325	3.9300e-003	176.5098

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Ave	erage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Enclosed Parking with Elevator	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

l and l la	2				MDV			MUD	ППИ	OBUS	LIBLIC	MCV	SBLIS	МЦ
Lanu Us	e e	LDA	LDTT	LDTZ		LIIDI	LIIDZ			0603	0603	IVIC I	3603	IVITI
Enclosed Parking	with Elevator	0.577192	0.056815	0.182253	0.115088	0.020149	0.005398	0.008219	0.006132	0.000852	0.000335	0.024205	0.000837	0.002526

5.0 Energy Detail

Historical Energy Use: N

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	174.5061	174.5061	0.0324	3.9300e-003	176.4870
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	174.5061	174.5061	0.0324	3.9300e-003	176.4870
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

ROG NOx NaturalGa CO SO2 PM10 Total Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 N20 CO2e Fugitive Exhaust PM2.5 PM2.5 s Use PM10 PM10 Land Use kBTU/yr MT/yr tons/yr 0.0000 0.0000 0.0000 Enclosed Parking 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 with Elevator 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Total

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	is/yr							МТ	/yr		
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		Μ	T/yr	
Enclosed Parking with Elevator	2.16512e+ 006	174.5061	0.0324	3.9300e-003	176.4870
Total		174.5061	0.0324	3.9300e-003	176.4870

Mitigated

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		N	IT/yr	
Enclosed Parking with Elevator	2.16512e+ 006	174.5061	0.0324	3.9300e-003	176.4870
Total		174.5061	0.0324	3.9300e-003	176.4870

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Mitigated	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Unmitigated	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228

6.2 Area by SubCategory

<u>Unmitigated</u>

				_							_				
ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10 Total	Fugitive	Exhaust	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
				PM10	PM10		PM2.5	PM2.5							

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

SubCategory					ton	s/yr						MT	/yr		
Architectural Coating	8.3000e- 003					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0257					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.0000e- 003	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005	4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Total	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005	4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tor	is/yr							МТ	/yr		
Architectural Coating	8.3000e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0257					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.0000e- 003	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228
Total	0.0350	1.0000e-004	0.0110	0.0000		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	0.0214	0.0214	6.0000e- 005	0.0000	0.0228

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Total CO2	CH4	N2O	CO2e
Category		MT	Г/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		M	T/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

8.2 Waste by Land Use

Unmitigated

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Land Use	tons		МТ	/yr	
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
	_	_	-	_		

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

	Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	------------	-------------	-------------	-----------

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
User Defined Equipment					
Equipment Type	Number				
11.0 Vegetation					

Attachment 3: EMFAC2021 Calculations

Pollutants YEAR	ROG	NOx	со	SO2	Fugitive PM10 <i>To</i>	Exhaust PM10 ns	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	NBio- C	D2 CH4 Met	N2O ric Tons	CO2e
							Criteria	Pollutants						
2023	0.0447	0.5563	0.6256	0.0044	0.1686	0.0365	0.2051	0.0254	0.0155	0.0408	429.9	952 0.029	5 0.0562	447.4926
2024	0.0116	0.1418	0.1625	0.0012	0.0462	0.0097	0.0559	0.0069	0.0041	0.0110	113.1	536 0.007	6 0.0147	117.7103

Summary of Construction Traffic Emissions (EMFAC2021)

	Toxic Air Contaminants (1.0 Mile Trip Length)													
2023	0.0367	0.1498	0.2258	0.0005	0.0147	0.0029	0.0176	0.0022	0.0013	0.0035	47.1475	0.0071	0.0069	49.3870
2024	0.0097	0.0391	0.0591	0.0001	0.0040	0.0008	0.0048	0.0006	0.0003	0.0009	12.4000	0.0018	0.0018	12.9855

CalEEMod Construction Inputs

			Total Worker	Total Vendor	CalEEMod	Worker Trin	Vendor Trin	Hauling Trin	Worker Vehicle	Vendor Vehicle	Hauling Vehicle	Worker	Vendor	Haulina
Phase	TRIPS	TRIPS	Trips	Trips	TRIPS	Length	Length	Length	Class	Class	Class	VMT	VMT	VMT
Demolition	!	5 () 75	5 0	315	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	810	0	6300
Site Preparation	10) () 7() () 0	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	756	0	0
Grading	13	3 () 780) (6375	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	8424	0	127500
Trenching/Foundation	!	5 0	500) () 0	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	5400	0	0
Paving	10) () 300) () 72	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	3240	0	1440
Building Construction	16	7 65	30060) 11700	2000	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	324648	85410	40000
Architectural Coating	33	3 (3960) () 0	10.8	7.3	2	0 LD_Mix	HDT_Mix	HHDT	42768	0	0

Number of Days Per Year					
2023	<mark>1/3/23</mark>	12/31/23	363	260	
2024	<mark>1/1/24</mark>	4/5/24	96	69	
			459	329	Total Workdays

Phase	Start Date	End Date	Days/Week	Workdays
Demolition	1/3/2023	1/23/2023	5	15
Site Preparation	1/24/2023	2/1/2023	5	7
Grading	2/2/2023	4/26/2023	5	60
Trenching/Foundation	2/2/2023	6/21/2023	5	100
Paving	12/16/2023	1/26/2024	5	30
Building Construction	6/22/2023	2/28/2024	5	180
Architectural Coating	10/22/2023	4/5/2024	5	120

Source: EMAC2021 (r.l.0.1) Emission Rates Rageo: Tapic Camary Rageo: State Camary Camara Tara 2023 Camara 20

Units. Initespi	ay tor eviat and	certain, coparany for might, control any for charge o	contampoor, grinte for none	2, 111011 1110 1111 11, 8/1	np tor of these, no roome an	a noncoss, greencerus	iy for ibeck and bio																	
Region Ca	endar Y Vehicle C	CatModel Yea Speed Fuel Population	Total VMT CVMT EVMT	Trips Energy Cor	NOX RUNENOX IDLEXING	x STRE: PM2.5 RU PM2.5	5 IDL PM2.5 STEPN	42.5 PM PM2.5 PM PM10	RUNPM10 IDLEPM10 ST	R PM10 PM1 PM10 PMIC	OZ RUNECOZ IDLEX	CO2 STREICH4 RUNECH4	IDLEX CH4 STREEN2D I	RUNENZO IDLE>NZO STR	REROG RUNIROG I	LEXROG STREIROG	5 HOTSROG RUNIRO	5 DIUR TOG RUNETOG	IDLEXTOG STREITOG	HOTSTOG RUNLTO	G DIUR NH3 RUNECO	RUNEXCO IDLEX CO	STREX SOX RUNE SO	* IDLEX SOX STREX
Santa Clara	2023 HHDT	Aggregate Aggregate Gasoline 3,454009	114.3093 114.3093	0 69.10781 0	8.107874 0 1	602501 0.00493	0 0.0017	0.005 0.035266 0.005	62 0 0.00184	9 0.02 0.100759	2306.817 0	49.81185 0.340225	0 0.00018 0.208	8909 0 0.04569	7 2.104867	0 0.000979 0.1	158374 1.426645 10	65375 3.071416	0 0.001072 0.1	58374 1.426645 10	1.65375 0.040468 8	3.0074 0	1.02738 0.022805	0 0.000492
Santa Clara	2023 HHDT	Appregate Appregate Diesel 8235 059	991789 991289	0 120860.8 0	1 969368 63 40488 2	849455 0.025957 0.031	1631 0.0	008769 0.027531 0.027	31 0.033061	0 0.035077 0.078661	1656 801 12241 32	0 0.000809 0.2	37446 0 0 26	6103 1 928625	0 0.017417 5.112	156 0	0 0	0 0.019828 5.8	19801 0	0 0	0 0 214624 0 0	87393 74 20136	0 0.015689 0	115918 0
Santa Clara	2023 HHDT	Appresate Appresate Electricity 6 70171	411 5054 0 411 50	154 103 2044 754 9233	0 0	0 0	0 0	0.00874 0.013383	0 0	0 0.03495 0.038238	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Santa Clara	2023 HHDT	Appresate Appresate Natural Ga 753 7366	53295.97 53295.97	0 6914.034 0	1 208844 13 92832	0 0 001774 0 024	4237 0	0.009 0.046729 0.0019	129 0.02636	0 0.036 0.133512	1398 51 10630 2	0 2 44811 37	44665 0.028	5095 2 167036	0 0.054572 0.572	265 0	0 0	0 2 520799 38	25947 0	0 0	0 0 860105 13	78746 74 03965	0 0	0 0
Santa Clara	2023 104	Appresate Appresate Gasoline 601938 3	22370251 22370251	0 2795479 0	0.047412 0.0	1 27189 0 001217	0 0.001992	0.002 0.002656 0.001	123 0 0.00216	7 0.008 0.007588	282 586 0	71 87767 0 002603	0 0.076449 0.004	4995 0 0.03413	4 0.01016	0 0 353794 0 0	194758 0 240611 1	480552 0.014823	0 0 387359 0.0	34758 0 240611 1	480552 0.033781 0.7	87617 0 3	436611 0.002794	0 0 000711
Santa Clara	2023 LDA	Apprezate Apprezate Diesel 1871 125	56220.8 56220.8	0 8000 531 0	0.738318 0	0 0.018559	0 0	0.002 0.002698 0.019	199 0	0 008 0007709	234 6327 0	0 0.001413	0 0.03	6966 0	0 0.030417	0 0	0 0	0 0.034627	0 0	0 0	0 0.0031 0.2	42459 0	0 0.002223	0 0
Santa Clara	2022 LDA	Anaronato Anaronato Electricity 52751.15	3369195 0 33691	195 265250 1 975705 7	0.250510 0	0 0.010000	0 0	0.002 0.001522	0 0	0 0.000 0.00/707	0 0	0 0.001415	0 0.00	0 0	0 0.000417	0 0	0 0	0 0.004027	0 0	0 0	0 0.0001 0.0	0 0	0 0.001113	0 0
Santa Clara	2022 LDA	Antropate Aggregate Electricity 33732-23	700610.9 266649.7 24296	1 2 65255 102995 6	0.00224 0.0	111551 0.000664	0 0 002171	0.002 0.001272 0.000	0 0 00726	1 0.002 0.002977	141 9229 0	66 50866 0 000A57	0 0.043604 0.000	0606 0.000001	6 0.001444	0 0 172795 0 0	140642 0.026088 0	147056 0.002108	0 0 199775 0.0	10642 0.026098 0	A47056 0.019705 0.7	19019 0 1	220902 0.001402	0 0 000659
Santa Clara	2022 LDT1	Antropate Aggregate Hagelinity 15003.32	1744490 1744490	0 220727.0 0	0.000000 0 0	404226 0.00195	0 0.002827	0.002 0.002329 0.003	12 0 0.00200	5 0.000 0.000352	222 6425 0	99 49952 0 006997	0 0113557 0.010	0757 0 0.02092	0 0.001444	0 0.592212 0.1	74145 0 502001 2	07011 0.045546	0 0.629542 0.1	74145 0 502001 2	907011 0.025775 1.5	52400 0 5	660027 0.002209	0 0.000875
Santa Clara	2023 LDT1	Aggregate Aggregate Gasoline 33782-25	1/44480 1/44480	0 259757.9 0	0.145295 0.0.	404356 0.00185	0 0.002837	0.002 0.003239 0.002	0 0.00308	5 0.008 0.009255	333.0435 U	0.000987	0 0.112557 0.010	0257 0 0.03985	0.031222	0 0.585212 0.1	0.505091 2.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0555942 0.1	4145 0.505091 2.	.0/011 0.055/75 1.5	01205 0 5	0.0003/0.003298	0 0.0008/3
Santa Clara	2023 LDT1	Aggregate Aggregate Dissel 28.04714 Anaronato Anaronato Electricity 104.9041	7069 194 0 7069 1	0 /5.1//5/ 0	1.055030 0	0 0.24041	0 0	0.002 0.003728 0.25	0 0	0 0.008 0.010651	415.0155 0	0 0.015928	0 0.00	0 0	0 0.299852	0 0	0 0	0 0.341362	0 0	0 0	0 0.0031 1.0	0 0	0 0.003938	0 0
Canta Clara	2023 1071	Aggregate Aggregate Electricity 1943941	2040.204 014 1520 4404.2	104 510.4052 2720.505	0.0000000		0 0.00144	0.001 0.00104	0 0 00173	4 0.000 0.000044	420 5454	73 30136 0 000413	0 0042420 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0.173306 0.0	10 0000000	0 001000	0 0 000775 0.0		201020 0	0 0	330003 0.001374	0 0 000716
