Appendix A - Construction Community Risk Assessment

BELLARMINE PARKING STRUCTURE CONSTRUCTION COMMUNITY RISK ASSESSMENT

San José, California

August 31, 2021

Prepared for:

Pooja Nagrath

Project Manager David J. Powers & Associates, Inc. 1871 The Alameda, Suite 200 San José, CA 95126

Prepared by:

Casey Divine, Zachary Palm, & James A. Reyff

ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue Cotati, CA 94931 (707) 794-0400

I&R Project#: 21-094

Introduction

The purpose of this report is to address the potential community risk impacts associated with the construction of the proposed parking structure located at the Bellarmine College Preparatory School in San José, California. The air quality impacts from this project would be associated with construction of the new building. Air pollutant emissions associated with construction of the project were predicted using appropriate computer models. In addition, the potential project construction health risk impacts and the impact of existing toxic air contaminant (TAC) sources affecting the nearby and proposed sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).¹ BAAQMD recommends using a 1,000-foot screening radius around the project site for purposes of identifying community health risk from existing sources of TACs.

Project Description

The project site is currently occupied by a parking lot and two small structures. The project proposes to demolish the structures and parking lot to construct a 377-space parking garage, while retaining 34 parking lot spaces. Construction is proposed to begin in June 2022 and be completed by May 2023.

Setting

The project is located in Santa Clara County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM₁₀), and fine particulate matter (PM_{2.5}).

Air Pollutants of Concern

High ozone levels are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO_x). These precursor pollutants react under certain meteorological conditions to form high ozone levels. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ozone levels. The highest ozone levels in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone levels aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant of the Bay Area. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM₁₀) and fine particulate matter where particles have a diameter of 2.5 micrometers or less (PM_{2.5}). Elevated concentrations of PM₁₀ and PM_{2.5} are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter levels aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

¹ Bay Area Air Quality Management District, *CEQA Air Quality Guidelines*, May 2017.

Toxic Air Contaminants

Toxic air contaminants (TAC) are a broad class of compounds known to cause morbidity or mortality (usually because they cause cancer) and include, but are not limited to, the criteria air pollutants. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about threequarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs.

Regulatory Setting

Federal Regulations

The United States Environmental Protection Agency (EPA) sets nationwide emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA also sets nationwide fuel standards. California also has the ability to set motor vehicle emission standards and standards for fuel used in California, as long as they are the same or more stringent than the federal standards.

In the past decade the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel engines are a significant source of NO_X and particulate matter (PM₁₀ and PM_{2.5}) and because the EPA has identified DPM as a probable carcinogen. Implementation of the heavy-duty diesel on-road vehicle standards and the non-road diesel engine standards are estimated to reduce particulate matter and NO_X emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.²

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. The new standards reduced the amount of sulfur allowed by 97 percent for highway diesel fuel (from 500

² USEPA, 2000. *Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements*. EPA420-F-00-057. December.

parts per million by weight [ppmw] to 15 ppmw), and by 99 percent for off-highway diesel fuel (from about 3,000 ppmw to 15 ppmw). The low sulfur highway fuel (15 ppmw sulfur), also called ultra-low sulfur diesel (ULSD), is currently required for use by all vehicles in the U.S.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

State Regulations

To address the issue of diesel emissions in the state, CARB developed the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.³ In addition to requiring more stringent emission standards for new on-road and off-road mobile sources and stationary diesel-fueled engines to reduce particulate matter emissions by 90 percent, a significant component of the plan involves application of emission control strategies to existing diesel vehicles and equipment. Many of the measures of the Diesel Risk Reduction Plan have been approved and adopted, including the federal on-road and non-road diesel engine emission standards for new engines, as well as adoption of regulations for low sulfur fuel in California.

CARB has adopted and implemented a number of regulations for stationary and mobile sources to reduce emissions of DPM. Several of these regulatory programs affect medium and heavy-duty diesel trucks that represent the bulk of DPM emissions from California highways. CARB regulations require on-road diesel trucks to be retrofitted with particulate matter controls or replaced to meet 2010 or later engine standards that have much lower DPM and PM_{2.5} emissions. This regulation will substantially reduce these emissions between 2013 and 2023. While new trucks and buses will meet strict federal standards, this measure is intended to accelerate the rate at which the fleet either turns over so there are more cleaner vehicles on the road or is retrofitted to meet similar standards. With this regulation, older, more polluting trucks would be removed from the roads sooner.

CARB has also adopted and implemented regulations to reduce DPM and NO_X emissions from inuse (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce particulate matter and NO_X exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleetaveraged emission rates. Implementation of this regulation, in conjunction with stringent federal off-road equipment engine emission limits for new vehicles, will significantly reduce emissions of DPM and NO_X.

Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San

³ California Air Resources Board, 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. October.

Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the National Ambient Air Quality Standards and California Ambient Air Quality Standards. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area.⁴ The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program is being implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses will be used to focus emission reduction measures in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. The BAAQMD has identified six communities as impacted: Concord, Richmond/San Pablo, Western Alameda County, San José, Redwood City/East Palo Alto, and Eastern San Francisco. The project site is not within a CARE area.

The BAAQMD California Environmental Quality Act (*CEQA*) Air Quality Guidelines⁵ were prepared to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They also include assessment methodologies for air toxics, odors, and greenhouse gas emissions. Attachment 1 includes detailed community risk modeling methodology.

San José Envision 2040 General Plan

The San José Envision 2040 General Plan includes goals, policies, and actions to reduce exposure of the City's sensitive population to exposure of air pollution and toxic air contaminants or TACs. The following goals, policies, and actions are applicable to the proposed project and this assessment:

Applicable Goals – Air Pollutant Emission Reduction Goal MS-10 Minimize emissions from new development.

⁴ See BAAQMD: <u>https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program</u>, accessed 2/18/2021.

⁵ Bay Area Air Quality Management District, 2017. *CEQA Air Quality Guidelines*. May.

Applicable Policies – Air Pollutant Emission Reduction

- MS-10.1 Assess projected air emissions from new development in conformance with the Bay Area Air Quality Management District (BAAQMD) CEQA Guidelines and relative to state and federal standards. Identify and implement feasible air emission reduction measures.
- MS-10.2 Consider the cumulative air quality impacts from proposed developments for proposed land use designation changes and new development, consistent with the region's Clean Air Plan and State law.
- MS-10.3 Promote the expansion and improvement of public transportation services and facilities, where appropriate, to both encourage energy conservation and reduce air pollution.

Applicable Goals – Toxic Air Contaminants

Goal MS-11 Minimize exposure of people to air pollution and toxic air contaminants such as ozone, carbon monoxide, lead, and particulate matter.

Applicable Policies – Toxic Air Contaminants

- MS-11.2 For projects that emit toxic air contaminants, require project proponents to prepare health risk assessments in accordance with BAAQMD-recommended procedures as part of environmental review and employ effective mitigation to reduce possible health risks to a less than significant level. Alternatively, require new projects (such as, but not limited to, industrial, manufacturing, and processing facilities) that are sources of TACs to be located an adequate distance from residential areas and other sensitive receptors.
- MS-11.4 Encourage the installation of appropriate air filtration at existing schools, residences, and other sensitive receptor uses adversely affected by pollution sources.
- MS-11.5 Encourage the use of pollution absorbing trees and vegetation in buffer areas between substantial sources of TACs and sensitive land uses.

Actions – Toxic Air Contaminants

- MS-11.7 Consult with BAAQMD to identify stationary and mobile TAC sources and determine the need for and requirements of a health risk assessment for proposed developments.
- MS-11.8 For new projects that generate truck traffic, require signage which reminds drivers that the State truck idling law limits truck idling to five minutes.