Santa Clara	2023 LDT1	Aggregate Aggregate Pidg-II Hys 43.27677	2048.309 944.1579 1104.2	0 4244200 000	0.003025 0 0	350346 0.000387	0 0.00141	0.002 0.001385 0.000	0 0.00155	+ 0.008 0.003931	128.5161 0	72.59156 0.000412	0 0.042459 0.000	0 0.02076	52 0.001308	0 0.1/3283 0.0	24584 0.021781 0.	101000 0.010110	0 0.189725 0.0	24584 0.021781 0.	.83922 0.019339 0.1	98514 0 1	339893 0.001271	0 0.000716
Santa Clara	2023 LD12	Aggregate Aggregate Gasoline 280180.4	10140987 10140987	0 1511/96 0	0.077207 0 0.	338348 0.001283	0 0.002003	0.002 0.003125 0.001	73 0 0.00217	9 0.008 0.008929	331.1362 0	90.07377 0.003121	0 0.087759 0.006	0381 0 0.03864	0.012417	0 0.410727 0.0	0.224187 1.	0.0010100	0 0.449694 0.0	0.22418/ 1.	.04656 0.0555545 0.6	33000 0 3	0.003471	0 0.00089
Santa Clara	2023 LD12	Aggregate Aggregate Diesel 578,4967	30350.67 30330.87	0 40/3.401 0	0.048157 0	0 0.003431	0 0	0.002 0.003102 0.003	0	0.008 0.008865	313.0008 0	0 0.00085	0 0.040	9/33 0	0 0.013984	0 0	0 0	0 0.013919	0 0	0 0	0 0.0031 0.1	32039 0	0 0.002991	0 0
Santa Clara	2023 1012	Aggregate Aggregate Electricity 1105.875	38931.7 0 3893	1.7 5863.051 15030.85		0 0	0 0	0.002 0.001323	0 0	0 0.008 0.004357	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Santa Clara	2023 LD12	Aggregate Aggregate Plug-in Hyd 1696-55	7/2/0.66 3/142.68 4012/	.98 /015.234 12119.85	0.003154 0 0	0.11551 0.000504	0 0.001/59	0.002 0.001378 0.000	48 0 0.00191	3 0.008 0.003938	154.0231 0	78.93358 0.000429	0 0.042457 0.000	0568 0 0.02077	/8 0.001364	0 0.1/3285 0	02624 0.024448 0.	318232 0.00199	0 0.189725 0.1	J2624 0.024448 0.	/18232 0.020144 0.2	05812 0 1	339893 0.001325	0 0.00078
Santa Clara	2023 LHD11	Aggregate Aggregate Gasoline 19180.96	5 /11085.5 /11085.5	0 285/6/.8 0	0.19/814 0.03/3/3	0.6588 0.001595	0 0.000328	0.002 0.0273 0.001	34 0 0.00035	6 0.008 0.078	889.7424 120.2664	25.83956 0.009485 0.1	15635 0.034516 0.011	1082 0.003012 0.05189	1 0.047656 0.428	153 0.1/2233 0.0	J5U564 0.277601 2.	913784 0.069539 0	624/6 0.1885/4 0.0	0564 0.277601 2.	/13/84 0.0448/2 1.2.	25109 3.753425 3	080251 0.008796 0.	301189 0.000255
Santa Clara	2023 LHD11	Aggregate Aggregate Diesel 9807.465	384084.8 384084.8	0 123365.6 0	1./80633 2.0292/4	0 0.038253 0.026	5974 U	0.003 0.0273 0.039	83 0.028193	0 0.012 0.078	635.427 132.908	0 0.008623 0.0	05098 0 0.100	0112 0.02094	0 0.185652 0.10	1/6 U	0 0	0 0.211352 0.1	24954 U	0 0	0 0.16551 0.5	188/6 0.909/45	0 0.006021 0.	JU1259 U
Santa Clara	2023 LHD12	Aggregate Aggregate Gasoline 2494.382	90/93.04 90/93.04	0 3/162.58 0	0.18/016 0.03681/ 0.	642061 0.001446	0 0.00026	0.002 0.03185 0.0019	0 0.00028	3 0.008 0.091	997.3845 138./9/4	25.72325 0.007074 0.1	14568 0.033461 0.01	1097 0.002967 0.05045	52 0.033047 0.42	203 0.16560/ 0.0	J46993 0.25097 Z.	5/5301 0.048222 0.6	15826 0.181319 0.04	16993 0.25097 Z.	//6301 0.04496/ 0.98	61891 3.759407 3	119312 0.00986 0.	301372 0.000254
Santa Clara	2023 LHD12	Aggregate Aggregate Diesel 4479.532	1/6/69.2 1/6/69.2	0 56346.87 0	1.416942 1.998258	0 0.034177 0.02	7026 0	0.003 0.03185 0.035	23 0.028248	0 0.012 0.091	/64.5039 212.1206	0 0.007824 0.0	05098 0 0.120	0448 0.03342	0 0.168448 0.10	1/6 0	0 0	0 0.191/6/ 0.1	24954 0	0 0	0 0.1/8982 0.4	44054 0.909745	0 0.007244 0	.00201 0
Santa Clara	2023 MCY	Aggregate Aggregate Gasoline 27894.5	164894.5 164894.5	0 55788.99 0	0.586927 0 0.	142374 0.001778	0 0.003413	0.001 0.0042 0.001	199 0 0.00362	6 0.004 0.012	188.3093 0	49.59811 0.167622	0 0.187482 0.040	0223 0 0.00837	79 1.105923	0 1.392636	3.5601 3.745685 3.	947874 1.324135	0 1.513873 3	.5601 3.745685 3.	A7874 0.00876 13.	08956 0 8	051197 0.001862	0 0.00049
Santa Clara	2023 MDV	Aggregate Aggregate Gasoline 153799.1	5358084 5358084	0 712433.9 0	0.11759 0 0.	470106 0.001289	0 0.002144	0.002 0.003187 0.001	0 0.00233	1 0.008 0.009106	426.0995 0	109.7054 0.004406	0 0.110292 0.008	8479 0 0.04308	31 0.018826	0 0.559259 0.1	101975 0.285798 1	.72733 0.02744	0 0.612315 0.1	01975 0.285798	.72733 0.035428 1.0	67328 0 4	333252 0.004212	0 0.001085
Santa Clara	2023 MDV	Aggregate Aggregate Diesel 23/4.918	86834.44 86834.44	0 11267.05 0	0.053096 0	0 0.00515	0 0	0.002 0.003181 0.005	183 0	0 0.008 0.00909	413.3141 0	0 0.000529	0 0.065	5118 0	0 0.011397	0 0	0 0	0 0.012975	0 0	0 0	0 0.0031 0.20	02592 0	0 0.003916	0 0
Santa Clara	2023 MDV	Aggregate Aggregate Electricity 1130.115	400/3./ 0 400/	3.7 5/99.833 154/1.76		0 0	0 0	0.002 0.001524	0 0	0 0.008 0.004354	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Santa Clara	2023 MDV	Aggregate Aggregate Plug-In Hyd 986-0895	41899.14 20/8/.35 21111	./9 40/7.48 63/6.389	0.003256 0 0	0.11551 0.000638	0 0.002151	0.002 0.001376 0.000	93 0 0.00233	9 0.008 0.00393	158.3296 0	98.37574 0.000441	0 0.042261 0.000	0581 0 0.02059	75 0.001408	0 0.1/3285 0	0.02985 0.028058 0.	359617 0.002054	0 0.189725 0.1	12985 0.028058 0.	35961/ 0.02083/ 0.2	1345/ 01	333893 0.001368	0 0.000973
Santa Clara	2023 MH	Aggregate Aggregate Gasoline 2522.745	22546.87 22546.87	0 252.3754 0	0.479133 0 0.	412521 0.001781	0 0.000428	0.003 0.015756 0.001	137 0 0.00046	6 0.012 0.045017	1948.243 0	31.87585 0.018146	0 0.038028 0.02	2809 0 0.04264	17 0.082252	0 0.163779 13	.03985 0.30297 4.	773625 0.120022	0 0.179318 13.0	3985 0.30297 4.	/73625 0.044742 2.1	11943 0 3	629376 0.01926	0 0.000315
Santa Clara	2023 MH	Aggregate Aggregate Diesel 959.1578	1 9344.849 9344.849	0 95.91578 0	4.269554 0	0 0.097907	0 0	0.004 0.015675 0.102	134 0	0 0.016 0.044785	1081.435 0	0 0.005704	0 0 0.13	7038 0	0 0.122812	0 0	0 0	0 0.139813	0 0	0 0	0 0.150005 0.4	10284 0	0 0.010247	0 0
Santa Clara	2023 MHDT	Aggregate Aggregate Gasoline 1418.703	1 70785.86 70785.86	0 28385.41 0	0.562864 0.088304 0.	453053 0.001386	0 0.000555	0.003 0.015756 0.001	07 0 0.00060	3 0.012 0.045017	1792.411 536.9661	47.19918 0.018074 0.2	54589 0.049387 0.026	6381 0.007064 0.03256	56 0.09086 1.010	025 0.279571 0.0	37187 0.302385 3.	037923 0.132583 1.4	73826 0.306095 0.0	37187 0.302385 3.	J37923 0.04497 1.9	09686 15.08517 6	156285 0.01772 0.	J05308 0.000467
Santa Clara	2023 MHDT	Aggregate Aggregate Diesel 10273.55	431550.4 431550.4	0 122418.7 0	1.337342 13.57242 1.	624162 0.016518 0.033	5742 0	0.003 0.015941 0.017	65 0.037358	0 0.012 0.045546	1151.562 2263.789	0 0.001721 0.0	12298 0 0.18	1429 0.356661	0 0.037048 0.26	178 0	0 0	0 0.042176 0.3	01431 0	0 0	0 0.209014 0.13	32571 7.583386	0 0.010905 0.	J21437 0
Santa Clara	2023 MHDT	Aggregate Aggregate Electricity 4.749835	i 101.8022 0 101.80	122 59.6458 108.685	. 0 0	0 0	0 0	0.003 0.00799	0 0	0 0.012 0.022828	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Santa Clara	2023 MHDT	Aggregate Aggregate Natural Ga 83.841	4047.874 4047.874	0 762.81 0	0.141319 6.52743	0 0.001137 0.017	7647 0	0.003 0.016002 0.001	36 0.019193	0 0.012 0.045721	989.385 5296.533	0 0.740055 17.	59163 0 0.201	1693 1.079733	0 0.010574 0.25	135 0	0 0	0 0.755281 17	.95355 0	0 0	0 1.06 2.94	92708 33.64344	0 0	0 0
Santa Clara	2023 OBUS	Aggregate Aggregate Gasoline 458.8974	20830.08 20830.08	0 9181.619 0	0.553081 0.064991 0.	405616 0.000893	0 0.000264	0.003 0.01568 0.000	0 0.00028	7 0.012 0.044799	1784.092 381.8461	31.89445 0.015808 0.1	94938 0.036281 0.026	6177 0.005253 0.03076	56 0.078109 0.745	234 0.192301 0.0	034706 0.154035 2.	766253 0.113977 1.0	87444 0.210546 0.0	34706 0.154035 2.	/66253 0.044918 1.7/	43956 5.768375 4	071703 0.017638 0.	003775 0.000315
Santa Clara	2023 OBUS	Aggregate Aggregate Diesel 870.4209	61645.66 61645.66	0 8910.755 0	1.203188 7.410097 1.	541404 0.020323 0.008	8632 0	0.003 0.018018 0.021	42 0.009022	0 0.012 0.05148	1282.538 1552.949	0 0.001991 0.0	20568 0 0.202	2064 0.244668	0 0.04286 0.442	328 0	0 0	0 0.048793 0.5	04126 0	0 0	0 0.215865 0.1	53454 7.510858	0 0.012145 0.	014706 0
Santa Clara	2023 OBUS	Aggregate Aggregate Natural Ga 6.1456	409.5466 409.5466	0 54.69584 0	0.219315 1.549107	0 0.000923 0.00	0362 0	0.003 0.016148 0.001	104 0.003937	0 0.012 0.046137	1017.405 1188.285	0 0.774069 4.3	81267 0 0.207	7405 0.24224	0 0.01106 0.0	526 0	0 0	0 0.789994 4.4	71404 0	0 0	0 1.06 3.2	11954 6.724204	0 0	0 0
Santa Clara	2023 SBUS	Aggregate Aggregate Gasoline 166.9867	8309.308 8309.308	0 667.9468 0	0.519317 0.925703	0.7051 0.000862	0 0.00056	0.002 0.015721 0.000	137 0 0.00060	9 0.008 0.044917	815.0909 2602.033	58.66947 0.011871 2	46208 0.074918 0.023	7733 0.086224 0.06490	04 0.057744 10.62	943 0.427061 0.1	112221 0.259299 1.	591441 0.084259 15	51043 0.467578 0.1	12221 0.259299 1.	591441 0.045 1.4	69507 82.16746 1	0.56434 0.008058 0.	.025724 0.00058
Santa Clara	2023 SBUS	Aggregate Aggregate Diesel 667.1185	15392.68 15392.68	0 9659.876 0	4.028015 22.39863 0.	467155 0.020908 0.02	2125 0	0.003 0.015721 0.021	153 0.022211	0 0.012 0.044917	1148.524 2237.814	0 0.002748 0.0	08083 0 0.18	8095 0.352568	0 0.059161 0.174	017 0	0 0	0 0.06735 0.1	.98106 0	0 0	0 0.144154 0.14	81489 4.581854	0 0.010876 0.	021191 0
Santa Clara	2023 SBUS	Aggregate Aggregate Electricity 0.302373	3.510494 0 3.5104	494 4.378365 3.69815	0 0	0 0	0 0	0.003 0.00786	0 0	0 0.012 0.022459	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Santa Clara	2023 SBUS	Aggregate Aggregate Natural Ga 23.50762	595.8705 595.8705	0 340.3903 0	0.587321 5.282702	0 0.003378 0.011	1076 0	0.003 0.015721 0.003	74 0.012046	0 0.012 0.044917	1271.127 4058.811	0 3.490611 15.	40242 0 0.255	9128 0.827415	0 0.049874 0.22	07 0	0 0	0 3.562424 1	5.7193 0	0 0	0 1.06 11.4	90284 20.11199	0 0	0 0
Santa Clara	2023 UBUS	Aggregate Aggregate Gasoline 45.94709	4798.244 4798.244	0 183.7884 0	0.026807 0 0.	443444 0.001143	0 0.000128	0.002 0.03185 0.0012	43 0 0.0001	4 0.008 0.091	926.2924 0	36.84613 0.002031	0 0.041715 0.004	4215 0 0.07014	9 0.005614	0 0.147842 0.0	038144 0.09212 0.	456803 0.008192	0 0.161868 0.03	38144 0.09212 0.	456803 0.045 0.5	71128 0 6	073786 0.009157	0 0.000364
Santa Clara	2023 UBUS	Aggregate Aggregate Diesel 436.6681	48829.71 48829.71	0 1746.672 0	0.386256 0	0 0.007022	0 0	0.0083 0.0385 0.00	34 0	0 0.0332 0.11	1100.965 0	0 0.003215	0 0.173	3457 0	0 0.069208	0 0	0 0	0 0.078788	0 0	0 0	0 0.18785 0.0	79368 0	0 0.010432	0 0
Santa Clara	2023 UBUS	Aggregate Aggregate Electricity 5.046757	199.0027 0 199.00	27 20.18703 346.9103	. 0 0	0 0	0 0	0.009 0.01925	0 0	0 0.036 0.055	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
Santa Clara	2023 UBUS	Aggregate Aggregate Natural Ga 42.26114	4829.673 4829.673	0 169.0446 0	0.05878 0	0 0.000282	0 0 0	0.008182 0.0385 0.000	95 0	0 0.032727 0.11	1299.127 0	0 4.245742	0 0.264	4835 0	0 0.060663	0 0	0 0	0 4.333091	0 0	0 0	0 0.97 49.	04231 0	0 0	0 0