Applicable Goals – Construction Air Emissions

Goal MS-13 Minimize air pollutant emissions during demolition and construction activities

Applicable Policies – Construction Air Emissions

MS-13.1 Include dust, particulate matter, and construction equipment exhaust control measures as conditions of approval for subdivision maps, site development and planned development permits, grading permits, and demolition permits. At minimum, conditions shall conform to construction mitigation measures recommended in the current BAAQMD CEQA Guidelines for the relevant project size and type.

Applicable Actions – Construction Air Emissions

MS-13.4 Adopt and periodically update dust, particulate, and exhaust control standard measures for demolition and grading activities to include on project plans as conditions of approval based upon construction mitigation measures in the BAAQMD CEQA Guidelines.

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, the elderly over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site are in the single and multi-family residences to the south and west of the project site. Dormitory halls and classrooms are also located to the west of the project site at further distances. This project would not introduce new sensitive receptors (i.e., residents) to the area.

Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA and these significance thresholds were contained in the District's 2011 CEQA Air Quality Guidelines. These thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA. The thresholds were challenged through a series of court challenges and were mostly upheld. BAAQMD updated the CEQA Air Quality Guidelines in 2017 to include the latest significance thresholds, which were used in this analysis and are summarized in Table 1. Impacts above these thresholds are considered potentially significant.

	Construction Thresholds	Operati	onal Thresholds	
Criteria Air Pollutant	Average Daily Emissions (lbs./day)	Average Daily Emissions (lbs./day)	Annual Average Emissions (tons/year)	
ROG	54	54	10	
NO _x	54	54	10	
PM ₁₀	82 (Exhaust)	82	15	
PM _{2.5}	54 (Exhaust)	54	10	
со	Not Applicable	9.0 ppm (8-hour average) or 20.0 ppm (1-hour average)		
Fugitive Dust	Construction Dust Ordinance or other Best Management Practices	No	t Applicable	
Health Risks and Hazards	Single Sources Within 1,000-foot Zone of Influence	Combined Sources (Cumulative from sources within 1000-foot zone of influen		
Excess Cancer Risk	10 per one million	100 g	per one million	
Hazard Index	1.0		10.0	
Incremental annual PM _{2.5}	0.3 µg/m ³	0.8 µg/m ³		

 Table 1.
 BAAQMD CEQA Significance Thresholds

Construction Community Risk Impacts and Mitigation Measures

Project impacts related to increased community risk can occur either by generating emissions of TACs and air pollutants and by introducing a new sensitive receptor in proximity to an existing source of TACs. Temporary project construction activity would generate emissions of DPM from equipment and trucks and also generate dust on a temporary basis that could affect nearby sensitive receptors. A construction community health risk assessment was prepared to address project construction impacts on the surrounding off-site sensitive receptors.

Community risk impacts are addressed by predicting increased lifetime cancer risk, the increase in annual PM_{2.5} concentrations, and computing the Hazard Index (HI) for non-cancer health risks. Construction equipment and associated heavy-duty truck traffic generates diesel exhaust, which is a known TAC. These exhaust emissions pose health risks for sensitive receptors such as surrounding residents. The primary community risk impact issues associated with construction emissions are cancer risk and exposure to PM_{2.5}. A health risk assessment of the project construction activities was conducted that evaluated potential health effects to nearby sensitive receptors from construction emissions of DPM and PM_{2.5}.⁶ This assessment included dispersion modeling to predict the offsite concentrations resulting from project construction, so that lifetime cancer risks and non-cancer health effects could be evaluated. The methodology for computing community risks impacts is contained in *Attachment 1*.

Construction Period Emissions

The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size, and anticipated construction schedule were input to CalEEMod. The CARB EMission FACtors 2021 (EMFAC2021) model was used to predict emissions from construction traffic, which includes worker travel, vendor trucks, and haul trucks.⁷ The CalEEMod model output along with construction inputs are included in *Attachment 2* and EMFAC2021 vehicle emissions modeling outputs are included in *Attachment 3*.

CalEEMod Modeling

Land Use Inputs

The proposed project land uses were entered into CalEEMod as described in Table 2.

⁶DPM is identified by California as a toxic air contaminant due to the potential to cause cancer.

⁷ See CARB's EMFAC2021 Emissions Inventory at <u>https://arb.ca.gov/emfac/emissions-inventory</u>.

1	Project Land Uses	Size	Units	Square Feet (sf)	Acreage
	Unenclosed Parking Structure	377	Parking Spaces	115,985	1.86

Table 1.Summary of Project Land Use Inputs

Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario for both phases, including equipment list and schedule, were based on information provided by the project applicant.

The construction equipment worksheets provided by the applicant included the schedule for each phase. Within each phase, the quantity of equipment to be used along with the average hours per day and total number of workdays was provided. Since different equipment would have different estimates of the working days per phase, the hours per day for each phase was computed by dividing the total number of hours that the equipment would be used by the total number of days in that phase. The construction schedule assumed that the earliest possible start date would be June 2022 and would be built out over a period of approximately 12 months, or 254 construction workdays. The earliest year of full operation was assumed to be 2024.

Construction Truck Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the estimate of soil material imported and/or exported to the site and the estimate of cement and asphalt truck trips. CalEEMod provides daily estimates of worker and vendor trips for each applicable phase. The total trips for those were computed by multiplying the daily trip rate by the number of days in that phase. Haul trips for grading were estimated from the provided grading volumes by assuming each truck could carry 10 tons per load . The number of concrete and asphalt total round haul trips were provided for the project and converted to total one-way trips, assuming two trips per delivery.

The latest version of the CalEEMod model is based on the older version of the CARB EMFAC2014 motor vehicle emission factor model. This model has been superseded by the EMFAC2021 model; however, CalEEMod has not been updated to include EMFAC2021. Therefore, the construction traffic information was combined with EMFAC2021 motor vehicle emissions factors. EMFAC2021 provides aggregate emission rates in grams per mile for each vehicle type. The vehicle mix for this study was based on CalEEMod default assumptions, where worker trips are assumed to be comprised of light-duty autos (EMFAC category LDA) and light duty trucks (EMFAC category LDT1 and LDT2). Vendor trips are comprised of delivery and large trucks (EMFAC category MHDT and HHDT) and haul trips, including cement trucks, are comprised of large trucks (EMFAC category HHDT). Travel distances are based on CalEEMod default lengths, which are 10.8 miles for worker travel, 7.3 miles for vendor trips and 20 miles for hauling (soil import/export). Since CalEEMod does not address cement trucks, these were treated

as vendor travel distances. Each trip was assumed to include an idle time of 5 minutes. Emissions associated with vehicle starts were also included. On road emissions in Santa Clara County for 2022 were used in these calculations. Table 3 provides the traffic inputs that were combined with the EMFAC2021 emission database to compute vehicle emissions.

CalEEMod Run/Land		Trips by Tri					
Uses and Construction	Total	Total	Total				
Phase	Worker ¹	Vendor ¹	Haul ²	Notes			
Vehicle mix ¹	50% LDA 25% LDT1 25% LDT2	50% MHDT 50% HHDT	100% HHDT				
Trip Length (miles)	10.8	7.3	20.0	CalEEMod default distance with 5-min truck idle time.			
Demolition	80	-	119	1,200 tons demolition. CalEEMod default worker trips.			
Site Preparation	130	-	-	CalEEMod default worker trips.			
Grading	50	-	162	1,300-cy soil export. CalEEMod default worker trips.			
Trenching	160	-	-	CalEEMod default worker trips.			
Building Construction	8,640	3,420	1,240	620 cement round trips. CalEEMod default worker and vendor trips.			
Paving	286	-	20	10 asphalt round trips. CalEEMod default worker trips.			
Notes: ¹ Based on 2022 EMFAC2021 light-duty vehicle fleet mix for Santa Clara County.							

 Table 3.
 Construction Traffic Data Used for EMFAC2021 Model Runs

² Includes grading trips estimated by CalEEMod based on amount of material to be removed.

Summary of Computed Construction Period Emissions

Average daily emissions were annualized for each year of construction by dividing the annual construction emissions and dividing those emissions by the number of active workdays during that year. Table 4 shows the annualized average daily construction emissions of ROG, NO_X, PM_{10} exhaust, and $PM_{2.5}$ exhaust during construction of the project. As indicated in Table 4, predicted annualized project construction emissions would not exceed the BAAQMD significance thresholds during any year of construction.

Year	ROG	NOx	PM ₁₀ Exhaust	PM _{2.5} Exhaust
Construction	n Emissions Per	Year (Tons)		
2022 & 2023	0.05	0.50	0.03	0.02
Average Daily Constru	ction Emissions	Per Year (pounds	s/day)	
2022 & 2023 (254 construction workdays)	0.43	3.91	0.20	0.15
BAAQMD Thresholds (pounds per day)	54 lbs./day	54 lbs./day	82 lbs./day	54 lbs./day
Exceed Threshold?	No	No	No	No

Table 2.Construction Period Emissions

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM₁₀ and PM_{2.5}. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less-than-significant if best management practices are implemented to reduce these emissions. *Recommended Measure AQ-1 would implement BAAQMD*-*recommended enhanced best management practices*.

Mitigation Measure AQ-1: Include measures to control dust and exhaust during construction.

During any construction period ground disturbance, the applicant shall ensure that the project contractor implement measures to control dust and exhaust. Implementation of the measures recommended by BAAQMD and listed below would reduce the air quality impacts associated with grading and new construction to a less-than-significant level. Additional measures are identified to reduce construction equipment exhaust emissions. The contractor shall implement the following best management practices that are required of all projects:

- 1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- 6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne

toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.

- 7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- 8. Post a publicly visible sign with the telephone number and person to contact at the Lead Agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number shall also be visible to ensure compliance with applicable regulations.

Effectiveness of Recommended Measure AQ-1

The measures above are consistent with BAAQMD-recommended basic control measures for reducing fugitive particulate matter that are contained in the BAAQMD CEQA Air Quality Guidelines.

Community Health Risk from Project Construction

Construction Emissions

The CalEEMod model and EMFAC2021 emissions provided total annual PM_{10} exhaust emissions (assumed to be DPM) for the off-road construction equipment and for exhaust emissions from onroad vehicles, with total emissions from all construction stages as 0.02 tons (34 pounds). The onroad emissions are a result of haul truck travel during grading activities, worker travel, and vendor deliveries during construction. A trip length of one mile was used to represent vehicle travel while at or near the construction site. It was assumed that these emissions from on-road vehicles traveling at or near the site would occur at the construction site. Fugitive $PM_{2.5}$ dust emissions were calculated by CalEEMod as 0.003 tons (6 pounds) for the overall construction period.

Dispersion Modeling

The U.S. EPA AERMOD dispersion model was used to predict concentrations of DPM and PM_{2.5} concentrations at sensitive receptors in the vicinity of the project construction area. The AERMOD dispersion model is a BAAQMD-recommended model for use in modeling analysis of these types of emission activities for CEQA projects.⁸ Emission sources for the construction site were grouped into two categories: exhaust emissions of DPM and fugitive PM_{2.5} dust emissions.

Construction Sources

To represent the construction equipment exhaust emissions, an area source emission release height of 20 feet (6 meters) was used for the area sources.⁹ The release height incorporates both the

⁸ Bay Area Air Quality Management District (BAAQMD), 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May.

⁹ California Air Resource Board, 2007. *Proposed Regulation for In-Use Off-Road Diesel Vehicles, Appendix D: Health Risk Methodology*. April. Web: https://ww3.arb.ca.gov/regact/2007/ordiesl07/ordiesl07.htm

physical release height from the construction equipment (i.e., the height of the exhaust pipe) and plume rise after it leaves the exhaust pipe. Plume rise is due to both the high temperature of the exhaust and the high velocity of the exhaust gas. It should be noted that when modeling an area source, plume rise is not calculated by the AERMOD dispersion model as it would do for a point source (exhaust stack). Therefore, the release height from an area source used to represent emissions from sources with plume rise, such as construction equipment, should be based on the height the exhaust plume is expected to achieve, not just the height of the top of the exhaust pipe.

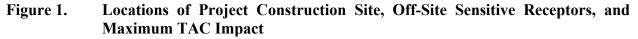
For modeling fugitive PM_{2.5} emissions, a near-ground level release height of 7 feet (2 meters) was used for the area source. Fugitive dust emissions at construction sites come from a variety of sources, including truck and equipment travel, grading activities, truck loading (with loaders) and unloading (rear or bottom dumping), loaders and excavators moving and transferring soil and other materials, etc. All of these activities result in fugitive dust emissions at various heights at the point(s) of generation. Once generated, the dust plume will tend to rise as it moves downwind across the site and exit the site at a higher elevation than when it was generated. For all these reasons, a 7-foot release height was used as the average release height across the construction site. Emissions from the construction equipment and on-road vehicle travel were distributed throughout the modeled area sources.

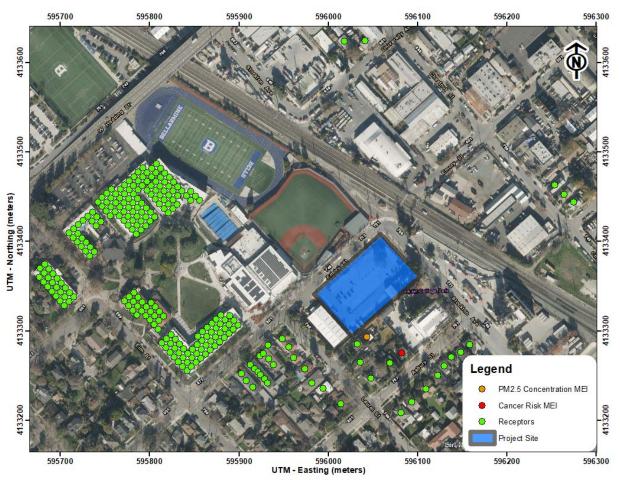
AERMOD Inputs and Meteorological Data

The modeling used a five-year data set (2013 - 2017) of hourly meteorological data from the San Jose International Airport prepared for use with the AERMOD model by BAAQMD. Construction emissions were modeled as occurring daily between 8:00 a.m. to 5:00 p.m., when the majority of construction activity is expected to occur. Annual DPM and PM_{2.5} concentrations from construction activities during the 2022-2023 period were calculated using the model. DPM and PM_{2.5} concentrations were calculated at nearby sensitive receptors. Receptor heights of 5 feet (1.5 meters), 15 feet (4.5 meters), and 25 feet (7.6 meters) were used to represent the breathing height on the first, second, and third floor of nearby single-family residences, dormitory halls, and classrooms.¹⁰

¹⁰ Bay Area Air Quality Management District, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: <u>https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</u>