Source: EMFACID21 (zl. 0.1) Emission Rates Region Type County Region: State Cours Calmod river. 2004 Source: Annual Neurona: Annual Cours Courses Neurona: Annual Courses Neur

Region Cale	indar y vehicle Ca	atmodel Yea speed Fuel F	Population Lotal VMT CVMT EVMT	. Inps Energy	.gy COLNOX_KONENOX_ID	DIEXNUX_STREPM2.5_RU P	PMZ5_IDLPMZ5_STEP	1M2.5_PM PM2.5_PF	PM10_RUNPM10_IDL	TEMUTO_STR.EW	M10_PM PM10_PM10	LO2_RUNECO2_IDLE	XCO2_STREJCH4	_RUNE CH4_IDLES	KCH4_STREPN20_RU	VENZO_IDLE3NZO_S	IKE HOG_KUNIKUG	IDLEARUG_STREA	KOG_HOISKOG	_RUNINDG_DIUR	CIOG_RUNETOG_	IDLEXIUG_STRETUG	_HOISTOG_KUN	LIOG_DIOR NE	13_RUNECO_RU	INEXCO_IDLEX_CO	STREX SUX_RUNE SC	UX_IDLEX SUX_STREX
Santa Clara	2024 HHDT	Aggregate Aggregate Gasoline	2.588708 115.1526 115.1526	0 51.79487	0 7.013725	0 1.695629 0.003612	0 0.001433	0.005 0.03384	0.003929 C	0.001559	0.02 0.096686	2166.164	0 50.04419 0.2	46012 0	0.000205 0.19292	7 0 0.0493	97 1.47824	0 0.001115	0.149022 1.?	J4233 10.02547	2.157045	0 0.001221 0.1	49022 1.3423?	3 10.02547	0.04274 52.51	1903 0 2	.60109 0.021415	0 0.000495
Santa Clara	2024 HHDT	Aggregate Aggregate Diesel	8486.693 1001095 1001095	0 124748.4	0 1.894567 62.887	3367 2.898867 0.025674	0.03017 0	0.00877 0.027454	0.026835 0.031534	1 0 0	0.035082 0.07844	1634.1 11997.0	1 0 0.0	00777 0.23663	8 0 0.25745	3 1.890134	0 0.016732 5.0	.94584 0	0	0 0	0.019048 5.75	9796 0	0 0	, o c	.215084 0.087	2524 74.10576	0 0.015474 f	0.113605 0
Santa Clara	2024 HHDT	Aggregate Aggregate Electricity	28.33039 2794.261 0 2794	4.261 378.7946 5157	52.341 0	0 0 0	0 0	0.008585 0.014055	, 0 (0.034341 0.040158	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	ه د	0	0 0	0 0	0 0
Santa Clara	2024 HHDT	Aggregate Aggregate Natural Ga	794.401 54591.27 54591.27	0 7249.717	0 1.128254 13.55"	515 0 0.001724	0.024776 0	0.009 0.04752	0.001875 0.026946	5 0	0.036 0.135775	1387.534 10583.6	4 0 2.3	44742 36.30276	0 0.28285	8 2.157544	0 0.050833 0.5	50696 0	0	0 0	2.412728 37.0	38609 0	0 1	J 0	0.85184 13.40	0196 74.43135	0 0	0 0
Santa Clara	2024 1 DA	Apprezate Apprezate Gasoline	600108 2 22290344 22290344	0 2786617	0 0.042281	0 0 252993 0 001127	0 0 001931	0.002 0.002656	0.00128 C	0.0021	0.008 0.007587	277 9403	0 70 44944 0.0	07338 0	0.072036 0.00467	2 0 0 033	228 0.008937	0 0 328953	0.090491_0.27	30394 1 422636	0.013041	0 0 360162 0.0	90491 0 23039	4 1422636 C	034712 0.737	7516 0.3	233068 0.002748	0 0.000696
Santa Clara	2024 1 DA	Apprezate Apprezate Diesel	1750.024 51573.48 51573.48	0 7442.61	0 0 213181	0 0.0016747	0 0	0.002 0.002208	0.017504 0	0	0.008 0.00773	232 7849	0 0 0 0	01289 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0	0 0.027749	0 0	0	0 0	0.03159	0 0	0 (a 0	0.0031 0.331	1109 0	0 0.002206	0 0
Santa Clara	2024 104	Apprezate Apprezate Flectricity	57627.4 2472767 0 247	77767 782733 954	4692.3 0	0 0 0	0 0	0.002 0.00153			0.008 0.00438	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	a 0	0	0 0	0 0	0 0
Santa Clara	2024 LDA	Antropate Appropriate Plumin Hut	174571 767050 7 391569 7 3954	400.5 77195.1 116	6479.6 0.002264	0 011551 0000618	0 0.00307	0.002 0.00127	0.000672 0	0.002252	0.002 0.002025	129 6002	n 65 78652 nn	00444 0	0.04244.0.00059	7 0 0 0 0 0 0	262 0.001412	0 0 172795	0.041111 0.07	27202 0 447104	0.00206	0 0 199775 0 0	41111 0.02720	2 0 447104 0	010502 0.21/	4029 0 1	220902 0.001271	0 0.00065
Santa Clara	2024 LDT1	Antropate Appregate Flag-Intry-	52602 27 1206964 1206964	0 724702.4	0 0 129257	0 0 281294 0 001727	0 0.002679	0.002 0.00237	0.001999 0	0.002232	0.000 0.000359	279.0675	0 96 60/93 0.0	06261 0	0.105265 0.00043	4 0 0.020	60 0.007741	0 0 529221	0.165222 0.4	7292 0.447104	0.040475	0 0.500/22 01	65222 0.47247	7 2667159 (1026070 1.42	7621 0 5	152052 0.002252	0 0.000857
Santa Clara	2024 LDT1	Aggregate Aggregate Gasonie	32693.37 1706804 1706804	0 254795.4	0 0.128337	0 0.381294 0.001737	0 0.002678	0.002 0.00324	0.001889 0	0.002913	0.008 0.009258	328.9075	0 88.89483 0.0	43003 0	0.105565 0.00542	4 0 0.05i	0.027741	0 0.559521	0.105552 0.47	24// 2.00/158	0.040475	0 0.390488 0.1	.5552 0.472477	2.007158 0	.036079 1.427	021 0 5.4	.53055 0.003252	0 0.000857
Santa Clara	2024 LDT1	Aggregate Aggregate Dieser	23.40233 343.9308 343.9308 343.9308 311.0039 9009 646 0.9009	6 CVC 001 131C 500.	0 1.051952	0 0 0 2 3 9 3 / 3	0 0	0.002 0.003724	0.230136 0		0.008 0.001084	415.4507	0 0.0	12002 0	0 0.06543	0 0	0 0.298448	0 0	0	0 0	0.559765	0 0	0 0		0.0031 1.595	.005 0	0 0.003938	0 0
Canta Clara	2024 LDT1	Aggregate Aggregate Decircley		0.450 030.7450 0001	530.6 0.003033	0 044554 0000053	0 0 001 701	0.001 0.00133	0 0000 0	0 001/03	0.000 0.004357	434 6457	0 74 36406 0.0	00000 0	0 000000	0 0 0 0 0 0 0 0 0 0		0 0 177700	0.034453 0.0	300000 0 32000	0.001054	0 0 400 772 0 0	24452 0.02000		.010 177.010	3307 0 0	220002 0.001222	0 0 000707
Santa Clara	2024 LDT1	Aggregate Aggregate Plug-III Hyc	07.04378 3104.46 1414.302 1730	J.156 2/9./155 5	528.6 0.002955	0 0.11351 0.000367	0 0.001381	0.002 0.001385	0.0004 0	0.001302	0.008 0.003967	124.0157	0 71.58186 0.0	00397 0	0.042219 0.00032	2 0 0.020	556 0.001268	0 0.1/5285	0.024155 0.02	J965 0.279628	0.001851	0 0.189725 0.0	.4155 0.020965	. 0.279628 U	.018771 0.192	.505 01.	.39895 0.001232	0 0.000703
Santa Clara	2024 LD12	Aggregate Aggregate Gasonne	285585.4 10322/58 10322/58	0 1530458	0 0.089091	0 0.334237 0.001227	0 0.001959	0.002 0.00312.	0.001554 0	0.00215	0.008 0.008956	544.0040	0 88.12/36 0.0	02804 0	0.082985 0.00594		.54 0.011242	0 0.564216	0.081741 0.21	/000 1.300109	0.010404	0 0.420668 0.0	,1/41 0.21/060	, 1.308189 U	.0303339 0.842	.122 0 5.0	3/3/64 0.003407	0 0.0008/1
Santa Clara	2024 LD12	Aggregate Aggregate Diesel	1015.453 3/944.26 3/944.26	0 4835.434	0 0.041515	0 0.004813	0 0	0.002 0.00311:	0.005031 0		0.008 0.008895	311.1925	0 0.0	00609 0	0 0.04902	9 0	0 0.013105	0 0	0	0 0	0.014919	0 0	0 0		0.0031 0.129	3/6 0	0 0.002949	0 0
Santa Clara	2024 LD12	Aggregate Aggregate Electricity	1597.567 55532.59 0 5553	32.59 8150.927 2144	40.16 0	0 0 0	0 0	0.002 0.001526	. 0 0	0	0.008 0.004359	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	, 0	0	0 0	0 0	0 0
Santa Clara	2024 LDT2	Aggregate Aggregate Plug-in Hyt	2116.58 94757.71 44376.61 5038	31.09 8752.056 1521	216.59 0.003073	0 0.11551 0.000467	0 0.001672	0.002 0.001383	0.000508 0	0.001819	0.008 0.003953	130.578	0 78.06 0.0	00416 0	0.042233 0.00054	7 0 0.020	69 0.001329	0 0.173285	0.025949 0.02	.3686 0.309385	0.001939	0 0.189725 0.0	25949 0.023686	0.309385 0	.019635 0.201	.506 0 1.3	39893 0.001291	0 0.000772
Santa Clara	2024 LHDT1	Aggregate Aggregate Gasoline	19314.14 722529.3 722529.3	0 287751.9	0 0.17374 0.0362	221 0.636996 0.001534	0 0.000302	0.002 0.0273	0.001668 0	0 0.000328	0.008 0.078	871.4559 119.099	3 25.78022 0.0	08358 0.112945	5 0.032997 0.00977	8 0.002977 0.050	968 0.041718 0.4	15023 0.163611	0.047402 0.26	.3136 2.768514	0.060875 0.60	05601 0.179134 0.0	7402 0.263136	2.768514 0	.044898 1.142	.278 3.756209 3.1	23927 0.008615 0	0.001177 0.000255
Santa Clara	2024 LHDT1	Aggregate Aggregate Diesel	10107.74 398004.1 398004.1	0 127142.6	0 1.563015 1.921	:168 0 0.035058	0.026804 0	0.003 0.0273	. 0.036643 0.028016	5 0	0.012 0.078	631.4008 131.150	3 0 0.0	08006 0.005098	3 0 0.09947	7 0.020663	0 0.172364 0.	.10976 0	0	0 0	0.196225 0.12	24954 0	0 0	, 00	.172781 0.473	1594 0.909745	0 0.005983 0	0.001243 0
Santa Clara	2024 LHDT1	Aggregate Aggregate Electricity	70.82836 5110.544 0 5110	J.544 989.4273 3345	45.376 0	0 0 0	0 0	0.002 0.01365	. 0 0	0 0	0.008 0.039	0	D 0	0 0	0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	, 0	0	0 0	0 0	0 0
Santa Clara	2024 LHDT2	Aggregate Aggregate Gasoline	2506.906 91452.57 91452.57	0 37349.16	0 0.16518 0.035F	604 0.621534 0.00139	0 0.000239	0.002 0.03185	0.001512 0	0.000259	0.008 0.091	980.0361 137.592	2 25.51292 0.0	06183 0.111453	8 0.031983 0.00981	9 0.00291 0.0493	884 0.028613 0.	.40822 0.157242	0.04419 0.23	8167 2.558385	0.041752 0.55	95674 0.17216 0.	J4419 0.238163	/ 2.558385 0	044971 0.899	J209 3.762546 3.1	129931 0.009689	0.00136 0.000252
Santa Clara	2024 LHDT2	Aggregate Aggregate Diesel	4663.455 183558.4 183558.4	0 58660.4	0 1.266102 1.8954	i403 0 0.032055	0.027 0	0.003 0.03185	0.033504 0.028221	1 0	0.012 0.091	756.8682 209.561	8 0 0.0	07406 0.005098	8 0 0.11924	5 0.033017	0 0.159439 0.	.10976 0	0	0 0	0.18151 0.12	24954 0	0 0	J 00	184132 0.411	1851 0.909745	0 0.007172 0	0.001986 0
Santa Clara	2024 LHDT2	Aggregate Aggregate Electricity	18.33259 1253.286 0 1253	3.286 242.668 808.0	8.0022 0	0 0 0	0 0	0.002 0.015925	, 0 C	0 0	0.008 0.0455	0	D 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0 د	0	0 0	0 0	0 0
Santa Clara	2024 MCY	Aggregate Aggregate Gasoline	28171.51 166022.3 166022.3	0 56343.02	0 0.571344	0 0.135477 0.001779	0 0.003248	0.001 0.0042	. 0.001902 0	0.003456	0.004 0.012	187.743	0 48.37697 0.1	62609 0	0.181972 0.03955	8 0 0.008	802 1.062175	0 1.345317	3.559276 3.7	/5283 3.900294	1.276951	0 1.462608 3.5	39276 3.75283	3 3.900294 0	008808 12.6	3697 0 8.0	J02987 0.001856	0 0.000478
Santa Clara	2024 MDV	Aggregate Aggregate Gasoline	156642.4 5468054 5468054	0 726101.1	0 0.101279	0 0.42828 0.001229	0 0.002042	0.002 0.003184	0.001336 0	0.002221	0.008 0.009096	418.13	0 107.2801 0.0	03873 0	0.10186 0.00762	8 0 0.040	967 0.01626	0 0.508806	0.097051 0.27	/5722 1.677059	0.023715	0 0.557077 0.0	37051 0.275722	2 1.677059 0	036179 0.972	/241 0 4./	J22964 0.004134	0 0.001051
Santa Clara	2024 MDV	Aggregate Aggregate Diesel	2400.615 86292.69 86292.69	0 11318.82	0 0.048844	0 0.004909	0 0	0.002 0.003208	0.005131 C	0 0	0.008 0.009159	409.13	D 0 0.	00051 0	0 0.06445	9 0	0 0.010978	0 0	0	0 0	0.012498	0 0	0 0	0 د	0.0031 0.201	1538 0	0 0.003877	0 0
Santa Clara	2024 MDV	Aggregate Aggregate Electricity	1678.684 58660.63 0 5866	60.63 8578.496 2264	647.84 0	0 0 0	0 0	0.002 0.001525	, o c	0 0	0.008 0.004358	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0 د	0	0 0	0 0	0 0
Santa Clara	2024 MDV	Aggregate Aggregate Plug-in Hyb	1250.857 52904.03 25301.52 2760	02.51 5172.294 833/	36.781 0.003138	0 0.11551 0.000561	0 0.001952	0.002 0.001382	0.00061 C	0.002134	0.008 0.003948	133.3485	0 96.65661 0.0	00423 0	0.042047 0.00055	4 0 0.0203	895 0.001357	0 0.173285	0.030318 0.07	26684 0.341695	0.00198	0 0.189725 0.0	30318 0.026684	4 0.341695 C	.020087 0.205	5781 0 1.	339893 0.001318	0 0.000956
Santa Clara	2024 MH	Aggregate Aggregate Gasoline	2420.57 22012.3 22012.3	0 242.1538	0 0.420938	0 0.419963 0.001679	0 0.000404	0.003 0.015756	0.001826 0	0.000439	0.012 0.045017	1947.501	0 31.65056 0.0	15478 0	0.037539 0.02573	1 0 0.044	07 0.06827	0 0.159123	12.21143 0.28	36769 4.596479	0.09962	0 0.174219 12.	21143 0.28676	9 4.596479 C	.044846 1.687	2224 0 3.	497247 0.019253	0 0.000313
Santa Clara	2024 MH	Aggregate Aggregate Diesel	977.3606 9498.302 9498.302	0 97.73606	0 4.117169	0 0 0.091772	0 0	0.004 0.015675	0.095921 0	0 0	0.016 0.044785	1081.931	0 0.0	05558 0	0 0.17045	9 0	0 0.11965	0 0	0	0 0	0.136214	0 0	0 0	, o c	.155539 0.397	7281 0	0 0.010252	0 0
Santa Clara	2024 MHDT	Aggregate Aggregate Gasoline	1414.552 71600.35 71600.35	0 28302.35	0 0.470752 0.0884	3485 0.440963 0.001362	0 0.000533	0.003 0.015756	0.001482 0	0.000579	0.012 0.045017	1768.687 531.800	2 46.25227 0.0	15051 0.25808	8 0.047572 0.02291	3 0.00727 0.032	271 0.074951 1	01271 0.265405	0.033945 0.27	/6365 2.798712	0.109368 1.47	77744 0.290585 0.0	33945 0.27636	5 2.798712	0.04498 1.5F	6073 15.11634 5.1	\$25814 0.017485 f	0.005257 0.000457
Santa Clara	2024 MHDT	Aggregate Aggregate Diesel	10390.53 434043.6 434043.6	0 123939	0 1.232824 13.14	4099 1.642732 0.014397	0.029902 0	0.003 0.01594	0.015048 0.03125/	ŧ 0	0.012 0.045546	1147.309 2248.54	7 0 0.0	01507 0.01158	3 0 0.18075	9 0.35426	0 0.032455 0.2	(49319 0	0	0 0	0.036947 0.28	33831 0	0 1	J 0 C	.210532 0.120	0871 7.556027	0 0.010864 /	0.021292 0
Santa Clara	2024 MHDT	Aggregate Aggregate Electricity	30.91601 1660.353 0 1660	0.353 407.4536 184'	41.064 0	0 0 0	0 0	0.003 0.007956	i o r	0 0	0.012 0.022732	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 1	J 0	0	0 0	0 0	0 0
Santa Clara	2024 MHDT	Aggregate Aggregate Natural Ga	90.59449 4303.581 4303.581	0 827.6228	0 0.133415 6.499"	3719 0 0.001179	0.018131 0	0.003 0.016003	0.001282 0.019715		0.012 0.045734	984.6917 5301.10	1 0 0.	74573 17.31409	0 0.20073	6 1.080664	0 0.010655 0.2	47384 0	ò	o e	0.761072 17	6703 0	0 1	ه د	1.06 2.995	5842 34.7393	0 0	0 0
Santa Clara	2024 OBUS	Aggregate Aggregate Gasoline	443.1467 19894.31 19894.31	0 8866.48	0 0.49672 0.06*	3506 0.408547 0.000907	0 0.000252	0.003 0.01568	0.000987 (0.000274	0.012 0.044799	1764.001 379.414	3 31.61308 0.0	13757 0.195733	0.03606 0.02401	8 0.005304 0.0310	28 0.067076 0.7	/46281 0.190964	0.033873 0.15	4922 2.818385	0.097877 1.08	8971 0.209081 0.0	33873 0.15492	2 2.818385 C	0.044969 1.492	1576 5.774637 4	300641 0.017439 /	0.003751 0.000313
Santa Clara	2024 OBUS	Apprezate Apprezate Diesel	893 1376 61949 05 61949 05	0 9141 625	0 1 178643 7 363	387 1 543157 0 019849	0.008167 0	0.003 0.018019	0.020746_0.008530	5 0	0.012 0.051472	1273 38 1538 56	4 0.00	01935 0.020479	0 0 20062	2 0 242401	0 0.04166 0.4	440905 0	0	0 0	0.047427 0.50	11937 0	0 (a or	216021 0.150	0181 7 500483	0 0.012058 (0.014569 0
Santa Clara	2024 OBUS	Aggregate Aggregate Electricity	1.087481 92.50105 0 92.5	50105 21.75833 10"	.02.477 0	0 0 0	0 0	0.003 0.00784	0 0	ō	0.012 0.022399	0	0 0	0 0	0 0	0 0	0 0	0 0	ō	0 0	0	0 0	0 1	ء	0	0 0	0 0	0 0
Santa Clara	2024 OBUS	Appresate Appresate Natural Ga	7 05737 469 3876 469 3876	0 62 81059	0 0 190585 1 537	7414 0 0.00106	0 003899 0	0.003 0.01614	0.001153 0.00424*		0.012 0.046137	1004 237 1191 58	1 0.07	89796 4 236895	0 0 2042	2 0 242912	0 0.011285 0.0	160537 0	0	0 0	0.806045 4.32	14062 0	0 0	a 0	1.06 3.25/	4325 7 353064	0 0	0 0
Santa Clara	2024 SBUS	Argregate Argregate Gasoline	172 6948 8584 856 8584 856	0 690 7791	0 0.50288 0.925/	939 0 716801 0 000864	0 0 000567	0.002 0.01572	0.000939 C	0.000616	0.008 0.044917	810 6064 2589 13	1 58 1367 0.0	11135 2 464862	0 074893 0 02710	0.086311 0.0659	229 0.054059 10	63288 0.426367	0 113914 0 2	74691 1 686167	0.078883 15.5	1547 0 466819 0 1	13914 0 27469	1 1 686167	0.045 1.30	8705 82 18841 10	36621 0.008014 (0.025596 0.000575
Santa Clara	2024 58115	Antronate Antropate Discol	670 5959 15345 36 15345 36	0 9710 779	0 2 921299 21 90	491 0 493951 0 019766	0.019702 0	0.002 0.01572	0.03066 0.03069	1 0	0.012 0.014917	1144.19 222	0 00	03665 0.009001	0 0 19076	6 0.25119	0 0.057276 0.1	(72257 0	0	0 0	0.065219 0.10	6101 0	0 (0 0 0	11/2075 0.1	1775 4 677707	0 0.010925 (0.021107 0
Santa Clara	2024 5005	Antropate Appregate Date:	3 064666 64 25501 0 64 2	25501 22 64620 67 7	70515 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.013703 0	0.003520 0.0079	. 0 0.01000		0.010157 0.022459	0 11	, 0 0.0	0.000001	0 0.10010	0 0.33110	0 0.007.070 0.1	0 0	0	0 0	0.0000010 0.11	0 0	0 0		0.1	0 0	0 0.010035 0	0 0
Santa Clara	2024 5005	Antropate Appregate Electricity	24 2005 612 0041 612 0041	0 252 2049	0 0 567770 5 720	0 0 0 0 2 2 2	0.011257 0	0.002.000 0.000701	0.002674 0.01225	, ,	0.012 0.014917	1261 205 4066 72	6 0 24	26672 15 25665	0 0 25713	5 0 920021	0 0 019102 0 7	117097 0	0	0 0	2 507276 15 5	27052 0	0 0	• •	106 1160	4901 30 74692	0 0	0 0
Santa Clara	2024 1015	Astronate Astronate Garoline	AC 02212 A212 A51 A212 A51	0 194 2225	0 0.0077492	0.0457222.0001142	0.000129	0.002 0.02191	0.001242 0.012552	0.00014	0.002 0.091	026 0926	0 3694792 0.0	03024 0	0.043067 0.00439	9 0.027031	217 0.005624	0 0 152070	0.029099.0.00	42116 0 456425	0.009221	0 0 167/92 0.0	20000 0.002110	6 0.456429	0.045 0.581	1149 0.6	120/05 0.000155	0 0 000265
Santa Clara	2024 UBUS	Astronate Astronate Discel	427 4745 49017 51 49017 51	0 1740 999	0 0.285257	0 0.007072	0 0.000128	0.002 0.0318	0.00724 0	0.03014	0.0222 0.11	1101.14	0 0.0	02215 0	0 0 17249	s 0 0.071.	0 0.069309	0 0.1529/9	0.0300.9 0.09	0.430438	0.079799	0 0.137402 0.0	0.002110	0 0 0 0	1197009 0.070	1760 0 0.1	0 0.010424	0.000365
Same Claira	2024 UDUS	Appression Appression District	-3/3/45 -33/0/3/ 4091/01	0.000 31,30000 400	0 0.303257	5 5 0.007023		0.00000 0.0000			0.0351 0.11		00.0		0 0.1/348		0 0.009208		0		0.070700	0 0					0 0.010434	0
Santa Clara	2024 UBUS	Aggregate Aggregate Electricity	3.54/303 235.002b U 235.0	0 470 3470		0 0 0000000		0.00555 0.01925	0 00	, ,	0.05552 0.055	4300 300	0 0	40000	0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0000000	0 0	0	0 0	0	0 0	0 0	. 0	0 07 40.0	0 0	0 0	0 0
Sanca clara	2024 UBD2	ABBLEGADE ABBLEGATE NATILLA CA	42.36030 4603.16/ 4865.18/	0 1/0.34/8	0 0.058/88	0 0.000282	0 0	0.008103 0.0385	0.000295 0	, ,,	.032/31 0.11	1277.200	0 4.2	40000 0	0 0.26485	~ U	0 0.000668	0 0	0	0 0	4.333415	0 0	0 0		0.97 49.04	//60 0	0 0	0 0

Attachment 4: Project Construction Emissions and Health Risk Calculations

City Parking Garage, San Jose, CA

Standby Emergency Generator Impacts

Off-site Sensitive Receptors

MEI Location = 1.5 meter receptor height

DPM Emission Rates								
	DPM Emissions per	Generator						
	Max Daily	Annual						
Source Type	(Ib/day)	(lb/year)						
200-kW, 270-hp Generator	0.009	3.24						
CalEEMod DPM Emissions	1.62E-03	tons/year						