Summary of Construction Community Risk Impacts

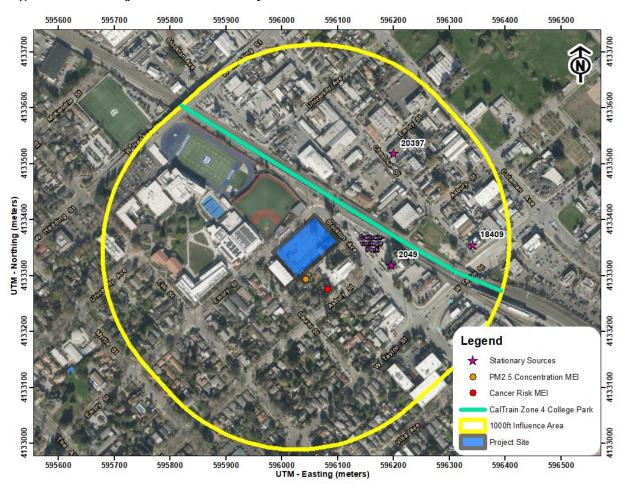

The maximum increased cancer risks were calculated using the modeled TAC concentrations combined with the Office of Environmental Health Hazard Assessment (OEHHA) guidance for age sensitivity factors and exposure parameters as recommended by BAAQMD (see *Attachment 1*). Non-cancer health hazards and maximum PM_{2.5} concentrations were also calculated and identified. Age-sensitivity factors reflect the greater sensitivity of infants and small children to cancer causing TACs. Infant, child, and adult exposures were assumed to occur at all residences during the entire construction period.


The maximum modeled annual $PM_{2.5}$ concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI value was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation referce exposure level of 5 μ g/m³.

The maximum modeled annual DPM and PM_{2.5} concentrations, which includes both the DPM and fugitive PM_{2.5} concentrations, were identified at nearby sensitive receptors (as shown in Figure 1) to find the maximally exposed individuals (MEI). Results of this assessment indicated that the construction cancer risk MEI was located on the first floor (5 feet above ground) of a single-family home southeast of the project site and the total PM_{2.5} concentration MEI was located on the first floor (5 feet above ground) of the adjacent single-family home also southeast of the project site but northwest of the construction cancer risk MEI. Table 6 summarizes the maximum cancer risks, PM_{2.5} concentrations, and health hazard indexes for project related construction activities affecting the construction MEIs. *Attachment 4* to this report includes the emission calculations used for the construction area source modeling and the cancer risk calculations.

	Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index
	Project Impact			
Project Construction	Unmitigated	5.37 (infant)	0.04	< 0.01
	BAAQMD Single-Source Threshold	10	0.3	1.0
Exceed Threshold?	Unmitigated	No	No	No

Table 4.Construction Risk Impacts at the Off-site MEIs



Cumulative Community Risks of all TAC Sources at the Offsite Project MEIs

Community health risk assessments typically look at all substantial sources of TACs that can affect sensitive receptors that are located within 1,000 feet of a project site (i.e., influence area). These sources include rail lines, highways, busy surface streets, and stationary sources identified by BAAQMD.

A review of the project area and based on provided traffic information indicated that no roadways within the influence area would have traffic exceeding 10,000 vehicles per day. A review of the project area indicates that Zone 4 of the CalTrain line passes through the influence area. A review of BAAQMD's stationary source geographic information systems (GIS) map tool identified three stationary sources with the potential to affect the project site and MEIs. Figure 2 shows the project area included within the influence area and the location of the MEIs. Details of the modeling and community risk calculations are included in *Attachment 5*.

Railways - CalTrain Zone 4

The project MEIs are located near Zone 4 of the CalTrain railway. Railway health risk screening data provided by BAAQMD was incorporated into this analysis. BAAQMD developed raster files with cancer risk and PM_{2.5} values for all highways/freeways, roadways (ADT > 30,000), and rail lines within the Bay Area. These raster files were used to screen Zone 4 of the CalTrain railway risks and hazards upon the project site. The risk values shown in the raster files were modeled using AERMOD and a 20x20-meter emissions grid. The raster file uses EMFAC2014 data for fleet mix and include the OEHHA 2015 factor.

The railway screening level impacts are listed in Table 5 and included in Attachment 5. Note that the cancer risk value is not adjusted for age sensitivity or exposure duration. It is conservatively higher than adjusted cancer risk values. Refined modeling of the railway would have resulted in even lower risk values. Note that BAAQMD has found that non-cancer hazards were found to be minimal, so an HI value is not included.

BAAQMD Permitted Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's Permitted Stationary Sources 2018 GIS website,¹¹ which identifies the location of nearby stationary sources and their estimated risk and hazard impacts, including emissions and adjustments to account for new OEHHA guidance. Three sources, two autobody coating operations and a concrete plant, were identified using this tool. The BAAQMD GIS website did not provide screening risks and hazards for all of these sources, so a stationary source information request was required to be submitted to BAAQMD.

The screening level risks and hazards provided by BAAQMD for the stationary sources were adjusted for distance using BAAQMD's Distance Adjustment Multiplier Tool for Diesel Internal Combustion Engines. Community risk impacts from the stationary sources upon the MEI are reported in Table 5.

Note that Plant #2049 (Central Concrete Supply Company, Inc.) is an industrial site with high estimates of PM2.5 impacts. These are screening levels acquired from BAAQMD that do not account for particulate size (e.g., impacts likely based on total particulates rather than PM_{2.5}), emission processes and dispersion conditions. Therefore, these are likely overwhelmingly conservative estimates. The modeling of this sources was not further investigated for this assessment since the impacts from the proposed project are below single-source thresholds and therefore would not be considered to have a cumulatively considerable contribution.

Summary of Cumulative Health Risk Impact at Construction MEIs

Table 5 reports both the project and cumulative community risk impacts at the sensitive receptors most affected by construction (i.e., the MEIs). Because the project's community risk would not exceed the single source thresholds, the project would not be considered to have a cumulatively significant impact on the MEIs as the contribution from the project is not cumulatively considerable.¹² However, the cumulative cancer risk, HI, and annual PM_{2.5} concentrations are provided in Table 5 for informational purposes. As shown, cumulative source thresholds at the MEIs are exceeded due to the MEIs' location near one significant source of TAC emissions: Central Concrete Supply Company, Inc. This existing source of TAC emissions is shown by BAAOMD to exceed both the single source and cumulative source thresholds. As discussed above, the annual PM_{2.5} concentrations reported for this source are likely overestimated for several reasons. This analysis did not evaluate the true effects of this sources since project levels are below the single-source thresholds.

¹¹ BAAOMD.

https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=2387ae674013413f987b1071715daa65 ¹² Per email from BAAQMD, Areana Flores, on February 23, 2021.

Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index
Project Impa	ets		
Project Construction Unmitigate	d 5.37 (infant)	0.04	< 0.01
BAAQMD Single-Source Threshol	d >10.0	>0.3	>1.0
Exceed Threshold? Unmitigate	d No	No	No
Cumulative Sou	rces		
CalTrain Zone 4 College Park	41.83	0.06	-
Central Concrete Supply Company, Inc (Facility ID #2049, Crushed Stone Processing (5), Material Handling (3), Concrete Batching (1)), MEI at 350 feet	-	282.25	-
Michael J's Body Shop (Facility ID #18409, Auto Body Coating Operation), MEI at 870 feet	-	-	<0.01
Progressive Collision Repair (Facility ID #20397, Auto Body Coating Operation), MEI at 850 feet		-	<0.01
Combined Sources Unmitigated	47.2	282.35	< 0.03
BAAQMD Cumulative Source Threshol	d >100	>0.8	>10.0
Exceed Threshold? Unmitigat	ed No	Yes	No

Table 5.Impacts from Combined Sources at Project MEIs

Supporting Documentation

Attachment 1 is the methodology used to compute community risk impacts, including the methods to compute lifetime cancer risk from exposure to project emissions.

Attachment 2 includes the CalEEMod output for project construction emissions. Also included are any modeling assumptions.

Attachment 3 includes the EMFAC2021 emissions modeling. The input files for these calculations are voluminous and are available upon request in digital format.

Attachment 4 is the construction health risk assessment. This includes the summary of the dispersion modeling and the cancer risk calculations for construction. AERMOD dispersion modeling files for this assessment, which are quite voluminous, are available upon request and would be provided in digital format

Attachment 5 includes the cumulative community risk calculations, modeling results, and health risk calculations from sources affecting the construction MEIs and project site receptors.

Attachment 1: Health Risk Calculation Methodology

A health risk assessment (HRA) for exposure to Toxic Air Contaminates (TACs) requires the application of a risk characterization model to the results from the air dispersion model to estimate potential health risk at each sensitive receptor location. The State of California Office of Environmental Health Hazard Assessment (OEHHA) and California Air Resources Board (CARB) develop recommended methods for conducting health risk assessments. The most recent OEHHA risk assessment guidelines were published in February of 2015.¹³ These guidelines incorporate substantial changes designed to provide for enhanced protection of children, as required by State law, compared to previous published risk assessment guidelines. CARB has provided additional guidance on implementing OEHHA's recommended methods.¹⁴ This HRA used the 2015 OEHHA risk assessment guidelines and CARB guidance. The BAAQMD has adopted recommended procedures for applying the newest OEHHA guidelines as part of Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants.¹⁵ Exposure parameters from the OEHHA guidelines and the recent BAAQMD HRA Guidelines were used in this evaluation.

Cancer Risk

Potential increased cancer risk from inhalation of TACs is calculated based on the TAC concentration over the period of exposure, inhalation dose, the TAC cancer potency factor, and an age sensitivity factor to reflect the greater sensitivity of infants and children to cancer causing TACs. The inhalation dose depends on a person's breathing rate, exposure time and frequency and duration of exposure. These parameters vary depending on the age, or age range, of the persons being exposed and whether the exposure is considered to occur at a residential location or other sensitive receptor location.

The current OEHHA guidance recommends that cancer risk be calculated by age groups to account for different breathing rates and sensitivity to TACs. Specifically, they recommend evaluating risks for the third trimester of pregnancy to age zero, ages zero to less than two (infant exposure), ages two to less than 16 (child exposure), and ages 16 to 70 (adult exposure). Age sensitivity factors (ASFs) associated with the different types of exposure are an ASF of 10 for the third trimester and infant exposures, an ASF of 3 for a child exposure, and an ASF of 1 for an adult exposure. Also associated with each exposure type are different breathing rates, expressed as liters per kilogram of body weight per day (L/kg-day) or liters per kilogram of body weight per 8-hour period for the case of worker or school child exposures. As recommended by the BAAQMD for residential exposures, 95th percentile breathing rates are used for the third trimester and infant exposures. BAAQMD recommends using the 95th percentile 8-hour breathing rates. Additionally, CARB and the BAAQMD recommend the use of a residential exposure duration of

¹³ OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

¹⁴CARB, 2015. Risk Management Guidance for Stationary Sources of Air Toxics. July 23.

¹⁵ BAAQMD, 2016. BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. December 2016.

30 years for sources with long-term emissions (e.g., roadways). For workers, assumed to be adults, a 25-year exposure period is recommended by the BAAQMD. For school children a 9-year exposure period is recommended by the BAAQMD.

Under previous OEHHA and BAAQMD HRA guidance, residential receptors are assumed to be at their home 24 hours a day, or 100 percent of the time. In the 2015 Risk Assessment Guidance, OEHHA includes adjustments to exposure duration to account for the fraction of time at home (FAH), which can be less than 100 percent of the time, based on updated population and activity statistics. The FAH factors are age-specific and are: 0.85 for third trimester of pregnancy to less than 2 years old, 0.72 for ages 2 to less than 16 years, and 0.73 for ages 16 to 70 years. Use of the FAH factors is allowed by the BAAQMD if there are no schools in the project vicinity have a cancer risk of one in a million or greater assuming 100 percent exposure (FAH = 1.0).

Functionally, cancer risk is calculated using the following parameters and formulas:

Cancer Risk (per million) = *CPF x Inhalation Dose x ASF x ED/AT x FAH x 10*⁶ Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless) Inhalation Dose = $C_{air} x DBR^* x A x (EF/365) x 10^{-6}$ Where: Cair = concentration in air (µg/m³) DBR = daily breathing rate (L/kg body weight-day) 8HrBR = 8-hour breathing rate (L/kg body weight-8 hours) A = Inhalation absorption factor EF = Exposure frequency (days/year) 10⁻⁶ = Conversion factor

The health risk parameters used in this evaluation are summarized as follows:

	Exposure Type \rightarrow	Infa	nt	Child	Adult
Parameter	Age Range →	3 rd	0<2	2 < 16	16 - 30
		Trimester			
DPM Cancer Potency Factor (n	ng/kg-day) ⁻¹	1.10E+00	1.10E+00	1.10E+00	1.10E+00
Daily Breathing Rate (L/kg-day	y) 80 th Percentile Rate	273	758	572	261
Daily Breathing Rate (L/kg-day	y) 95 th Percentile Rate	361	1,090	745	335
8-hour Breathing Rate (L/kg-8	hours) 95 th Percentile Rate	-	1,200	520	240
Inhalation Absorption Factor		1	1	1	1
Averaging Time (years)		70	70	70	70
Exposure Duration (years)		0.25	2	14	14*
Exposure Frequency (days/yea	r)	350	350	350	350*
Age Sensitivity Factor		10	10	3	1
Fraction of Time at Home (FA	H)	0.85-1.0	0.85-1.0	0.72-1.0	0.73*
* An 8-hour breathing rate (8H	IrBR) is used for worker and	school child ex	posures.		

Non-Cancer Hazards

Non-cancer health risk is usually determined by comparing the predicted level of exposure to a chemical to the level of exposure that is not expected to cause any adverse effects (reference exposure level), even to the most susceptible people. Potential non-cancer health hazards from TAC exposure are expressed in terms of a hazard index (HI), which is the ratio of the TAC concentration to a reference exposure level (REL). OEHHA has defined acceptable concentration levels for contaminants that pose non-cancer health hazards. TAC concentrations below the REL are not expected to cause adverse health impacts, even for sensitive individuals. The total HI is calculated as the sum of the HIs for each TAC evaluated and the total HI is compared to the BAAQMD significance thresholds to determine whether a significant non-cancer health impact from a project would occur.

Typically, for residential projects located near roadways with substantial TAC emissions, the primary TAC of concern with non-cancer health effects is diesel particulate matter (DPM). For DPM, the chronic inhalation REL is 5 micrograms per cubic meter ($\mu g/m^3$).

Annual PM2.5 Concentrations

While not a TAC, fine particulate matter (PM_{2.5}) has been identified by the BAAQMD as a pollutant with potential non-cancer health effects that should be included when evaluating potential community health impacts under the California Environmental Quality Act (CEQA). The thresholds of significance for PM_{2.5} (project level and cumulative) are in terms of an increase in the annual average concentration. When considering PM_{2.5} impacts, the contribution from all sources of PM_{2.5} emissions should be included. For projects with potential impacts from nearby local roadways, the PM_{2.5} impacts should include those from vehicle exhaust emissions, PM_{2.5} generated from vehicle tire and brake wear, and fugitive emissions from re-suspended dust on the roads.