Modeling Information										
Model	AERMOD									
Source	Diesel Generator Engine									
Source Type	Point									
Meteorological Data	2013 - 2017 San Jos <mark>e International Airport</mark>									
	Point Source Stack Parameters									
Generator Engine Size (hp)	270									
Stack Height (ft)	10.00									
Stack Diameter (ft)**	0.60									
Exhaust Gas Flowrate (CFM)*	2527.73									
Stack Exit Velocity (ft/sec)**	149.00									
Exhaust Temperature (°F)**	872.00									
Emissions Rate (lb/hr)	0.000370									

* AERMOD default

**BAAQMD default generator parameters

City Parking Garage, San Jose, CA - Cancer Risks from Project Operation Project Emergency Generator Impacts at Off-Site Receptors- 1.5m MEI Receptor Heights Impact at Project MEI (28-year Exposure)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

	Infa	Infant/Child									
Age>	3rd Trimester	0 - 2	2 - 16	16-30							
Parameter											
ASF =	10	10	3	1							
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00							
DBR* =	361	1090	572	261							
A =	1	1	1	1							
EF =	350	350	350	350							
AT =	70	70	70	70							
FAH=	1.00	1.00	1.00	0.73							

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Cl	Infant/Child - Exposure		Infant/Child				
	Exposure				Age	Cancer				
Expos ure	Duration		DPM Cor	nc (ug/m3)	Sensitivity	Risk		Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)		Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.0000	10	0.000				
1	1	0 - 1	2023	0.0000	10	0.000				
2	1	1 - 2	2024	0.0000	10	0.000				
3	1	2 - 3	2025	0.0004	3	0.011		0.00008	0.0001	0.0005
4	1	3 - 4	2026	0.0004	3	0.011		0.00008	0.0001	0.0005
5	1	4 - 5	2027	0.0004	3	0.011		0.00008	0.0001	0.0005
6	1	5 - 6	2028	0.0004	3	0.011		0.00008	0.0001	0.0005
7	1	6 - 7	2029	0.0004	3	0.011		0.00008	0.0001	0.0005
8	1	7 - 8	2030	0.0004	3	0.011		0.00008	0.0001	0.0005
9	1	8 - 9	2031	0.0004	3	0.011		0.00008	0.0001	0.0005
10	1	9 - 10	2032	0.0004	3	0.011		0.00008	0.0001	0.0005
11	1	10 - 11	2033	0.0004	3	0.011		0.00008	0.0001	0.0005
12	1	11 - 12	2034	0.0004	3	0.011		0.00008	0.0001	0.0005
13	1	12 - 13	2035	0.0004	3	0.011		0.00008	0.0001	0.0005
14	1	13 - 14	2036	0.0004	3	0.011		0.00008	0.0001	0.0005
15	1	14 - 15	2037	0.0004	3	0.011		0.00008	0.0001	0.0005
16	1	15 - 16	2038	0.0004	3	0.011		0.00008	0.0001	0.0005
17	1	16 - 17	2039	0.0004	1	0.001		0.00008	0.0001	0.0005
18	1	17 - 18	2040	0.0004	1	0.001		0.00008	0.0001	0.0005
19	1	18 - 19	2041	0.0004	1	0.001		0.00008	0.0001	0.0005
20	1	19 - 20	2042	0.0004	1	0.001		0.00008	0.0001	0.0005
21	1	20 - 21	2043	0.0004	1	0.001		0.00008	0.0001	0.0005
22	1	21 - 22	2044	0.0004	1	0.001		0.00008	0.0001	0.0005
23	1	22 - 23	2045	0.0004	1	0.001		0.00008	0.0001	0.0005
24	1	23 - 24	2046	0.0004	1	0.001		0.00008	0.0001	0.0005
25	1	24 - 25	2047	0.0004	1	0.001		0.00008	0.0001	0.0005
26	1	25 - 26	2048	0.0004	1	0.001		0.00008	0.0001	0.0005
27	1	26 - 27	2049	0.0004	1	0.001		0.00008	0.0001	0.0005
28	1	27 - 28	2050	0.0004	1	0.001		0.00008	0.0001	0.0005
29	1	28 - 29	2051	0.0004	1	0.001		0.00008	0.0001	0.0005
30	1	29 - 30	2052	0.0004	1	0.001		0.00008	0.0001	0.0005
Total Increas	ed Cancer Ris	k				0.16	Max	0.00008	0.0001	0.0005

* Third trimester of pregnancy

DPM	Construction	Emissions	and Modeling	Emission	Rates
	Competence		and the owering	111110 01011	Itutto

								Emissions
								per
Construction		DPM	Source	No.	DF	PM Emissio	Point Source	
Year	Activity	(ton/year)	Туре	Sources	(lb/yr)	(lb/hr)	(g/s)	(g/s)
2023	Construction	0.0726	Point	191	145.3	0.04423	5.57E-03	2.92E-05
2024	Construction	0.0172	Point	191	34.4	0.01046	1.32E-03	6.90E-06
Total		0.0898			179.7	0.0547	0.0069	

Emissions assumed to be evenly distributed over each construction areas

hr/day = 9 (7am -4pm)

 $days/yr\!=\!$ 365

hours/year = 3285

PM2.5 Fugitive Dust Construction Emissions for Modeling

								DPM
							Modeled	Emission
Construction		Area		PM2.5	Emissions		Area	Rate
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m^2)	$g/s/m^2$
2023	Construction	CON_FUG	i 0.0110	22.1	0.00672	8.46E-04	9745.0	8.69E-08
2024	Construction	CON_FUG	0.0006	1.2	0.00037	4.64E-05	9745.0	4.76E-09
Total			0.0116	23.3	0.0071	0.0009		

Emissions assumed to be evenly distributed over each construction areas

hr/day = 9 (7am -4pm) 365 days/yr= hours/year =3285

City Parking Garage, San Jose, CA Construction Health Impact Summary

Emissions	Maximum Conc Exhaust PM10/DPM	centrations Fugitive PM2.5	Cancer (per mi	· Risk illion)	Hazard Index	Maximum Annual PM2.5 Concentration
Year	(µg/m ³)	$(\mu g/m^3)$	Infant/Child	Adult	(-)	$(\mu g/m^3)$
2023	0.0370	0.0393	6.57	0.11	0.01	0.08
2024	0.0087	0.0022	1.44	0.03	0.00	0.01
Total	-	-	8.01	0.13		-
Maximum	0.0370	0.0393	-	-	0.01	0.08

Maximum Impacts at MEI Location - Without Mitigation

City Parking Garage, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 7.6 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group

- ED = Exposure duration (years)
- AT = Averaging time for lifetime cancer risk (years)
- FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

- A = Inhalation absorption factor
- EF = Exposure frequency (days/year) 10^{-6} = Conversion factor

Values

	1	Infant/Child									
Age>	3rd Trimester	0 - 2	2 - 16	16-30							
Parameter											
ASF =	10	10	3	1							
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00							
DBR* =	361	1090	572	261							
A =	1	1	1	1							
EF =	350	350	350	350							
AT=	70	70	70	70							
FAH=	1.00	1.00	1.00	0.73							

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Chilo	i - Exposure l	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure					Cancer	Model	ed	Age	Cancer		Maximum	
Expos ure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.0023	10	0.03	2023	0.0023	-	-			
1	1	0 - 1	2023	0.0023	10	0.37	2023	0.0023	1	0.01	0.000	0.000	0.00
2	1	1 - 2	2024	0.0005	10	0.09	2024	0.0005	1	0.00	0.000	0.000	0.00
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26	1	0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27	1	0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29	1	0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increase	od Concor D	Sel				0.40				0.01			

* Third trimester of pregnancy

City Parking Garage, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group

- ED = Exposure duration (years)
- AT = Averaging time for lifetime cancer risk (years)
- FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

- A = Inhalation absorption factor
- EF = Exposure frequency (days/year) 10^{-6} = Conversion factor

Values

	1	nfant/Child		Adult
Age ->	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT=	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child - Exposure Information		Infant/Child	Adult - Exposure Information			Adult				
	Exposure				Age	Cancer	Model	ed	Age	Cancer		Maximum	
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.0370	10	0.50	2023	0.0370	-	-			
1	1	0 - 1	2023	0.0370	10	6.07	2023	0.0370	1	0.11	0.01	0.039	0.08
2	1	1 - 2	2024	0.0087	10	1.44	2024	0.0087	1	0.03	0.00	0.002	0.01
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer F	lisk				8.01				0.13			

Total Increased Cancer Risk * Third trimester of pregnancy

Attachment 5: Community Risk Modeling Information and Calculations

Project MEI BAAQMD Raster Information - CalTrain Zone 4

File Name: W Santa Clara & Julian St 2023.EF CT-EMFAC2017 Version: 1.0.2.27401 Run Date: 10/19/2021 2:16:58 PM Area: Santa Clara (SF) Analysis Year: 2023 Season: Annual _____
 VMT Fraction
 Diesel VMT Fraction
 Gas VMT Fraction

 Across Category
 Within Category
 Within Category
 Vehicle Category Gas VMT Fraction Truck 1 0.015 0.487 0.513 0.020 0.938 0.047 Truck 2 Non-Truck 0.965 0.014 0.958 _____ Road Type: Major/Collector Silt Loading Factor: CARB 0.032 g/m2 P = 64 days CARB Precipitation Correction: N = 365 days _____ Fleet Average Running Exhaust Emission Factors (grams/veh-mile) Pollutant Name 25 mph 30 mph 35 mph
 M2.5
 0.002194
 0.001765

 TOG
 0.046181
 0.036838

 1 PM
 0.002292
 0.036838
 PM2.5 0.002194 0.001511 0.030861 Diesel PM 0.000382 0.000353 0.000350 _____ Fleet Average Running Loss Emission Factors (grams/veh-hour) Pollutant Name Emission Factor 1.357610 TOG _____ Fleet Average Tire Wear Factors (grams/veh-mile) Pollutant Name Emission Factor PM2.5 0.002108 _____ Fleet Average Brake Wear Factors (grams/veh-mile) Pollutant Name Emission Factor PM2.5 0.016808 _____ Fleet Average Road Dust Factors (grams/veh-mile) Pollutant Name Emission Factor PM2.5 0.014855

File Name: Highway 87 2023.EF CT-EMFAC2017 Version: 1.0.2.27401 Run Date: 10/29/2021 9:12:02 AM Area: Santa Clara (SF) Analysis Year: 2023 Season: Annual _____ VMT FractionDiesel VMT FractionGas VMT FractionAcross CategoryWithin CategoryWithin Category0.0270.0270.017 VMT Fraction Vehicle Category Truck 1 0.027 0.487 0.513 Truck 2 Non-Truck 0.010 0.938 0.047 0.963 0.014 0.958 Freeway Road Type: CARB Silt Loading Factor: 0.015 g/m2 N = 365 days Precipitation Correction: CARB P = 64 days_____ Fleet Average Running Exhaust Emission Factors (grams/veh-mile)
 utant Name
 55 mph
 60 mph

 PM2.5
 0.001359
 0.001486

 TOG
 0.024926
 0.026651

 Diesel PM
 0.000457
 0.000513
 Pollutant Name _____ Fleet Average Running Loss Emission Factors (grams/veh-hour) Pollutant Name Emission Factor TOG 1.402717 Fleet Average Tire Wear Factors (grams/veh-mile) Pollutant Name Emission Factor PM2.5 0.002067 _____ Fleet Average Brake Wear Factors (grams/veh-mile) Pollutant Name Emission Factor PM2.5 0.016805 Fleet Average Road Dust Factors (grams/veh-mile) Pollutant Name Emission Factor PM2.5 0.007019

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - W Santa Clara St DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
DPM_EB_WSC	W Santa Clara Eastbound	EB	2	573.3	0.36	13.3	43.7	3.4	30	9,896
DPM WB WSC	W Santa Clara Westbound	WB	2	598.8	0.37	13.3	43.7	3.4	30	9,896
									Total	19,793

Emission Factors

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.00035			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and DPM Emissions - DPM_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	3.91%	387	1.35E-05	9	6.50%	643	2.25E-05	17	5.58%	552	1.93E-05
2	2.59%	256	8.95E-06	10	7.36%	728	2.54E-05	18	3.28%	324	1.13E-05
3	2.88%	285	9.94E-06	11	6.33%	626	2.19E-05	19	2.36%	233	8.15E-06
4	3.34%	330	1.15E-05	12	6.84%	677	2.37E-05	20	0.92%	91	3.18E-06
5	2.19%	216	7.55E-06	13	6.15%	609	2.13E-05	21	2.99%	296	1.03E-05
6	3.39%	336	1.17E-05	14	6.15%	609	2.13E-05	22	4.14%	410	1.43E-05
7	5.98%	592	2.07E-05	15	5.23%	518	1.81E-05	23	2.47%	245	8.55E-06
8	4.66%	461	1.61E-05	16	3.91%	387	1.35E-05	24	0.86%	85	2.98E-06
								Total		9,896	

2023 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	3.91%	387	1.41E-05	9	6.50%	643	2.35E-05	17	5.58%	552	2.01E-05
2	2.59%	256	9.34E-06	10	7.36%	728	2.66E-05	18	3.28%	324	1.18E-05
3	2.88%	285	1.04E-05	11	6.33%	626	2.28E-05	19	2.36%	233	8.51E-06
4	3.34%	330	1.20E-05	12	6.84%	677	2.47E-05	20	0.92%	91	3.32E-06
5	2.19%	216	7.89E-06	13	6.15%	609	2.22E-05	21	2.99%	296	1.08E-05
6	3.39%	336	1.22E-05	14	6.15%	609	2.22E-05	22	4.14%	410	1.49E-05
7	5.98%	592	2.16E-05	15	5.23%	518	1.89E-05	23	2.47%	245	8.93E-06
8	4.66%	461	1.68E-05	16	3.91%	387	1.41E-05	24	0.86%	85	3.11E-06
								Total		9,896	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - W Santa Clara St PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
PM2.5_EB_WSC	W Santa Clara Eastbound	EB	2	573.3	0.36	13.3	44	1.3	30	9,896
PM2.5_WB_WSC	W Santa Clara Westbound	WB	2	598.8	0.37	13.3	44	1.3	30	9,896
									Total	19,793

Emission Factors - PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.001765			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and PM2.5 Emissions - PM2.5_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	114	1.99E-05	9	7.11%	704	1.23E-04	17	7.38%	731	1.28E-04
2	0.42%	41	7.22E-06	10	4.39%	435	7.59E-05	18	8.17%	809	1.41E-04
3	0.41%	40	7.05E-06	11	4.66%	462	8.06E-05	19	5.70%	564	9.85E-05
4	0.26%	26	4.55E-06	12	5.89%	583	1.02E-04	20	4.27%	423	7.39E-05
5	0.50%	50	8.65E-06	13	6.15%	609	1.06E-04	21	3.26%	323	5.63E-05
6	0.90%	89	1.56E-05	14	6.04%	597	1.04E-04	22	3.30%	326	5.70E-05
7	3.79%	375	6.56E-05	15	7.01%	694	1.21E-04	23	2.46%	243	4.25E-05
8	7.76%	768	1.34E-04	16	7.14%	706	1.23E-04	24	1.86%	184	3.22E-05
								Total		9,896	

2023 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM2.5_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	114	2.08E-05	9	7.11%	704	1.28E-04	17	7.38%	731	1.33E-04
2	0.42%	41	7.54E-06	10	4.39%	435	7.93E-05	18	8.17%	809	1.48E-04
3	0.41%	40	7.36E-06	11	4.66%	462	8.42E-05	19	5.70%	564	1.03E-04
4	0.26%	26	4.75E-06	12	5.89%	583	1.06E-04	20	4.27%	423	7.72E-05
5	0.50%	50	9.04E-06	13	6.15%	609	1.11E-04	21	3.26%	323	5.88E-05
6	0.90%	89	1.63E-05	14	6.04%	597	1.09E-04	22	3.30%	326	5.95E-05
7	3.79%	375	6.85E-05	15	7.01%	694	1.27E-04	23	2.46%	243	4.44E-05
8	7.76%	768	1.40E-04	16	7.14%	706	1.29E-04	24	1.86%	184	3.36E-05
								Total	-	9,896	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - W Santa Clara St TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
	W Santa Clara									
TEXH_EB_WSC	Eastbound	EB	2	573.3	0.36	13.3	44	1.3	30	9,896
	W Santa Clara									
TEXH_WB_WSC	Westbound	WB	2	598.8	0.37	13.3	44	1.3	30	9,896
									Total	19,793

Emission Factors - TOG Exhaust

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.03684			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	114	4.15E-04	9	7.11%	704	2.57E-03	17	7.38%	731	2.66E-03
2	0.42%	41	1.51E-04	10	4.39%	435	1.58E-03	18	8.17%	809	2.95E-03
3	0.41%	40	1.47E-04	11	4.66%	462	1.68E-03	19	5.70%	564	2.06E-03
4	0.26%	26	9.49E-05	12	5.89%	583	2.12E-03	20	4.27%	423	1.54E-03
5	0.50%	50	1.81E-04	13	6.15%	609	2.22E-03	21	3.26%	323	1.18E-03
6	0.90%	89	3.26E-04	14	6.04%	597	2.18E-03	22	3.30%	326	1.19E-03
7	3.79%	375	1.37E-03	15	7.01%	694	2.53E-03	23	2.46%	243	8.87E-04
8	7.76%	768	2.80E-03	16	7.14%	706	2.57E-03	24	1.86%	184	6.72E-04
								Total		9,896	

2023 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	114	4.34E-04	9	7.11%	704	2.68E-03	17	7.38%	731	2.78E-03
2	0.42%	41	1.57E-04	10	4.39%	435	1.66E-03	18	8.17%	809	3.08E-03
3	0.41%	40	1.54E-04	11	4.66%	462	1.76E-03	19	5.70%	564	2.15E-03
4	0.26%	26	9.92E-05	12	5.89%	583	2.22E-03	20	4.27%	423	1.61E-03
5	0.50%	50	1.89E-04	13	6.15%	609	2.32E-03	21	3.26%	323	1.23E-03
6	0.90%	89	3.41E-04	14	6.04%	597	2.27E-03	22	3.30%	326	1.24E-03
7	3.79%	375	1.43E-03	15	7.01%	694	2.64E-03	23	2.46%	243	9.27E-04
8	7.76%	768	2.92E-03	16	7.14%	706	2.69E-03	24	1.86%	184	7.02E-04
								Total		9,896	
City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - W Santa Clara St TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
TEVAP_EB_WSC	W Santa Clara Eastbound	EB	2	573.3	0.36	13.3	44	1.3	30	9,896
TEVAP_WB_WSC	W Santa Clara Westbound	WB	2	598.8	0.37	13.3	44	1.3	30	9,896
									Total	19,793