Attachment 2: CalEEMod Modeling Inputs and Outputs

	ject N	lame:	BCP Parki	ng Garage					Complete ALL Portions in Yellow
	,								
		Project Size		Dwelling Units	1.61	total projec	acres distur	bed	
									Pile Driving? Y/N? NO
Image: Sector				5.1. Tetali					Project include on-site GENERATOR OR FIRE PUMP during project OPERATIO
				s.f. office/commercial					Y/N?NO
Image: Section of the section of t				s.f. other, specify:					IF YES (if BOTH separate values)>
Image: Problem in the set of the set o					377	spaces			Kilowatts/Horsepower:
									- Fuel Type:
Production biology Particle Particle <td></td> <td></td> <td></td> <td>S.I. parking lot</td> <td></td> <td>_spaces</td> <td></td> <td></td> <td></td>				S.I. parking lot		_spaces			
Inclusion Burner bio Description Burner bio Description Description <thdescription< th=""> <thdescription< th=""> <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Location in project (Plans Desired if Available):</td></th<></thdescription<></thdescription<>									Location in project (Plans Desired if Available):
Description Product of the state of the sta		Construction Hours	8	am to		5 pm	.		
Pecciption Peccipt						Total	Ava	ць	DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT
Denotion Part Dat. Chip 2022 Topic play base of the play of the									
Image: Section of the section of t	antity	Description	HP	Load Factor	Hours/day	Days	day	Hours	Comments
Image: Section of the sectio		Demolition			Total phase:	8			Overall Import/Export Volumes
Security 138 0.38 0.8 0 4433 Square for the base included (0 with to b h hubb) Bite First Coores 247 0.4 0 140	1	Concrete/Industrial Source						0005	Domolitics Volume
Instructure 97 0.37 0.8 5 1450 32264 spant for of 12000 Over Equation Star Date: 9410022 Total phase: 38 74100 74000 74000 74000 74000 74000 740000 740000 740000 740000 740000 740000 740000 740000 740000 740000 740000 740000 740000 740000 740000 7400000 7400000 7400000 74000000 74000000 740000000 740000000000 74000000000000000000000000000000000000	2	Excavators	158	0.38		5 3 5	5	4803	Square footage of buildings to be demolished
Operation Date: Date: <thdate:< th=""> Date: Date:</thdate:<>	1				5	3 5	0	0	
Sin Diate Sin Diate Offen page 200 page 2000 page	_		0.				J		1,200 Hauling volume (tons)
0 codes 10 codes 10 codes 10 codes 10 codes 10 codes 10 code		Site Preparation			Total phase:	26			Any pavement demonshed and hadred? <u>? tons</u>
Nation Tind Dooms 247 0.4 0	1	Graders			2	2 2	0.61538462	1227	
Oper Explanme? Number Stat Date: Sta		Rubber Tired Dozers	247	0.4		, 2	0	0	
Grading / Excavation Start Date: 7715722 Total phase B C Start Date: Start Date: 7715722 I Excavation 180 0.38 0.8 0.8 2000 Export volume * 1.280 color value? I Excavation color value * 1.280 color v	1		97	0.37	3	3 2	0.61538462	574	
Image: Body of the second s			Start Data:	7/44/2022	Total phases				
I Examina 108 0.38 8 6 8 400 Empti volume = 1,200 obte yerds? Robber Tried Docum 2,47 0.41 0 8 500 1000 Robber Tried Docum 2,47 0.43 0 0 0 0 Robber Tried Docum 2,47 0.43 0 0 0 0 Robber Tried Docum 2,47 0.43 0 0 0 0 Robber Tried Docum Start Date: 80.002 0 0 0 0 Robber Tried Docum Start Date: 80.0022 0 0 0 0 Robber Tried Docum Start Date: 80.0022 0 0 0 0 0 0 Robber Tried Docum Start Date: 80.0022 0 0 0 0 0 0 Robber Tried Docum Start Date: 80.0022 0 0 0 0 0 0 Robber Tried Docum Start Date		Grading / Excavation			i otal phase:	5			Soil Hauling Volume
Ruber Tree Dozers 247 0.4 0 0 Concreding Machinal Save Interont. Loaden Stackboos 07 0.37 0.8 0.8 0.9 Interont. Loaden Stackboos 07 0.37 0.8 0.8 0.9 Differ Expansion Start Date: 0.90222 0.9 0.9 Intractor. Loaden Stackboos 97 0.37 0.8 1.5 0.4307 Intractor. Loaden Stackboos 97 0.37 0.8 1.5 0.4307 Intractor. Loaden Stackboos 97 0.37 0.8 1.5 0.4307 Other Expansion 158 0.33 0.8 1.5 0.4307 Other Expansion 158 0.337 0.9 1.4410 Other Expansion 1.5 0.5555556 1.4410 Other Expansion 1.5 0.20 0.0 0.0 Intractor. Loaden Stackboos 97 0.37 0.40 0.0 0.0 Generatic Stabulos 97 0.37 0.60 0.0 0.0	1		158	0.38	8	5			Export volume = 1,300 cubic yards?
2 TackorsLoadersBachoes 97 0.37 8 5 8 287 Other Equipment?	1				8	5 5			
Other Equipment? Image: Start Date: Methods Methods Methods Methods Trenching/Foundation Start Date: 88/07022 Total plass: Accord Methods Meth	2					2 5			
End Building Second Stave Addition	2		51	0.07		,	0	2011	
End Building Second Stave Addition		Trenching/Foundation	Start Date:	8/8/2022	Total phase:	20			
2 Excavalors 158 0.38 8 15 6 14410 Other Expand? Start Date: 913/022 Total phase: 160 5.000cy Cement Trucks 620_Total Round-Trips Building - Exterior Start Date: 913/022 Total phase: 160 5.000cy Cement Trucks 620_Total Round-Trips Building - Exterior Start Date: 92/2023 9 9 5.000cy Cement Trucks 620_Total Round-Trips Crases 231 0.29 8 15555555 1675 Electric? (YN), N Otherwise assumed desel Generationalis 84 0.74 6 0 0 0 0 Other Start Date: 64 0.74 6 0				9/2/2022					
Building - Exterior Start Date: 913/2022 Total phase: 180 Image: Constraint of the	2				3				
End Date: 6722223 Model Model Electric? (Y/h) N_Otherwise assumed diese! 1 67and/s 80 0.29 8 35 15555556 157 Electric? (Y/h) N_Otherwise assumed diese! 1 67and/s 80 0.27 8 15 5555556 157 Electric? (Y/h) N_Otherwise assumed diese! 1 66enerator Sets 84 0.74 0 0 0 0 0 1 Wedders 46 0.45 8 60 2666667 936 0 <		Other Equipment?							
1 Canes 231 0.29 8 35 1555556 1977 Electric? (VN), N. Otherwise assumed desel 0 Generator Sets 84 0.74 0 0 Otherwise Assumed desel 1 Forkiths 84 0.74 0 0 Otherservise Assumed desel 1 Tractors/Loders/Backhoes 97 0.37 0 0 Otherservise Assumed desel 1 Welders 46 0.45 8 60 268666667 9938 0 Other Equipment? - - - - - - 0 Interior/Architectural Coating Start Date: - - - - Air Compressors 78 0.48 - 4D1/01 0 - - Air Compressors 78 0.48 - 4D1/01 0 -		Building - Exterior			Total phase:	180			5,500cy Cement Trucks 620_ Total Round-Trips
Image: Marking Section Sets 84 0.2 8 100 8 25532 Liquid Propane (LPG)? (YN)Otherwise Assumed diesel Generator Sets 84 0.74 0 0 Otherscription Tractors/Loaders/Backhoes 97 0.37 0 0 0 Otherscription 0 0.46 0.45 8.60 2666667 936 Otherscription 0 Othe	1	Cranes			3	3 35	1.55555556	18757	Electric? (Y/N) N Otherwise assumed diesel
Tackors/Loader://Backhoes 97 0.37 0 0 0 Other Equipment? 46 0.45 8 60 2.6666667 9936 Other Equipment? 6 2.6666667 9936 6 6 ng -Interior/Architectural Coating Start Date: 6 6 6 6 M Compressors 78 0.48 6 70 6 6 Arical Lift 78 0.48 70 70 70 70 Other Equipment? 6 78 0.48 70 70 70 Other Equipment? 6 78 0.48 70 70 70 Other Equipment? 6 78 0.48 70 70 70 Paving Start Date: 52/2023 70 70 70 70 70 70 Paving Equipment 132 0.36 8 10.3535356 330 70 Desers 130 0.42 8	1				8		8		Liquid Propane (LPG)? (Y/N) Otherwise Assumed diesel
Other Equipment? Image: Start Date: Image: St		Tractors/Loaders/Backhoes	97	0.37			0	0	
End Date: End Date: Mit Mit Mit Arial Lift 62 0.31 #DIV/01 0 Other Equipment? #DIV/01 0 Other Equipment? #DIV/01 0 Paving Start Date: 4/1/2023 Total phase: 22 I Cement and Mortar Mixers 9 0.56 8 22 8 1 Cement and Mortar Mixers 9 0.56 8 22 8 1 Paving Equipment 132 0.36 8 10.3838336 437 1 Rolers 80 0.38 8 10.36383836 380 1 Rolers/Backhoes 97 0.37 8 22 8 6317 0 Cemer Equipment? Additional Phases Start Date: Additional Phases Start Date: <t< td=""><td>1</td><td></td><td>46</td><td>0.45</td><td>3</td><td>8<mark>60</mark></td><td>2.66666667</td><td>9936</td><td></td></t<>	1		46	0.45	3	8 <mark>60</mark>	2.66666667	9936	
End Date: End Date: Mit Mit Mit Arial Lift 62 0.31 #DIV/01 0 Other Equipment? #DIV/01 0 Other Equipment? #DIV/01 0 Paving Start Date: 4/1/2023 Total phase: 22 I Cement and Mortar Mixers 9 0.56 8 22 8 1 Cement and Mortar Mixers 9 0.56 8 22 8 1 Paving Equipment 132 0.36 8 10.3838336 437 1 Rolers 80 0.38 8 10.36383836 380 1 Rolers/Backhoes 97 0.37 8 22 8 6317 0 Cemer Equipment? Additional Phases Start Date: Additional Phases Start Date: <t< td=""><td>lina - Int</td><td></td><td>Start Date:</td><td></td><td>Total phase:</td><td></td><td></td><td></td><td></td></t<>	lina - Int		Start Date:		Total phase:				
Aerial Lift 62 0.31 #DIV/0! 0 Other Equipment? -	y - iiii	-	End Date:		. Jui pluse.				
Other Equipment? Image: Control of the equipment ? Image: Contreq equipment ? Image: Control of the		Air Compressors Aerial Lift		0.48					
Start Date: 51/2/2023 Image: mail of the start Date: 51/2/2023 Start Date: <								-	
1 Cement and Motar Mixers 9 0.56 8 22 8 887 1 Pavers 130 0.42 8 1 0.3633636 437 Asphalt 100		Paving			Total phase:	22			
1 Pavers 130 0.42 8 1 0.36336363 437 Asphalt 100 cubic yards or _10 round trips? 1 Paving Equipment 132 0.36 8 1 0.36336363 380 1 Rollers 80 0.38 8 1 0.3636363 380 1 Rollers 80 0.33 8 2 8 6317 0 Other Equipment? Additional Phases Start Date: Additional Phases Start Date: 4 5 Start Date: 4									
1 Paving Equipment 132 0.36 8 10.36363636 380 1 Rollers 80 0.33 8 10.36363636 380 1 Tractors/Loader/Backhoes 97 0.37 8 22 8 0/ther Equipment? 0 0 6 0 Additional Phases Start Date: 0 0 Start Date: 0 4 401/01 0 0 4 401/01 0 0 4 401/01 0 0 4 401/01 0 0 4 401/01 0 0 4 401/01 0 0 4 401/01 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 4	1		130	0.42			0.36363636	437	Asphalt 100 cubic yards or 10 round trips?
1 Tradors/Loaders/Backhoes 97 0.37 8 22 8 6317 Other Equipment? <td>1</td> <td>Paving Equipment</td> <td>132</td> <td>0.36</td> <td></td> <td></td> <td>0.36363636</td> <td>380</td> <td></td>	1	Paving Equipment	132	0.36			0.36363636	380	
Additional Phases Start Date: Total phases: Total phase: Total phases: Total phases: Total phases: Total phase: Total phases: Total phases: Total phase: Total phase: Total phase: Total phases: Total phase: Total phase: Total phase: Total phase: Total phase: Total phase: Total phases: Total phase: Total phases: Total phase: Total phase: <td>1</td> <td>Tractors/Loaders/Backhoes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6317</td> <td></td>	1	Tractors/Loaders/Backhoes						6317	
Start Date: #DiV/0! 0 #DiV/0! 0 #DiV/0! 0 #ment types listed in "Equipment Types" worksheet tab. #Div/0! 0		Other Equipment?				-	1		
#DIV/01 0		Additional Phases			Total phase:				
ment types listed in "Equipment Types" worksheet tab. 401/V01 0			Start Date:				#DIV/0!	0	
#DIV/0! 0 #DIV/0! 0 #DIV/0! 0 #DIV/0! 0 #DIV/0! 0 ment types listed in "Equipment Types" worksheet tab. 0							#DIV/0!		
ment types listed in "Equipment Types" worksheet tab.							#DIV/0!	0	
							#DIV/0!	0	
nent listed in this sheet is to provide an example of inputs Complete one sheet for each project component	oment t	ypes listed in "Equipment Types"	worksheet tab.						
	ment lis	ted in this sheet is to provide an ex	ample of inputs		Complet	e one	sheet	for ea	ach project component

Construction Criteria Air Pollutants						
Unmitigated	ROG	NOX	PM10 Exhaust	PM2.5 Exhaust	CO2e	
Year			Tons		MT	
		Construc	tion Equipment			
2022 & 2023	0.04	0.32	0.02	0.01	48.97	
			EMFAC			
2022 & 2023	0.02	0.18	0.01	0.00	126.54	
	1	otal Construct	tion Emissions by	Year		
2022 & 2023	0.05	0.50	0.03	0.02	175.52	
		Total Const	ruction Emissions			
Tons	0.05	0.50	0.03	0.02	175.52	
Pounds/Workdays		Average I	Daily Emissions		Worl	kdays
2022 & 2023	0.43	3.91	0.20	0.15		254
Threshold - lbs/day	54.0	54.0	82.0	54.0		
		Total Const	ruction Emissions			
Pounds	0.43	3.91	0.20	0.15	0.00	
Average	0.43	3.91	0.20	0.15	0.00	254.00
Threshold - lbs/day	54.0 54.0 82.0 54.0					

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

21-094 Bellarmine Parking Garage

Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unenclosed Parking Structure	407.00	Space	1.61	114,763.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2024
Utility Company					
CO2 Intensity (Ib/MWhr)	0	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Square footage and unit amount provided by applicant. Acreage estimated from Google Earth and project plans.