Emission Factors - PM2.5 - Evaporative TOG

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle per Hour (g/hour)	1.35761			
Emissions per Vehicle per Mile (g/VMT)	0.04525			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	114	5.10E-04	9	7.11%	704	3.15E-03	17	7.38%	731	3.27E-03
2	0.42%	41	1.85E-04	10	4.39%	435	1.95E-03	18	8.17%	809	3.62E-03
3	0.41%	40	1.81E-04	11	4.66%	462	2.07E-03	19	5.70%	564	2.52E-03
4	0.26%	26	1.17E-04	12	5.89%	583	2.61E-03	20	4.27%	423	1.89E-03
5	0.50%	50	2.22E-04	13	6.15%	609	2.73E-03	21	3.26%	323	1.44E-03
6	0.90%	89	4.01E-04	14	6.04%	597	2.68E-03	22	3.30%	326	1.46E-03
7	3.79%	375	1.68E-03	15	7.01%	694	3.11E-03	23	2.46%	243	1.09E-03
8	7.76%	768	3.44E-03	16	7.14%	706	3.16E-03	24	1.86%	184	8.26E-04
			-				-	Total		9,896	

2023 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	114	5.33E-04	9	7.11%	704	3.29E-03	17	7.38%	731	3.42E-03
2	0.42%	41	1.93E-04	10	4.39%	435	2.03E-03	18	8.17%	809	3.78E-03
3	0.41%	40	1.89E-04	11	4.66%	462	2.16E-03	19	5.70%	564	2.64E-03
4	0.26%	26	1.22E-04	12	5.89%	583	2.73E-03	20	4.27%	423	1.98E-03
5	0.50%	50	2.32E-04	13	6.15%	609	2.85E-03	21	3.26%	323	1.51E-03
6	0.90%	89	4.19E-04	14	6.04%	597	2.79E-03	22	3.30%	326	1.53E-03
7	3.79%	375	1.76E-03	15	7.01%	694	3.25E-03	23	2.46%	243	1.14E-03
8	7.76%	768	3.59E-03	16	7.14%	706	3.30E-03	24	1.86%	184	8.63E-04
								Total		9,896	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - W Santa Clara St Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
FUG_EB_WSC	W Santa Clara Eastbound	EB	2	573.3	0.36	13.3	44	1.3	30	9,896
FUG_WB_WSC	W Santa Clara Westbound	WB	2	598.8	0.37	13.3	44	1.3	30	9,896
									Total	19,793

Emission Factors - Fugitive PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Tire Wear - Emissions per Vehicle (g/VMT)	0.00211			
Brake Wear - Emissions per Vehicle (g/VMT)	0.01681			
Road Dust - Emissions per Vehicle (g/VMT)	0.01486			
tal Fugitive PM2.5 - Emissions per Vehicle (g/VMT)	0.03377			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG_EB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	114	3.81E-04	9	7.11%	704	2.35E-03	17	7.38%	731	2.44E-03
2	0.42%	41	1.38E-04	10	4.39%	435	1.45E-03	18	8.17%	809	2.70E-03
3	0.41%	40	1.35E-04	11	4.66%	462	1.54E-03	19	5.70%	564	1.88E-03
4	0.26%	26	8.70E-05	12	5.89%	583	1.95E-03	20	4.27%	423	1.41E-03
5	0.50%	50	1.66E-04	13	6.15%	609	2.03E-03	21	3.26%	323	1.08E-03
6	0.90%	89	2.99E-04	14	6.04%	597	2.00E-03	22	3.30%	326	1.09E-03
7	3.79%	375	1.25E-03	15	7.01%	694	2.32E-03	23	2.46%	243	8.13E-04
8	7.76%	768	2.57E-03	16	7.14%	706	2.36E-03	24	1.86%	184	6.16E-04
								Total		9,896	

2023 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG_WB_WSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	114	3.98E-04	9	7.11%	704	2.46E-03	17	7.38%	731	2.55E-03
2	0.42%	41	1.44E-04	10	4.39%	435	1.52E-03	18	8.17%	809	2.82E-03
3	0.41%	40	1.41E-04	11	4.66%	462	1.61E-03	19	5.70%	564	1.97E-03
4	0.26%	26	9.09E-05	12	5.89%	583	2.03E-03	20	4.27%	423	1.48E-03
5	0.50%	50	1.73E-04	13	6.15%	609	2.12E-03	21	3.26%	323	1.13E-03
6	0.90%	89	3.12E-04	14	6.04%	597	2.09E-03	22	3.30%	326	1.14E-03
7	3.79%	375	1.31E-03	15	7.01%	694	2.42E-03	23	2.46%	243	8.50E-04
8	7.76%	768	2.68E-03	16	7.14%	706	2.46E-03	24	1.86%	184	6.44E-04
								Total		9,896	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Julian Street DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
DPM_EB_JUL	Julian Street Eastbound	EB	2	697.2	0.43	13.3	43.7	3.4	30	4,917
DPM_WB_JUL	Julian Street Westbound	WB	2	691.0	0.43	13.3	43.7	3.4	30 Total	<mark>4,917</mark> 9,833

Emission Factors

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.00035			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and DPM Emissions - DPM_EB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	3.91%	192	8.17E-06	9	6.50%	319	1.36E-05	17	5.58%	274	1.16E-05
2	2.59%	127	5.40E-06	10	7.36%	362	1.54E-05	18	3.28%	161	6.85E-06
3	2.88%	141	6.01E-06	11	6.33%	311	1.32E-05	19	2.36%	116	4.92E-06
4	3.34%	164	6.97E-06	12	6.84%	336	1.43E-05	20	0.92%	45	1.92E-06
5	2.19%	107	4.56E-06	13	6.15%	303	1.29E-05	21	2.99%	147	6.25E-06
6	3.39%	167	7.09E-06	14	6.15%	303	1.29E-05	22	4.14%	204	8.65E-06
7	5.98%	294	1.25E-05	15	5.23%	257	1.09E-05	23	2.47%	122	5.16E-06
8	4.66%	229	9.73E-06	16	3.91%	192	8.17E-06	24	0.86%	42	1.80E-06
								Total		4,917	

2023 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM_WB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	3.91%	192	8.09E-06	9	6.50%	319	1.35E-05	17	5.58%	274	1.15E-05
2	2.59%	127	5.36E-06	10	7.36%	362	1.52E-05	18	3.28%	161	6.78E-06
3	2.88%	141	5.95E-06	11	6.33%	311	1.31E-05	19	2.36%	116	4.88E-06
4	3.34%	164	6.90E-06	12	6.84%	336	1.42E-05	20	0.92%	45	1.90E-06
5	2.19%	107	4.52E-06	13	6.15%	303	1.27E-05	21	2.99%	147	6.19E-06
6	3.39%	167	7.02E-06	14	6.15%	303	1.27E-05	22	4.14%	204	8.57E-06
7	5.98%	294	1.24E-05	15	5.23%	257	1.08E-05	23	2.47%	122	5.12E-06
8	4.66%	229	9.64E-06	16	3.91%	192	8.09E-06	24	0.86%	42	1.79E-06
								Total		4,917	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Julian Street PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
PM2.5_EB_JUL	Julian Street Eastbound	EB	2	697.2	0.43	13.3	44	1.3	30	4,917
PM2.5_WB_JUL	Julian Street Westbound	WB	2	691.0	0.43	13.3	44	1.3	30	4,917
									Total	9,833

Emission Factors - PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.001765			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and PM2.5 Emissions - PM2.5_EB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	57	1.20E-05	9	7.11%	350	7.43E-05	17	7.38%	363	7.71E-05
2	0.42%	21	4.36E-06	10	4.39%	216	4.59E-05	18	8.17%	402	8.53E-05
3	0.41%	20	4.26E-06	11	4.66%	229	4.87E-05	19	5.70%	280	5.95E-05
4	0.26%	13	2.75E-06	12	5.89%	290	6.15E-05	20	4.27%	210	4.46E-05
5	0.50%	25	5.23E-06	13	6.15%	302	6.42E-05	21	3.26%	160	3.40E-05
6	0.90%	44	9.44E-06	14	6.04%	297	6.30E-05	22	3.30%	162	3.44E-05
7	3.79%	186	3.96E-05	15	7.01%	345	7.32E-05	23	2.46%	121	2.57E-05
8	7.76%	382	8.11E-05	16	7.14%	351	7.45E-05	24	1.86%	92	1.95E-05
								Total		4,917	

2023 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM2.5_WB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	57	1.19E-05	9	7.11%	350	7.36E-05	17	7.38%	363	7.64E-05
2	0.42%	21	4.32E-06	10	4.39%	216	4.55E-05	18	8.17%	402	8.46E-05
3	0.41%	20	4.22E-06	11	4.66%	229	4.83E-05	19	5.70%	280	5.90E-05
4	0.26%	13	2.72E-06	12	5.89%	290	6.09E-05	20	4.27%	210	4.42E-05
5	0.50%	25	5.18E-06	13	6.15%	302	6.37E-05	21	3.26%	160	3.37E-05
6	0.90%	44	9.36E-06	14	6.04%	297	6.25E-05	22	3.30%	162	3.41E-05
7	3.79%	186	3.93E-05	15	7.01%	345	7.26E-05	23	2.46%	121	2.55E-05
8	7.76%	382	8.03E-05	16	7.14%	351	7.38E-05	24	1.86%	92	1.93E-05
								Total		4,917	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Julian Street TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
TEXH_EB_JUL	Julian Street Eastbound	EB	2	697.2	0.43	13.3	44	1.3	30	4,917
TEXH_WB_JUL	Julian Street Westbound	WB	2	691.0	0.43	13.3	44	1.3	30	4,917
									Total	9,833

Emission Factors - TOG Exhaust

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle (g/VMT)	0.03684			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH_EB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	57	2.51E-04	9	7.11%	350	1.55E-03	17	7.38%	363	1.61E-03
2	0.42%	21	9.10E-05	10	4.39%	216	9.57E-04	18	8.17%	402	1.78E-03
3	0.41%	20	8.88E-05	11	4.66%	229	1.02E-03	19	5.70%	280	1.24E-03
4	0.26%	13	5.74E-05	12	5.89%	290	1.28E-03	20	4.27%	210	9.32E-04
5	0.50%	25	1.09E-04	13	6.15%	302	1.34E-03	21	3.26%	160	7.10E-04
6	0.90%	44	1.97E-04	14	6.04%	297	1.32E-03	22	3.30%	162	7.19E-04
7	3.79%	186	8.27E-04	15	7.01%	345	1.53E-03	23	2.46%	121	5.36E-04
8	7.76%	382	1.69E-03	16	7.14%	351	1.56E-03	24	1.86%	92	4.06E-04
								Total		4,917	

2023 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH_WB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	57	2.49E-04	9	7.11%	350	1.54E-03	17	7.38%	363	1.60E-03
2	0.42%	21	9.02E-05	10	4.39%	216	9.49E-04	18	8.17%	402	1.77E-03
3	0.41%	20	8.81E-05	11	4.66%	229	1.01E-03	19	5.70%	280	1.23E-03
4	0.26%	13	5.68E-05	12	5.89%	290	1.27E-03	20	4.27%	210	9.23E-04
5	0.50%	25	1.08E-04	13	6.15%	302	1.33E-03	21	3.26%	160	7.04E-04
6	0.90%	44	1.95E-04	14	6.04%	297	1.30E-03	22	3.30%	162	7.13E-04
7	3.79%	186	8.19E-04	15	7.01%	345	1.51E-03	23	2.46%	121	5.31E-04
8	7.76%	382	1.68E-03	16	7.14%	351	1.54E-03	24	1.86%	92	4.03E-04
								Total		4,917	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Julian Street TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
TEVAP_EB_JUL	Julian Street Eastbound	EB	2	697.2	0.43	13.3	44	1.3	30	4,917
TEVAP_WB_JUL	Julian Street Westbound	WB	2	691.0	0.43	13.3	44	1.3	30	4,917
									Total	9,833

Emission Factors - PM2.5 - Evaporative TOG

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Emissions per Vehicle per Hour (g/hour)	1.35761			
Emissions per Vehicle per Mile (g/VMT)	0.04525			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP_EB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	57	3.08E-04	9	7.11%	350	1.90E-03	17	7.38%	363	1.98E-03
2	0.42%	21	1.12E-04	10	4.39%	216	1.18E-03	18	8.17%	402	2.19E-03
3	0.41%	20	1.09E-04	11	4.66%	229	1.25E-03	19	5.70%	280	1.53E-03
4	0.26%	13	7.05E-05	12	5.89%	290	1.58E-03	20	4.27%	210	1.14E-03
5	0.50%	25	1.34E-04	13	6.15%	302	1.65E-03	21	3.26%	160	8.73E-04
6	0.90%	44	2.42E-04	14	6.04%	297	1.62E-03	22	3.30%	162	8.83E-04
7	3.79%	186	1.02E-03	15	7.01%	345	1.88E-03	23	2.46%	121	6.59E-04
8	7.76%	382	2.08E-03	16	7.14%	351	1.91E-03	24	1.86%	92	4.99E-04
			-				-	Total		4,917	

2023 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP_WB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	57	3.06E-04	9	7.11%	350	1.89E-03	17	7.38%	363	1.96E-03
2	0.42%	21	1.11E-04	10	4.39%	216	1.17E-03	18	8.17%	402	2.17E-03
3	0.41%	20	1.08E-04	11	4.66%	229	1.24E-03	19	5.70%	280	1.51E-03
4	0.26%	13	6.98E-05	12	5.89%	290	1.56E-03	20	4.27%	210	1.13E-03
5	0.50%	25	1.33E-04	13	6.15%	302	1.63E-03	21	3.26%	160	8.65E-04
6	0.90%	44	2.40E-04	14	6.04%	297	1.60E-03	22	3.30%	162	8.75E-04
7	3.79%	186	1.01E-03	15	7.01%	345	1.86E-03	23	2.46%	121	6.53E-04
8	7.76%	382	2.06E-03	16	7.14%	351	1.89E-03	24	1.86%	92	4.95E-04
								Total		4,917	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Julian Street Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
FUG_EB_JUL	Julian Street Eastbound	EB	2	697.2	0.43	13.3	44	1.3	30	4,917
FUG_WB_JUL	Julian Street Westbound	WB	2	691.0	0.43	13.3	44	1.3	30	4,917
									Total	9,833

Emission Factors - Fugitive PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	30			
Tire Wear - Emissions per Vehicle (g/VMT)	0.00211			
Brake Wear - Emissions per Vehicle (g/VMT)	0.01681			
Road Dust - Emissions per Vehicle (g/VMT)	0.01486			
tal Fugitive PM2.5 - Emissions per Vehicle (g/VMT)	0.03377			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG_EB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	57	2.30E-04	9	7.11%	350	1.42E-03	17	7.38%	363	1.48E-03
2	0.42%	21	8.34E-05	10	4.39%	216	8.78E-04	18	8.17%	402	1.63E-03
3	0.41%	20	8.14E-05	11	4.66%	229	9.32E-04	19	5.70%	280	1.14E-03
4	0.26%	13	5.26E-05	12	5.89%	290	1.18E-03	20	4.27%	210	8.54E-04
5	0.50%	25	1.00E-04	13	6.15%	302	1.23E-03	21	3.26%	160	6.51E-04
6	0.90%	44	1.81E-04	14	6.04%	297	1.21E-03	22	3.30%	162	6.59E-04
7	3.79%	186	7.58E-04	15	7.01%	345	1.40E-03	23	2.46%	121	4.91E-04
8	7.76%	382	1.55E-03	16	7.14%	351	1.43E-03	24	1.86%	92	3.72E-04
								Total		4,917	

2023 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG_WB_JUL

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	57	2.28E-04	9	7.11%	350	1.41E-03	17	7.38%	363	1.46E-03
2	0.42%	21	8.27E-05	10	4.39%	216	8.70E-04	18	8.17%	402	1.62E-03
3	0.41%	20	8.07E-05	11	4.66%	229	9.24E-04	19	5.70%	280	1.13E-03
4	0.26%	13	5.21E-05	12	5.89%	290	1.17E-03	20	4.27%	210	8.46E-04
5	0.50%	25	9.91E-05	13	6.15%	302	1.22E-03	21	3.26%	160	6.45E-04
6	0.90%	44	1.79E-04	14	6.04%	297	1.20E-03	22	3.30%	162	6.53E-04
7	3.79%	186	7.51E-04	15	7.01%	345	1.39E-03	23	2.46%	121	4.87E-04
8	7.76%	382	1.54E-03	16	7.14%	351	1.41E-03	24	1.86%	92	3.69E-04
								Total		4,917	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Highway 87 DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
DPM_NB_87	Highway 87 Northbound	NB	3	141.7	0.09	17.0	55.7	3.4	58	64,480
DPM_SB_87	Highway 87 Southbound	SB	4	141.7	0.09	20.6	67.7	3.4	56 Total	64,480 128,960

Emission Factors

Speed Category	1	2	3	4
Travel Speed (mph)	60	55		
Emissions per Vehicle (g/VMT)	0.00051	0.000457		

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and DPM Emissions - DPM_NB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	0.76%	488	6.13E-06	9	7.32%	4720	5.28E-05	17	5.19%	3348	4.20E-05
2	0.45%	289	3.63E-06	10	6.61%	4261	4.76E-05	18	5.05%	3259	4.09E-05
3	0.41%	266	3.33E-06	11	5.96%	3844	4.30E-05	19	4.08%	2632	3.30E-05
4	0.71%	460	5.77E-06	12	5.72%	3688	4.12E-05	20	3.40%	2193	2.75E-05
5	2.07%	1338	1.68E-05	13	5.78%	3727	4.17E-05	21	2.87%	1853	2.32E-05
6	6.11%	3939	4.94E-05	14	5.90%	3806	4.25E-05	22	2.40%	1546	1.94E-05
7	7.50%	4834	5.40E-05	15	5.76%	3713	4.15E-05	23	1.72%	1111	1.39E-05
8	7.74%	4994	5.58E-05	16	5.39%	3475	4.36E-05	24	1.08%	695	8.72E-06
								Total		64,480	

2023 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM_SB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.95%	1256	1.58E-05	9	4.17%	2690	3.01E-05	17	8.02%	5172	5.78E-05
2	1.64%	1059	1.33E-05	10	4.18%	2696	3.01E-05	18	7.33%	4725	5.28E-05
3	1.54%	990	1.24E-05	11	4.52%	2917	3.26E-05	19	5.98%	3857	4.31E-05
4	1.43%	921	1.03E-05	12	5.05%	3253	3.64E-05	20	4.71%	3036	3.39E-05
5	1.55%	1002	1.12E-05	13	5.60%	3613	4.04E-05	21	3.87%	2496	2.79E-05
6	1.99%	1286	1.44E-05	14	5.84%	3768	4.21E-05	22	3.36%	2164	2.42E-05
7	2.89%	1862	2.08E-05	15	6.94%	4473	5.00E-05	23	2.95%	1904	2.13E-05
8	3.80%	2448	2.74E-05	16	8.24%	5312	5.94E-05	24	2.45%	1580	1.77E-05
								Total		64,480	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Highway 87 PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
PM2.5_NB_87	Highway 87 Northbound	NB	3	141.7	0.09	17.0	56	1.3	58.125	64,480
PM2.5_SB_87	Highway 87 Southbound	SB	4	141.7	0.09	20.6	68	1.3	55.625	64,480
									Total	128,960

Emission Factors - PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	60	55		
Emissions per Vehicle (g/VMT)	0.001486	0.00136		

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and PM2.5 Emissions - PM2.5_NB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	0.76%	488	1.78E-05	9	7.32%	4720	1.57E-04	17	5.19%	3348	1.22E-04
2	0.45%	289	1.05E-05	10	6.61%	4261	1.42E-04	18	5.05%	3259	1.18E-04
3	0.41%	266	9.65E-06	11	5.96%	3844	1.28E-04	19	4.08%	2632	9.57E-05
4	0.71%	460	1.67E-05	12	5.72%	3688	1.23E-04	20	3.40%	2193	7.97E-05
5	2.07%	1338	4.86E-05	13	5.78%	3727	1.24E-04	21	2.87%	1853	6.73E-05
6	6.11%	3939	1.43E-04	14	5.90%	3806	1.27E-04	22	2.40%	1546	5.62E-05
7	7.50%	4834	1.61E-04	15	5.76%	3713	1.23E-04	23	1.72%	1111	4.04E-05
8	7.74%	4994	1.66E-04	16	5.39%	3475	1.26E-04	24	1.08%	695	2.53E-05
								Total		64,480	

2023 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM2.5_SB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.95%	1256	4.56E-05	9	4.17%	2690	8.94E-05	17	8.02%	5172	1.72E-04
2	1.64%	1059	3.85E-05	10	4.18%	2696	8.96E-05	18	7.33%	4725	1.57E-04
3	1.54%	990	3.60E-05	11	4.52%	2917	9.69E-05	19	5.98%	3857	1.28E-04
4	1.43%	921	3.06E-05	12	5.05%	3253	1.08E-04	20	4.71%	3036	1.01E-04
5	1.55%	1002	3.33E-05	13	5.60%	3613	1.20E-04	21	3.87%	2496	8.30E-05
6	1.99%	1286	4.27E-05	14	5.84%	3768	1.25E-04	22	3.36%	2164	7.19E-05
7	2.89%	1862	6.19E-05	15	6.94%	4473	1.49E-04	23	2.95%	1904	6.33E-05
8	3.80%	2448	8.14E-05	16	8.24%	5312	1.77E-04	24	2.45%	1580	5.25E-05
					-			Total	-	64,480	

City Parking Garage, San Jose, CA - Off-Site ResidentialCumulative Operation - Highway 87TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust EmissionsYear =2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
TEXH_NB_87	Highway 87 Northbound	NB	3	141.7	0.09	17.0	56	1.3	58.125	64,480
TEXH_SB_87	Highway 87 Southbound	SB	4	141.7	0.09	20.6	68	1.3	55.625	64,480
									Total	128,960

Emission Factors - TOG Exhaust

Speed Category	1	2	3	4
Travel Speed (mph)	60	55		
Emissions per Vehicle (g/VMT)	0.02665	0.02493		

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH_NB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	0.76%	488	3.18E-04	9	7.32%	4720	2.88E-03	17	5.19%	3348	2.18E-03
2	0.45%	289	1.89E-04	10	6.61%	4261	2.60E-03	18	5.05%	3259	2.12E-03
3	0.41%	266	1.73E-04	11	5.96%	3844	2.34E-03	19	4.08%	2632	1.72E-03
4	0.71%	460	3.00E-04	12	5.72%	3688	2.25E-03	20	3.40%	2193	1.43E-03
5	2.07%	1338	8.72E-04	13	5.78%	3727	2.27E-03	21	2.87%	1853	1.21E-03
6	6.11%	3939	2.57E-03	14	5.90%	3806	2.32E-03	22	2.40%	1546	1.01E-03
7	7.50%	4834	2.95E-03	15	5.76%	3713	2.26E-03	23	1.72%	1111	7.24E-04
8	7.74%	4994	3.04E-03	16	5.39%	3475	2.27E-03	24	1.08%	695	4.53E-04
								Total		64,480	

2023 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH_SB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.95%	1256	8.19E-04	9	4.17%	2690	1.64E-03	17	8.02%	5172	3.15E-03
2	1.64%	1059	6.91E-04	10	4.18%	2696	1.64E-03	18	7.33%	4725	2.88E-03
3	1.54%	990	6.45E-04	11	4.52%	2917	1.78E-03	19	5.98%	3857	2.35E-03
4	1.43%	921	5.61E-04	12	5.05%	3253	1.98E-03	20	4.71%	3036	1.85E-03
5	1.55%	1002	6.11E-04	13	5.60%	3613	2.20E-03	21	3.87%	2496	1.52E-03
6	1.99%	1286	7.84E-04	14	5.84%	3768	2.30E-03	22	3.36%	2164	1.32E-03
7	2.89%	1862	1.14E-03	15	6.94%	4473	2.73E-03	23	2.95%	1904	1.16E-03
8	3.80%	2448	1.49E-03	16	8.24%	5312	3.24E-03	24	2.45%	1580	9.63E-04
			-					Total		64,480	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Highway 87 TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
TEVAP_NB_87	Highway 87 Northbound	NB	3	141.7	0.09	17.0	56	1.3	58.125	64,480
TEVAP_SB_87	Highway 87 Southbound	SB	4	141.7	0.09	20.6	68	1.3	55.625	64,480
									Total	128,960

Emission Factors - PM2.5 - Evaporative TOG

	Speed Category	1	2	3	4	
	Travel Speed (mph)	60	55			
Emissions per Vehicl	e per Hour (g/hour)	1.40272	1.40272			
Emissions per Vehicl	e per Mile (g/VMT)	0.02338	0.02550			

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP_NB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	0.76%	488	2.79E-04	9	7.32%	4720	2.94E-03	17	5.19%	3348	1.91E-03
2	0.45%	289	1.65E-04	10	6.61%	4261	2.66E-03	18	5.05%	3259	1.86E-03
3	0.41%	266	1.52E-04	11	5.96%	3844	2.40E-03	19	4.08%	2632	1.50E-03
4	0.71%	460	2.63E-04	12	5.72%	3688	2.30E-03	20	3.40%	2193	1.25E-03
5	2.07%	1338	7.65E-04	13	5.78%	3727	2.33E-03	21	2.87%	1853	1.06E-03
6	6.11%	3939	2.25E-03	14	5.90%	3806	2.37E-03	22	2.40%	1546	8.84E-04
7	7.50%	4834	3.02E-03	15	5.76%	3713	2.32E-03	23	1.72%	1111	6.35E-04
8	7.74%	4994	3.12E-03	16	5.39%	3475	1.99E-03	24	1.08%	695	3.97E-04
		· · · · · ·	-				-	Total		64,480	

2023 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP_SB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.95%	1256	7.18E-04	9	4.17%	2690	1.68E-03	17	8.02%	5172	3.23E-03
2	1.64%	1059	6.06E-04	10	4.18%	2696	1.68E-03	18	7.33%	4725	2.95E-03
3	1.54%	990	5.66E-04	11	4.52%	2917	1.82E-03	19	5.98%	3857	2.41E-03
4	1.43%	921	5.74E-04	12	5.05%	3253	2.03E-03	20	4.71%	3036	1.89E-03
5	1.55%	1002	6.25E-04	13	5.60%	3613	2.25E-03	21	3.87%	2496	1.56E-03
6	1.99%	1286	8.02E-04	14	5.84%	3768	2.35E-03	22	3.36%	2164	1.35E-03
7	2.89%	1862	1.16E-03	15	6.94%	4473	2.79E-03	23	2.95%	1904	1.19E-03
8	3.80%	2448	1.53E-03	16	8.24%	5312	3.31E-03	24	2.45%	1580	9.85E-04
								Total		64,480	

City Parking Garage, San Jose, CA - Off-Site Residential Cumulative Operation - Highway 87 Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions Year = 2023

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
FUG_NB_87	Highway 87 Northbound	NB	3	141.7	0.09	17.0	56	1.3	58.125	64,480
FUG_SB_87	Highway 87 Southbound	SB	4	141.7	0.09	20.6	68	1.3	55.625	64,480
									Total	128,960

Emission Factors - Fugitive PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	60	55		
Tire Wear - Emissions per Vehicle (g/VMT)	0.00207	0.00207		
Brake Wear - Emissions per Vehicle (g/VMT)	0.01681	0.01681		
Road Dust - Emissions per Vehicle (g/VMT)	0.00702	0.00702		
tal Fugitive PM2.5 - Emissions per Vehicle (g/VMT)	0.02589	0.02589		

Emisson Factors from CT-EMFAC2017

2023 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG_NB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	0.76%	488	3.09E-04	9	7.32%	4720	2.99E-03	17	5.19%	3348	2.12E-03
2	0.45%	289	1.83E-04	10	6.61%	4261	2.70E-03	18	5.05%	3259	2.06E-03
3	0.41%	266	1.68E-04	11	5.96%	3844	2.43E-03	19	4.08%	2632	1.67E-03
4	0.71%	460	2.91E-04	12	5.72%	3688	2.34E-03	20	3.40%	2193	1.39E-03
5	2.07%	1338	8.47E-04	13	5.78%	3727	2.36E-03	21	2.87%	1853	1.17E-03
6	6.11%	3939	2.49E-03	14	5.90%	3806	2.41E-03	22	2.40%	1546	9.79E-04
7	7.50%	4834	3.06E-03	15	5.76%	3713	2.35E-03	23	1.72%	1111	7.03E-04
8	7.74%	4994	3.16E-03	16	5.39%	3475	2.20E-03	24	1.08%	695	4.40E-04
								Total		64,480	

2023 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG_SB_87

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.95%	1256	7.95E-04	9	4.17%	2690	1.70E-03	17	8.02%	5172	3.27E-03
2	1.64%	1059	6.71E-04	10	4.18%	2696	1.71E-03	18	7.33%	4725	2.99E-03
3	1.54%	990	6.27E-04	11	4.52%	2917	1.85E-03	19	5.98%	3857	2.44E-03
4	1.43%	921	5.83E-04	12	5.05%	3253	2.06E-03	20	4.71%	3036	1.92E-03
5	1.55%	1002	6.35E-04	13	5.60%	3613	2.29E-03	21	3.87%	2496	1.58E-03
6	1.99%	1286	8.14E-04	14	5.84%	3768	2.39E-03	22	3.36%	2164	1.37E-03
7	2.89%	1862	1.18E-03	15	6.94%	4473	2.83E-03	23	2.95%	1904	1.21E-03
8	3.80%	2448	1.55E-03	16	8.24%	5312	3.36E-03	24	2.45%	1580	1.00E-03
								Total		64,480	

City Parking Garage, San Jose, CA - W Santa Clara St Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations at Construction Residential MEI Receptor (1.5 meter receptor height)

Emission Year	2023
Receptor Information	Construction Residential MEI receptor
Number of Receptors	1
Receptor Height	1.5 meters
Receptor Distances	At Construction Residential MEI location

Meteorological Conditions

BAAQMD San Jose International M	let D: 2013-2017
Land Use Classification	Urban
Wind Speed	Variable
Wind Direction	Variable

Construction Residential MEI Cancer Risk Maximum Concentrations

Meteorological	Concentration (µg/m3)*				
Data Years	DPM	Exhaust TOG	Evaporative TOG		
2013-2017	0.0003	0.0186	0.0229		

Construction Residential MEI PM2.5 Maximum Concentrations

Meteorological	PM2.5 Concentration (µg/m3)*			
Data Years	Total PM2.5 Fugitive PM2.5 Vehicle PM			
2013-2017	0.0180	0.0171	0.0009	

City Parking Garage, San Jose, CA - W Santa Clara St Traffic Cancer Risk Impacts at Construction Residential MEI - 1.5 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$
 - ASF = Age sensitivity factor for specified age group

 - ADI = Age sequence (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$
- Where: $C_{air} = concentration in air (\mu g/m^3)$
 - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
 - 10^{-6} = Conversion factor

Concer Potency Factors (mg/kg.dov)-1

Cancer rotency ractors (mg/kg-uay)			
TAC	CPF		
DPM	1.10E+00		
Vehicle TOG Exhaust	6.28E-03		
Vehicle TOG Evaporative	3.70E-04		

Values

	Inf	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	1.00	1.00	1.00	0.73
[∗] 95th perce	ntile breathing rate:	s for infants a	and 80th perc	entile for child

Constructio	on Cancer	Risk by Year	r - Maximum Impae	ct Receptor	Location									
	Max	ximum - Exposu	re Information		Conc	Concentration (ug/m3)		Cancer Risk (per million)						
	Exposure													
				Age		Exhaust	Evaporative				TOTAL			
Exposure	Duration			Sensitivity	DPM	TOG	TOG	DPM	Exhaust	Evaporative				
Year	(years)	Age	Year	Factor					TOG	TOG			Maximum	
												Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2023	10	0.0003	0.0186	0.0229	0.003	0.001	0.0001	0.00	Index	PM2.5	PM2.5
1	1	0 - 1	2023	10	0.0003	0.0186	0.0229	0.041	0.017	0.0013	0.06	0.00005	0.02	0.02
2	1	1 - 2	2024	10	0.0003	0.0186	0.0229	0.041	0.017	0.0013	0.06			
3	1	2 - 3	2025	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
4	1	3 - 4	2026	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
5	1	4 - 5	2027	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
6	1	5 - 6	2028	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
7	1	6 - 7	2029	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
8	1	7 - 8	2030	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
9	1	8 - 9	2031	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
10	1	9 - 10	2032	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
11	1	10 - 11	2033	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
12	1	11 - 12	2034	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
13	1	12 - 13	2035	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
14	1	13 - 14	2036	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
15	1	14 - 15	2037	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
16	1	15 - 16	2038	3	0.0003	0.0186	0.0229	0.006	0.003	0.0002	0.01			
17	1	16-17	2039	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
18	1	17-18	2040	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
19	1	18-19	2041	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
20	1	19-20	2042	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
21	1	20-21	2043	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
22	1	21-22	2044	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
23	1	22-23	2045	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
24	1	23-24	2046	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
25	1	24-25	2047	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
26	1	25-26	2048	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
27	1	26-27	2049	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
28	1	27-28	2050	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
29	1	28-29	2051	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
30	1	29-30	2052	1	0.0003	0.0186	0.0229	0.001	0.000	0.0000	0.00			
Total Increas	ed Cancer R	Risk	•	•				0.19	0.079	0.006	0.27			

Total Increased Cancer Risk * Third trimester of pregnancy

City Parking Garage, San Jose, CA - Julian St Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations at Construction Residential MEI Receptor (1.5 meter receptor height)

Emission Year	2023
Receptor Information	Construction Residential MEI receptor
Number of Receptors	1
Receptor Height	1.5 meters
Receptor Distances	At Construction Residential MEI location

Meteorological Conditions

BAAQMD San Jose International M	let D: 2013-2017
Land Use Classification	Urban
Wind Speed	Variable
Wind Direction	Variable

Construction Residential MEI Cancer Risk Maximum Concentrations

Meteorological	Concentration (µg/m3)*				
Data Years	DPM Exhaust TOG Evaporative T				
2013-2017	0.0004	0.0399	0.0492		

Construction Residential MEI PM2.5 Maximum Concentrations

Meteorological	PM2.5 Concentration (µg/m3)*			
Data Years	Total PM2.5 Fugitive PM2.5 Vehicle PM			
2013-2017	0.0385	0.0366	0.0019	

City Parking Garage, San Jose, CA - Julian St Traffic Cancer Risk Impacts at Construction Residential MEI - 1.5 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$
 - ASF = Age sensitivity factor for specified age group

 - ADI = Age sequence (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$
- Where: $C_{air}\!=\!concentration$ in air ($\mu g/m^3)$
 - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
 - 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

IAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3.70E-04

Values

	Inf	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	1.00	1.00	1.00	0.73
[∗] 95th perce	ntile breathing rates	for infants	and 80th perc	entile for child

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Ma	ximum - Exposu	re Information		Conc	entration (u	g/m3)	Cance	r Risk (per	million)		1		
Exposure Year	Exposure Duration (years)	Age	Vear	Age Sensitivity Factor	DPM	Exhaust TOG	Evaporative TOG	DPM	Exhaust TOG	Evaporative TOG	TOTAL		Maximum	
	/											Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2023	10	0.0004	0.0399	0.0492	0.005	0.003	0.0002	0.01	Index	PM2.5	PM2.5
1	1	0 - 1	2023	10	0.0004	0.0399	0.0492	0.059	0.037	0.0027	0.10	0.00007	0.04	0.04
2	1	1-2	2024	10	0.0004	0.0399	0.0492	0.059	0.037	0.0027	0.10			
3	1	2 - 3	2025	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
4	1	3 - 4	2026	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
5	1	4 - 5	2027	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
6	1	5 - 6	2028	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
7	1	6 - 7	2029	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
8	1	7 - 8	2030	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
9	1	8 - 9	2031	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
10	1	9 - 10	2032	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
11	1	10 - 11	2033	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
12	1	11 - 12	2034	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
13	1	12 - 13	2035	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
14	1	13 - 14	2036	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
15	1	14 - 15	2037	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
16	1	15 - 16	2038	3	0.0004	0.0399	0.0492	0.009	0.006	0.0004	0.02			
17	1	16-17	2039	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
18	1	17-18	2040	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
19	1	18-19	2041	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
20	1	19-20	2042	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
21	1	20-21	2043	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
22	1	21-22	2044	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
23	1	22-23	2045	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
24	1	23-24	2046	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
25	1	24-25	2047	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
26	1	25-26	2048	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
27	1	26-27	2049	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
28	1	27-28	2050	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
29	1	28-29	2051	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
30	1	29-30	2052	1	0.0004	0.0399	0.0492	0.001	0.001	0.0000	0.00			
Total Increas	ed Cancer R	lisk						0.27	0.170	0.012	0.45			

Total Increased Cancer Risk * Third trimester of pregnancy

City Parking Garage, San Jose, CA - Highway 87 Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations at Construction Residential MEI Receptor (1.5 meter receptor height)

Emission Year	2023
Receptor Information	Construction Residential MEI receptor
Number of Receptors	1
Receptor Height	1.5 meters
Receptor Distances	At Construction Residential MEI location

Meteorological Conditions

BAAQMD San Jose International N	Met D: 2013-2017
Land Use Classification	Urban
Wind Speed	Variable
Wind Direction	Variable

Construction Residential MEI Cancer Risk Maximum Concentrations

Meteorological	Concentration (µg/m3)*						
Data Years	DPM	Exhaust TOG	Evaporative TOG				
2013-2017	0.0002	0.0083	0.0073				

Construction Residential MEI PM2.5 Maximum Concentrations

Meteorological	PM2.5 Concentration (μg/m3)*							
Data Years	Total PM2.5	Fugitive PM2.5	Vehicle PM2.5					
2013-2017	0.0085	0.0080	0.0005					

City Parking Garage, San Jose, CA - Highway 87 Traffic Cancer Risk Impacts at Construction Residential MEI - 1.5 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

- Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$
 - ASF = Age sensitivity factor for specified age group

 - AD = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$
- Where: $C_{air}\!=\!concentration$ in air ($\mu g/m^3)$
 - DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
 - 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3.70E-04

Values

	Inf	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	1.00	1.00	1.00	0.73
[∗] 95th perce	ntile breathing rates	for infants	and 80th perc	entile for child

Construction Cancer Risk by Year - Maximum Impact Receptor	Location
Maximum - Exposure Information	Concentration

	Ma	ximum - Exposu	re Information		Concentration (ug/m3)		Cancer Risk (per million)]			
Exposure	Exposure Duration			Age Sensitivity	DPM	Exhaust TOG	Evaporative TOG	DPM	Exhaust	Evaporative	TOTAL			
Year	(years)	Age	Year	Factor					TOG	TOG			Maximum	
												Hazard	Fugitive	Total
0	0.25	-0.25 - 0*	2023	10	0.0002	0.0083	0.0073	0.002	0.001	0.0000	0.00	Index	PM2.5	PM2.5
1	1	0 - 1	2023	10	0.0002	0.0083	0.0073	0.026	0.008	0.0004	0.03	0.00003	0.01	0.01
2	1	1 - 2	2024	10	0.0002	0.0083	0.0073	0.026	0.008	0.0004	0.03			
3	1	2 - 3	2025	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
4	1	3 - 4	2026	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
5	1	4 - 5	2027	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
6	1	5 - 6	2028	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
7	1	6 - 7	2029	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
8	1	7 - 8	2030	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
9	1	8 - 9	2031	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
10	1	9 - 10	2032	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
11	1	10 - 11	2033	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
12	1	11 - 12	2034	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
13	1	12 - 13	2035	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
14	1	13 - 14	2036	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
15	1	14 - 15	2037	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
16	1	15 - 16	2038	3	0.0002	0.0083	0.0073	0.004	0.001	0.0001	0.01			
17	1	16-17	2039	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
18	1	17-18	2040	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
19	1	18-19	2041	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
20	1	19-20	2042	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
21	1	20-21	2043	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
22	1	21-22	2044	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
23	1	22-23	2045	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
24	1	23-24	2046	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
25	1	24-25	2047	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
26	1	25-26	2048	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
27	1	26-27	2049	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
28	1	27-28	2050	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
29	1	28-29	2051	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
30	1	29-30	2052	1	0.0002	0.0083	0.0073	0.000	0.000	0.0000	0.00			
Total Increase	od Concor E	Bele	•	•		1	1	0.12	0.035	0.002	0.16	1		

* Third trimester of pregnancy

Risk & Hazard Stationary Source Inquiry Form

This form is required when users request stationary source data from BAAQMD

This form is to be used with the BAAQMD's Google Earth stationary source screening tables.

Click here for guidance on coducting risk & hazard screening, including roadways & freeways, refer to the District's Risk & Hazard Analysis flow chart.

Click here for District's Recommended Methods for Screening and Modeling Local Risks and Hazards document.

Date of Request	10/12/2021
Contact Name	Zachary Palm
Affiliation	Illingworth & Rodkin, Inc.
Phone	707-794-0400 x117
Email	zpalm@illingworthrodkin.com
Project Name	City Parking Garage
Address	St John St
City	San Jose
County	Santa Clara
Type (residential, commercial, mixed use	
industrial, etc.)	Parking
Project Size (# of	
units or building	
· · · ·	1.200 Space

For Air District assistance, the following steps must be completed:

1. Complete all the contact and project information requested in

Table A normalete forms will not be processed. Please include a project site map.

2. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's website, http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx. The small points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include dises lack-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc. Click on a point to view the source's Information Table, including the name, location, and preliminary estimated cancer risk, hazard index, and PM2.5 concentration.

3. Find the project site in Google Earth by inputting the site's address in the Google Earth search box.

4. Identify stationary sources within at least a 1000ft radius of project site. Verify that the location of the source on the map matches with the source's address in the Information Table, by using the Google Easter address search box to confirm the source's address location. Please report any mapping errors to the District. Table B

5. List the stationary source information in _____lue section only.

6. Note that a small percentage of the stationary sources have Health Risk Screening Assessment (HRSA) data INSTEAD of screening level data. These sources will be noted by an asterisk next to the Plant Name (Map B on right). If HRSA values are presented, these values have already been modeled and cannot be adjusted further.

7. Email this completed form to District staff. District staff will provide the most recent risk, hazard, and PM2.5 data that are available for the source(s). If this information or data are not available, source emissions data will be provided. Staff will respond to inquiries within three weeks.

Note that a public records request received for the same stationary source information will cancel the processing of your SSIF request.

Submit forms, maps, and questions to Areana Flores at 415-749-4616, or aflores@baaqmd.gov

Table B: Google Earth data												Construction MEI			
Distance from Receptor (feet) or MEI ¹	Plant No.	Facility Name	Address	Cancer Risk	² Hazard Risk ²	PM _{2.5} ²	Source No. ³	Type of Source ⁴	Fuel Code⁵	Status/Comments	Distance Adjustment Multiplier	Adjusted Cancer Risk Estimate	Adjusted Hazard Risk	Adjusted PM2.5	
950	8417	Century Collision & Repair	60 Stockton Ave		0.00			Auto Body Coating Operation		2018 Dataset	0.15	0.00	0.000	0.00	
950	11819	Fleet Body Worx Inc	345 N Montgomery St		0.00			Auto Body Coating Operation		2018 Dataset	0.15	0.00	0.000	0.00	
1000+	20411	County of Santa Clara	333rd & 373 West Julian St	2.59	0.00	0.00		Generators		2018 Dataset	0.04	0.10	0.000	0.00	
880	200395	S & S Toy Shop	350B N MONTGOMERY ST		0.00			Auto Body Coating Operation		2018 Dataset	0.17	0.00	0.000	0.00	
1000+	3100	Pacific Gas and Electric Company	308 Stockton Street	0.24	0.00	0.00		Non-Retail Gasoline Dispensing Facility, Generator		2018 Dataset	0.04	0.01	0.000	0.00	

Footnotes:

1. Maximally exposed individual

2. These Cancer Risk, Hazard Index, and PM2.5 columns represent the values in the Google Earth Plant Information Table.

3. Each plant may have multiple permits and sources.

4. Permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc.

5. Fuel codes: 98 = diesel, 189 = Natural Gas.

6. If a Health Risk Screening Assessment (HRSA) was completed for the source, the application number will be listed here.

The date that the HRSA was completed.

8. Engineer who completed the HRSA. For District purposes only.

9. All HRSA completed before 1/5/2010 need to be multiplied by an age sensitivity factor of 1.7.

10. The HRSA "Chronic Health" number represents the Hazard Index.

11. Further information about common sources:

a. Sources that only include diesel internal combustion engines can be adjusted using the BAAQMD's Diesel Multiplier worksheet.

b. The risk from natural gas boilers used for space heating when <25 MM BTU/hr would have an estimated cancer risk of one in a million or less, and a chronic hazard index of

c. BAAQMD Reg 11 Rule 16 required that all co-residential (sharing a wall, floor, ceiling or is in the same building as a residential unit) dry cleaners cease use of perc on July 1, 2010.

Therefore, there is no cancer risk, hazard or PM2.5 concentrations from co-residential dry cleaning businesses in the BAAQMD.

d. Non co-residential dry cleaners must phase out use of perc by Jan. 1, 2023. Therefore, the risk from these dry cleaners does not need to be factored in over a 70-year period, but instead should

e. Gas stations can be adjusted using BAAQMD's Gas Station Distance Mulitplier worksheet.

f. Unless otherwise noted, exempt sources are considered insignificant. See BAAQMD Reg 2 Rule 1 for a list of exempt sources.

g. This spray booth is considered to be insignificant.

Date last updated:

03/13/2018

Area of Interest (AOI) Information

Area : 4,577,835.94 ft²

Oct 12 2021 15:22:31 Eastern Daylight Time

BAAQMD

Summary

Name	Count	Area(ft²)	Length(ft)
Permitted Facilities 2018	4	N/A	N/A

Permitted Facilities 2018

#	FACID		1	Name		Address		City	1		St
1	8417		Century C Repair	ollision &	60) Stockton Ave		San Jose		СА	
2	11819		Fleet Body	Worx Inc	34	5 N Montgomery St		San Jose		CA	
3	20411		County of	Santa Clara	33 St	33rd & 373 West Juli	an	San Jose		CA	
4	200395		S & S Toy	Shop	35 ST	50B N MONTGOMEF F	RY	SAN JOSE		СА	
#	Zip	С	ounty	Cancer		Hazard		PM_25	Туре	e	Count
1	95126	Santa	Clara	0.000		0.000	0.0	000	Contact BAAQMD		1
2	95110	Santa	Clara	0.000		0.000	0.0	000	Contact BAAQMD		1
3	95110	Santa	Clara	2.590		0.000	0.0	000	Generators	3	1
4	95110	Santa	Clara	0.000		0.000	0.0	000	Contact		1

Note: The estimated risk and hazard impacts from these sources would be expected to be substantially lower when site specific Health Risk Screening Assessments are conducted.

The screening level map is not recommended for evaluating sensitive land uses such as schools, senior centers, day cares, and health facilities.

© Copyright 2018 Bay Area Air Quality Management District

Attachment 6: San Jose 2030 GHGRS Development Compliance Checklist

DEPARTMENT OF PLANNING, BUILDING AND CODE ENFORCEMENT

Purpose of the Compliance Checklist

In 2020, the City adopted a Greenhouse Gas Reduction Strategy (GHGRS) that outlines the actions the City will undertake to achieve its proportional share of State greenhouse gas (GHG) emission reductions for the interim target year 2030. The purpose of the Greenhouse Gas Reduction Strategy Compliance Checklist (Checklist) is to:

- Implement GHG reduction strategies from the 2030 GHGRS to new development projects.
- Provide a streamlined review process for proposed new development projects that are subject to discretionary review and trigger environmental review pursuant to the California Environmental Quality Act (CEQA).

The 2030 GHGRS presents the City's comprehensive path to reduce GHG emissions to achieve the 2030 reduction target, based on SB 32, BAAQMD, and OPR. Additionally, the 2030 GHGRS leverages other important City plans and policies; including the General Plan, Climate Smart San José, and the City Municipal Code in identifying reductions strategies that achieve the City's target. CEQA Guidelines Section 15183.5 allows for public agencies to analyze and mitigate GHG emissions as part of a larger plan for the reduction of greenhouse gases. Accordingly, the City of San José's 2030 GHGRS represents San José's qualified climate action plan in compliance with CEQA.

As described in the 2030 GHGRS, these GHG reductions will occur through a combination of City initiatives in various plans and policies and will provide reductions from both existing and new developments. This Compliance Checklist specifically applies to proposed discretionary projects that require environmental review pursuant to CEQA. Therefore, the Checklist is a critical implementation tool in the City's overall strategy to reduce GHG emissions. Implementation of applicable reduction actions in new development projects will help the City achieve incremental reductions toward its target. Per the 2030 GHGRS, the City will monitor strategy implementation and make updates, as necessary, to maintain an appropriate trajectory to the 2030 GHG target.

Pursuant to CEQA Guidelines Sections 15064(h)(3), 15130(d), and 15183(b), a project's incremental contribution to a cumulative GHG emissions effect may be determined not to be cumulatively considerable if it complies with the requirements of the GHGRS.

Instructions for Compliance Checklist

Applicants shall complete the following sections to demonstrate conformance with the City of San José 2030 Greenhouse Gas Reduction Strategy for the proposed project. All projects must complete Section A. General Plan Policy Conformance and Section B. Greenhouse Gas Reduction Strategies. Projects that propose alternative GHG mitigation measures must also complete Section C. Alternative Project Measures and Additional GHG Reductions.

A. General Plan Policy Compliance

Projects need to demonstrate consistency with the Envision San José 2040 General Plan's relevant policies for Land Use & Design, Transportation, Green Building, and Water Conservation, enumerated in Table A. All applicants shall complete the following steps.

- 1. Complete Table A, Item #1 to demonstrate the project's consistency with the General Plan Land Use and Circulation Diagram.
- 2. Complete Table A, Items #2 through #4 to demonstrate the project's consistency with General Plan policies¹ related to green building; pedestrian, bicycle & transit site design; and water conservation and urban forestry, as applicable. For each policy listed, mark the relevant yes/no check boxes to indicate project consistency, and provide a qualitative description of how the policy is implemented in the proposed project or why the policy is not applicable to the proposed project. Qualitative descriptions can be included in Table A or provided as separate attachments. This explanation will provide the basis for analysis in the CEQA document.

B. Greenhouse Gas Reduction Strategies

Table B identifies the GHGRS strategies and recommended consistency options. Projects need to demonstrate consistency with the GHGRS reduction strategies listed in Table B or document why the strategies are not applicable or are infeasible. The corresponding GHGRS strategies are indicated in the table to provide additional context, with the full text of the strategies preceding Table B.

Residential projects must complete Table B, Part 1 and 2; Non-residential projects must complete Table B, Part 2 only. All applicants shall complete the following steps for Table B.

- 1. Review the project consistency options described in the column titled 'GHGRS Strategy and Consistency Options'.
- 2. Use the check boxes in the column titled "Project Conformance" to indicate if the strategy is 'Proposed', 'Not Applicable', 'Not Feasible', or if there is an 'Alternative Measure Proposed'.

¹ The lists in items # 2-4 do not represent all General Plan policies but allow projects to demonstrate consistency and achievement of policies that are related to quantified reduction estimates in the 2030 GHGRS.

- Provide a qualitative analysis of the proposed project's compliance with the GHGRS strategies in the column titled "Description of Project Measure". This will be the basis for CEQA analysis to demonstrate compliance with the 2030 GHGRS and by extension, with SB 32. The qualitative analysis should provide:
 - a. A description of which consistency options are included as part of the proposed project, or
 - b. A description of why the strategy is not applicable to the proposed project, or
 - c. A description of why the consistency options are infeasible. If applicants select 'Not Feasible' or 'Alternative Measure Proposed', they must complete Table C to document what alternative project measures will be implemented to achieve a similar level of greenhouse gas reduction and how those reduction estimates were calculated.

C. Alternative Project Measures and Additional GHG Reductions

Projects that propose alternative GHG mitigation measures to those identified in Table B or propose to include additional GHG mitigation measures beyond those described in Tables A and B, shall provide a summary explanation of the proposed measures and demonstrate efficiency or greenhouse gas reductions achievable though the proposed measures. Documentation for these alternative or additional project measures shall be documented in Table C. Any applicants who select 'Not Feasible' or 'Alternative Measure Proposed' in Table B must complete the following steps for Table C.

- 1. In the column titled "Description of Proposed Measure" provide a qualitative description of what measure will be implemented, why it is proposed, and how it will reduce GHG emissions.
- 2. In the column titled "Description of GHG Reduction Estimate" demonstrate how the alternative project measure would achieve the same or greater level of greenhouse gas reductions as the GHGRS strategy it replaces. Documentation or calculation files can be attached separately.
- 3. In the column titled "Proposed Measure Implementation" identify how the measure will be implemented: incorporated as part of the project design or as an additional measure that is not part of the project (e.g., purchase of carbon offsets).

Compliance Checklist

Evaluation of Project Conformance with the 2030 Greenhouse Gas Reduction Strategy

Table A: General Plan Consistency

Development Type:
Commercial Residential Office Other: Specify

Yes	No
\boxtimes	
-	Yes

² For example, a General Plan Amendment to change use from single-family residential to multi-family residential or a General Plan Amendment to change the use from regional-serving commercial to mixed-use urban in a transit-served area might reduce travel demand, and therefore GHG emissions from mobile sources.

Implementation of Green Building Measures	Yes	No
MS-2.2 : Encourage maximized use of on-site generation of renewable energy for all new and existing buildings.	\boxtimes	
Not applicable		
The project is the construction of a parking structure which would require a limited amount of electricity for lighting and operation of an elevator. Diesel would be required for use of the generator only when power is out.		
MS-2.3 : Encourage consideration of solar orientation, including building placement, landscaping, design and construction techniques for new construction to minimize energy consumption.	\boxtimes	
Not applicable		
Response documentation: The project is the construction of a parking structure and energy consumption would be minimized.		
MS-2.7 : Encourage the installation of solar panels or other clean energy power generation sources over parking areas.	\boxtimes	
Not applicable		
Response documentation: The building will be solar panel ready.		
MS-2.11 : Require new development to incorporate green building practices, including those required by the Green Building Ordinance. Specifically, target reduced energy use through construction techniques (e.g., design of building envelopes and systems to maximize energy performance), through architectural design (e.g., design to maximize cross ventilation and interior daylight) and through site design techniques (e.g., orienting buildings on sites to maximize the effectiveness of passive solar design).		
Not applicable		
Response documentation: The parking structure would be constructed according to all applicable green building practices to reduce energy use.		
MS-16.2 : Promote neighborhood-based distributed clean/renewable energy generation to improve local energy security and to reduce the amount of energy wasted in transmitting electricity over long distances.		
Not applicable	\boxtimes	
Response documentation: The project is construction of a parking structure to replace parking that has been or will soon be removed as a result on project area redevelopment. It would not require the transmission of electricity over long distances.		L

3) Pedestrian, Bicycle & Transit Site Design Measures	Yes	Νο
CD-2.1 : Promote the Circulation Goals and Policies in the Envision San José 2040 General Plan. Create streets that promote pedestrian and bicycle transportation by following applicable goals and policies in the Circulation section of the Envision San José 2040 General Plan.		
a) Design the street network for its safe shared use by pedestrians, bicyclists, and vehicles. Include elements that increase driver awareness.	\boxtimes	
b) Create a comfortable and safe pedestrian environment by implementing wider sidewalks, shade structures, attractive street furniture, street trees, reduced traffic speeds, pedestrian-oriented lighting, mid-block pedestrian crossings, pedestrian- activated crossing lights, bulb-outs and curb extensions at intersections, and on- street parking that buffers pedestrians from vehicles.		
c) Consider support for reduced parking requirements, alternative parking arrangements, and Transportation Demand Management strategies to reduce area dedicated to parking and increase area dedicated to employment, housing, parks, public art, or other amenities. Encourage de-coupled parking to ensure that the value and cost of parking are considered in real estate and business transactions.		
Not applicable		
Response documentation: The proposed project does not include the construction of streets; however, sidewalks will be wide enough to safely accommodate pedestrians travelling to the SAP Center. Improvements on the frontage of the proposed project would also be implemented. Enhanced crossings will be implemented at existing and future street crossings on W. St. John Street and N. Montgomery Street, as necessary before and after events. The parking structure has been planned since at least 2014 and is required to replace parking that has been or will soon be lost as a result of redevelopment in the project area.		
CD-2.5 : Integrate Green Building Goals and Policies of the Envision San José 2040 General Plan into site design to create healthful environments. Consider factors such as shaded parking areas, pedestrian connections, minimization of impervious surfaces, incorporation of stormwater treatment measures, appropriate building orientations, etc.		
Not applicable		
Response documentation: The structure will provide shaded parking, pedestrian connections, and appropriate stormwater controls and building orientations. The building will also be solar ready, if required.		

	Yes	No
CD-2.11 : Within the Downtown and Urban Village Overlay areas, consistent with the minimum density requirements of the pertaining Land Use/Transportation Diagram designation, avoid the construction of surface parking lots except as an interim use, so that long-term development of the site will result in a cohesive urban form. In these areas, whenever possible, use structured parking, rather than surface parking, to fulfill parking requirements. Encourage the incorporation of alternative uses, such as parks, above parking structures.		
Not applicable		
Response documentation: The proposed project site is located within Downtown; however, it has been planned for a parking structure since at least 2014 and is required to replace parking that has been or will soon be lost as a result of redevelopment in the project area. The project site may be an interim surface lot prior to construction.		
CD-3.2 : Prioritize pedestrian and bicycle connections to transit, community facilities (including schools), commercial areas, and other areas serving daily needs. Ensure that the design of new facilities can accommodate significant anticipated future increases in bicycle and pedestrian activity.		
Not applicable		
Response documentation: The proposed project is a public parking structure on previously developed property within proximity to multiple transit opportunities. It would not obstruct bicycle or pedestrian activity.		
CD-3.4 : Encourage pedestrian cross-access connections between adjacent properties and require pedestrian and bicycle connections to streets and other public spaces, with particular attention and priority given to providing convenient access to transit facilities. Provide pedestrian and vehicular connections with cross-access easements within and between new and existing developments to encourage walking and minimize interruptions by parking areas and curb cuts.		
Not applicable		
Response documentation: The proposed includes sidewalks wide enough to safely accommodate pedestrians travelling to the SAP Center. Enhanced crossings will be implemented at existing and future street crossings on W. St. John Street and N. Montgomery Street, as necessary before and after events. The project would not obstruct bicycle travel or access to transit facilities.		
LU-3.5 : Balance the need for parking to support a thriving Downtown with the need to minimize the impacts of parking upon a vibrant pedestrian and transit oriented urban environment. Provide for the needs of bicyclists and pedestrians, including adequate bicycle parking areas and design measures to promote bicyclist and pedestrian safety.		
Not applicable		
Response documentation: The parking structure has been planned since at least 2014 and is required to replace parking that has been or will soon be lost as a result of redevelopment in the project area. Sidewalks will be wide enough to safely accommodate pedestrians travelling to the SAP Center. Enhanced crossings will be implemented at existing and future street crossings on W. St. John Street and N. Montgomery Street, as necessary before and after events. Bicycle travel will not be obstructed and bicycle parking will be provided per the requirements of the City Municipal Code.		

	Yes	No
TR-2.8: Require new development to provide on-site facilities such as bicycle storage and showers, provide connections to existing and planned facilities, dedicate land to expand existing facilities or provide new facilities such as sidewalks and/or bicycle lanes/paths, or share in the cost of improvements.	\boxtimes	
Not applicable		
Response documentation: Bicycle travel will not be obstructed and bicycle parking and storage will be provided per the requirements of the City Municipal Code. Sidewalks will be wide enough to safely accommodate pedestrians travelling to the SAP Center. Enhanced crossings will be implemented at existing and future street crossings on W. St. John Street and N. Montgomery Street, as necessary before and after events.		
TR-7.1: Require large employers to develop TDM programs to reduce the vehicle trips and vehicle miles generated by their employees through the use of shuttles, provision for carsharing, bicycle sharing, carpool, parking strategies, transit incentives and other measures.		
Not applicable	\boxtimes	
Response documentation: The project is the construction of a public parking garage. The only employees expected would be parking lot attendants. Therefore, the project is not considered to be a "large employer".		
TR-8.5: Promote participation in car share programs to minimize the need for parking spaces in new and existing development.		
Not applicable	\square	
Response documentation: The project is the construction of a public parking garage and is not an employment or housing use. Car share programs would not apply.		
4) Water Conservation and Urban Forestry Measures	Yes	No
MS-3.1 : Require water-efficient landscaping, which conforms to the State's Model Water Efficient Landscape Ordinance, for all new commercial, institutional, industrial and developer-installed residential development unless for recreation needs or other area functions.	\boxtimes	
Not applicable		
Response documentation: The proposed project will include all required water conservation measures for landscaping.		
	Yes	No
MS-3.2 : Promote the use of green building technology or techniques that can help reduce the depletion of the City's potable water supply, as building codes permit. For example, promote the use of captured rainwater, graywater, or recycled water as the preferred source for non-potable water needs such as irrigation and building cooling, consistent with Building Codes or other regulations.		
 MS-3.2: Promote the use of green building technology or techniques that can help reduce the depletion of the City's potable water supply, as building codes permit. For example, promote the use of captured rainwater, graywater, or recycled water as the preferred source for non-potable water needs such as irrigation and building cooling, consistent with Building Codes or other regulations. Not applicable 		
 MS-3.2: Promote the use of green building technology or techniques that can help reduce the depletion of the City's potable water supply, as building codes permit. For example, promote the use of captured rainwater, graywater, or recycled water as the preferred source for non-potable water needs such as irrigation and building cooling, consistent with Building Codes or other regulations. Not applicable Response documentation: The proposed project will be constructed according to all green building technologies applicable to a parking structure, including the use of captured rainwater for landscaping purposes. 		
 MS-3.2: Promote the use of green building technology or techniques that can help reduce the depletion of the City's potable water supply, as building codes permit. For example, promote the use of captured rainwater, graywater, or recycled water as the preferred source for non-potable water needs such as irrigation and building cooling, consistent with Building Codes or other regulations. Not applicable Response documentation: The proposed project will be constructed according to all green building technologies applicable to a parking structure, including the use of captured rainwater for landscaping purposes. MS-19.4: Require the use of recycled water wherever feasible and cost-effective to serve existing and new development. 		

Response documentation: The proposed parking structure would not require significant amounts of water; however, recycled water could be utilized for landscaping if required.		
MS-21.3 : Ensure that San José's Community Forest is comprised of species that have low water requirements and are well adapted to its Mediterranean climate. Select and plant diverse species to prevent monocultures that are vulnerable to pest invasions. Furthermore, consider the appropriate placement of tree species and their lifespan to ensure the perpetuation of the Community Forest.		
Not applicable		
Response documentation: All landscaping for this public project will be selected with input from the City arborist to ensure that species are chosen that are drought tolerant and climate appropriate.		
MS-26.1 : As a condition of new development, require the planting and maintenance of both street trees and trees on private property to achieve a level of tree coverage in compliance with and that implements City laws, policies or guidelines.		
Not applicable		
Response documentation: All landscaping for this public project will be selected with input from the City arborist to ensure that species are chosen that are drought tolerant and climate appropriate.		
	Yes	No
ER-8.7 : Encourage stormwater reuse for beneficial uses in existing infrastructure and future development through the installation of rain barrels, cisterns, or other water storage and reuse facilities.		
Not applicable		

Response documentation: The proposed parking structure would not require significant amounts of water; however, recycled water could be utilized for landscaping if required.

GHGRS Strategies

GHGRS #1: The City will implement the San José Clean Energy program to provide residents and businesses access to cleaner energy at competitive rates.

GHGRS #2: The City will implement its building reach code ordinance (adopted September 2019) and its prohibition of natural gas infrastructure ordinance (adopted October 2019) to guide the city's new construction toward zero net carbon (ZNC) buildings.

GHGRS #3: The City will expand development of rooftop solar energy through the provision of technical assistance and supportive financial incentives to make progress toward the Climate Smart San José goal of becoming a one-gigawatt solar city.

GHGRS #4: The City will support a transition to building decarbonization through increased efficiency improvements in the existing building stock and reduced use of natural gas appliances and equipment.

GHGRS #5: As an expansion to Climate Smart San José, the City will update its Zero Waste Strategic Plan and reassess zero waste strategies. Throughout the development of the update, the City will continue to divert 90 percent of waste away from landfills through source reduction, recycling, food recovery and composting, and other strategies.

GHGRS #6: The City will continue to be a partner in the Caltrain Modernization Project to enhance local transit opportunities while simultaneously improving the city's air quality.

GHGRS #7: The City will expand its water conservation efforts to achieve and sustain long-term per capita reductions that ensure a reliable water supply with a changing climate, through regional partnerships, sustainable landscape designs, green infrastructure, and water-efficient technology and systems.

Table B: 2030 Greenhouse Gas Reduction Strategy Compliance

GHGRS Strategy and Consistency Options	Description of Project Measure	Project Conformance
	PART 1: RESIDENTIAL PROJECTS ONLY	
Zero Net Carbon Residential Construction	Describe which, if any, project consistency options from the leftmost column you are implementing.	Proposed Not Applicable
 Achieve/exceed the City's Reach Code, and Exclude natural gas infrastructure in new construction, or Install on-site renewable energy systems or participate in a community solar program to offset 100% of the project's estimated energy demand, or 	 OR, Describe why this strategy is not applicable to your project. OR, Describe why such measures are infeasible. Response documentation: The project is not a residential proposal. 	 Not Feasible* Alternative Measure Proposed
 4. Participate in San José Clean Energy at the Total Green level (i.e., 100% carbon-free electricity) for electricity accounts associated with the project until which time SJCE achieves 100% carbon-free electricity for all accounts. Supports Strategies: GHGRS #1, GHGRS #2, GHGRS #3 		* The 2030 GHGRS assumed this strategy would be feasible for 50% of residential units constructed between 2020 and 2030.

GHGRS Strategy and Consistency Options	Description of Project Measure	Project Conformance
PART 2: R	ESIDENTIAL AND NON-RESIDENTIAL PROJECTS	
 Renewable Energy Development Install solar panels, solar hot water, or other clean energy power generation sources on development sites, or Participate in community solar programs to support development of renewable energy in the community, or Participate in San José Clean Energy at the Total Green level (i.e., 100% carbon-free electricity) for electricity accounts associated with the project 	Describe which, if any, project consistency options from the leftmost column you are implementing. OR, Describe why this strategy is not applicable to your project. OR, Describe why such measures are infeasible. Response documentation: The building would be solar-ready if required by Green Building policies. The public project would participate in SJCE.	 See Part 1 (Residential projects only) Proposed Not Applicable Not Feasible Alternative Measure Proposed
Supports Strategies: GHGRS #1, GHGRS #3		
 Building Retrofits – Natural Gas³ This strategy only applies to projects that include a retrofit of an existing building. If the proposed project does not include a retrofit, select "Not Applicable" in the Project Conformance column. 1. Replace an existing natural gas appliance with an electric alternative (e.g., space heater, water heater, clothes dryer), or 	Describe which, if any, project consistency options from the leftmost column you are implementing. OR, Describe why this strategy is not applicable to your project. OR, Describe why such measures are infeasible. Response documentation: The project is not a retrofit project.	 Proposed Not Applicable Not Feasible Alternative Measure Proposed
 Replace an existing natural gas appliance with a high-efficiency model Supports Strategies: GHGRS #4 		

³ GHGRS Strategy #4 applies to existing building retrofits and not to new construction; Strategy #2 applies to new construction to reduce natural gas related GHG emissions

Description of Project Measure	Project Conformance	
Describe which, if any, project consistency options from the leftmost column you are implementing. OR, Describe why this strategy is not applicable to your project. OR, Describe why such measures are infeasible. Response documentation: The public project will be required to divert construction and demolition waste per City requirements. Describe which, if any, project consistency options from the leftmost column you are implementing.	 Proposed Not Applicable Not Feasible Alternative Measure Proposed Proposed Not Applicable 	
OR, Describe why this strategy is not applicable to your project. OR, Describe why such measures are infeasible. Response documentation: While the proposed project is within ½-mile of Diridon Station, it is a public parking structure and is not a housing or employment use.	 Not Applicable Not Feasible Alternative Measure Proposed 	
Describe which, if any, project consistency options from the leftmost column you are implementing. OR, Describe why this strategy is not applicable to your project. OR, Describe why such measures are infeasible. Response documentation: The proposed parking structure would not require the use of a substantial amount of water. Access to reclaimed water for outdoer use provided if recuired	 Proposed Not Applicable Not Feasible Alternative Measure Proposed 	
	Description of Project MeasureDescribe which, if any, project consistency options from the leftmost column you are implementing.OR,Describe why this strategy is not applicable to your project.OR,Describe why such measures are infeasible.Response documentation: The public project will be required to divert construction and demolition waste per City requirements.Describe which, if any, project consistency options from the leftmost column you are implementing.OR,Describe why this strategy is not applicable to your project.OR,Describe why such measures are infeasible.Response documentation: While the proposed project is within ½-mile of Diridon Station, it is a public parking structure and is not a housing or employment use.Describe which, if any, project consistency options from the leftmost column you are implementing.OR,Describe which, if any, project consistency options from the leftmost column you are implementing.OR,Describe which, if any, project consistency options from the leftmost column you are implementing.OR,Describe why this strategy is not applicable to your project.OR,Describe why such measures are infeasible.Response documentation: The proposed parking structure would not require the use of a substantial amount of water. Access t	

Table C: Applicant Proposed Greenhouse Gas Reduction Measures

Description of Proposed Measure	Description of GHG Reduction Estimate	Proposed Measure Implementation
As shown in Appendix A of the IS/Addendum (Attachment 6), the project complies with the major GHGRS Strategy as it would enroll into the San Jose Clean Energy program (GHGRS #1). Supports Strategies/Sectors: GHGRS #1	Response documentation: San Jose Clean Energy is estimated to be approximately 655,104 MTCO2e/year reduction (page 55 of the GHGRS), or approximately 55 percent of the total emissions reductions per year for the City. While consistency with all seven strategies is the goal, as noted previously in this response, compliance with GHGRS #1 is the primary criterion to ensure that the project is consistent with the City's reduction targets.	 Part of Design Additional Measure
The project is not expected to use natural gas for operations. Supports Strategies/Sectors: GHGRS #2	Response documentation: The building would be expected to be zero net carbon.	Part of Design Additional Measure
The building may be solar-ready if required by the Municipal Code, consistent with GHGRS #3. Supports Strategies/Sectors: GHGRS #3	Response documentation: The solar-ready structure would contribute towards meeting the City's goal of becoming a one-gigawatt solar city.	 ☑ Part of Design ☑ Additional Measure
The project would comply with GHGRS #5 as it would comply with the green building ordinance which requires waste diversion during construction activities. Supports Strategies/Sectors: GHGRS # 5	Response documentation: Waste diversion during demolition and construction supports GHGRS #5 and is included in the project.	 Part of Design Additional Measure
The project would require minimal water during operations as a parking structure, consistent with GHGRS #7.	Response documentation: In addition to a limited amount of water required for operation of the structure, reclaimed water may also be used for irrigation of drought-tolerant, climate appropriate landscaping.	 Part of Design Additional Measure
Supports Strategies/Sectors: GHGRS # 7		