Construction Phase - Construction phase lengths provided by applicant

Off-road Equipment - Construction equipment information provided by applicant.

Off-road Equipment - Construction equipment information provided by applicant.

Off-road Equipment - Construction equipment information provided by applicant.

Off-road Equipment - Construction equipment information provided by applicant.

Off-road Equipment - Construction equipment information provided by applicant.

Off-road Equipment - Construction equipment information provided by applicant. Grading -

Demolition - Demolition amount provided by applicant

Trips and VMT - All trips entered into EMFAC2021

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Construction Off-road Equipment Mitigation - All equipment t4i and BMP

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	5.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstructionPhase	NumDays	200.00	180.00
tblConstructionPhase	NumDays	20.00	8.00
tblConstructionPhase	NumDays	4.00	5.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblConstructionPhaseNumDays10.0022.00tblConstructionPhaseNumDays2.0026.00tblConstructionPhasePhaseEndDate4/14/20235/22/2023tblConstructionPhasePhaseEndDate6/30/20226/14/2022tblConstructionPhasePhaseEndDate6/30/20227/15/2022tblConstructionPhasePhaseEndDate4/28/20235/2/2023tblConstructionPhasePhaseEndDate4/28/20235/2/2023tblConstructionPhasePhaseEndDate7/4/20227/15/2022tblConstructionPhasePhaseEndDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/11/2023tblConstructionPhasePhaseStartDate4/15/20234/11/2023tblConstructionPhasePhaseStartDate7/1/20226/10/2022tblConstructionPhasePhaseStartDate7/1/20226/10/2022tblConstructionPhasePhaseStartDate7/1/20226/10/2022tblConstructionPhasePhaseStartDate7/1/20226/10/2022tblConstructionPhasePhaseStartDate7/1/20226/10/2022tblConstructionPhasePhaseStartDate7/1/20226/10/2022tblConstructionPhasePhaseStartDate7/1/20226/10/2022tblConstructionPhasePhaseStartDate7/1/20226/10/2022tblConstructionPhasePhaseStartDate	
tblConstructionPhasePhaseEndDate4/14/20235/22/2023tblConstructionPhasePhaseEndDate6/30/20226/14/2022tblConstructionPhasePhaseEndDate7/8/20227/15/2022tblConstructionPhasePhaseEndDate4/28/20235/2/2023tblConstructionPhasePhaseEndDate4/28/20235/2/2023tblConstructionPhasePhaseEndDate7/4/20227/15/2022tblConstructionPhasePhaseEndDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/11/2023	
tblConstructionPhasePhaseEndDate6/30/20226/14/2022tblConstructionPhasePhaseEndDate7/8/20227/15/2022tblConstructionPhasePhaseEndDate4/28/20235/2/2023tblConstructionPhasePhaseEndDate7/4/20227/15/2022tblConstructionPhasePhaseEndDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/1/2023	
tblConstructionPhasePhaseEndDate7/8/20227/15/2022tblConstructionPhasePhaseEndDate4/28/20235/2/2023tblConstructionPhasePhaseEndDate7/4/20227/15/2022tblConstructionPhasePhaseStartDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/1/2023tblConstructionPhasePhaseStartDate4/15/20234/1/2023	
tblConstructionPhasePhaseEndDate4/28/20235/2/2023tblConstructionPhasePhaseEndDate7/4/20227/15/2022tblConstructionPhasePhaseStartDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/1/2023tblConstructionPhasePhaseStartDate4/15/20234/1/2023	
tblConstructionPhasePhaseEndDate7/4/20227/15/2022tblConstructionPhasePhaseStartDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/1/2023	
tblConstructionPhasePhaseEndDate7/4/20227/15/2022tblConstructionPhasePhaseStartDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/1/2023	
tblConstructionPhasePhaseStartDate7/9/20229/13/2022tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/1/2023	
tblConstructionPhasePhaseStartDate7/5/20227/11/2022tblConstructionPhasePhaseStartDate4/15/20234/1/2023	
tblConstructionPhase PhaseStartDate 4/15/2023 4/1/2023	
tblConstructionPhase PhaseStartDate 7/1/2022 6/10/2022	
tblGrading MaterialExported 0.00 1,300.00	
tblLandUse LandUseSquareFeet 162,800.00 114,763.00	
tblLandUse LotAcreage 3.66 1.61	
tblOffRoadEquipment LoadFactor 0.37 0.37	
tblOffRoadEquipment LoadFactor 0.38 0.38	
tblOffRoadEquipment LoadFactor 0.38 0.38	
tblOffRoadEquipment LoadFactor 0.38 0.38	
tblOffRoadEquipment OffRoadEquipmentType Tractors/Loaders/Bac	
tblOffRoadEquipment OffRoadEquipmentType Excavators	
tblOffRoadEquipment OffRoadEquipmentType Rubber Tired Dozers Excavators	
tblOffRoadEquipment OffRoadEquipmentType Rubber Tired Dozers Excavators	
tblOffRoadEquipment OffRoadEquipmentUnitAmount 3.00 1.00	
tblOffRoadEquipment OffRoadEquipmentUnitAmount 3.00 1.00	
tblOffRoadEquipment UsageHours 6.00 8.00	
tblOffRoadEquipment UsageHours 8.00 5.00	
tblOffRoadEquipment UsageHours 6.00 1.56	
tblOffRoadEquipment UsageHours 6.00 8.00	
tblOffRoadEquipment UsageHours 8.00 0.62	

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblOffRoadEquipment	UsageHours	6.00	0.36
tblOffRoadEquipment	UsageHours	8.00	0.36
tblOffRoadEquipment	UsageHours	7.00	0.36
tblOffRoadEquipment	UsageHours	8.00	5.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	8.00	0.62
tblOffRoadEquipment	UsageHours	8.00	2.67
tblTripsAndVMT	HaulingTripNumber	119.00	0.00
tblTripsAndVMT	HaulingTripNumber	163.00	0.00
tblTripsAndVMT	VendorTripNumber	19.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	0.00
tblTripsAndVMT	WorkerTripNumber	48.00	0.00
tblTripsAndVMT	WorkerTripNumber	13.00	0.00
tblTripsAndVMT	WorkerTripNumber	8.00	0.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	ns/yr							МТ	/yr		
2022	0.0206	0.1854	0.2070	3.4000e-004		9.2800e- 003	0.0241	003	8.6300e- 003	0.0108	0.0000	29.6781	29.6781	8.7300e- 003	0.0000	29.8964
2023	0.0155	0.1333	0.1357	2.2000e-004	0.0000	6.6100e- 003	6.6100e-003	0.0000	6.1600e- 003	6.1600e-003	0.0000	18.9423	18.9423	5.3400e- 003	0.0000	19.0757

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Maximum	0.0206	0.1854	0.2070	3.4000e-004	0.0148	9.2800e-	0.0241	2.1600e-	8.6300e-	0.0108	0.0000	29.6781	29.6781	8.7300e-	0.0000	29.8964
						003		003	003					003		1
																1

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	s/yr							МТ	/yr		
2022	5.8800e- 003	0.1449	0.2371	3.4000e-004	003	003	7.7600e-003	004	003	2.0900e-003		29.6781	29.6781	8.7300e- 003		29.8964
2023	4.2600e- 003	0.0943	0.1441	2.2000e-004			1.0700e-003			1.0700e-003		18.9423	18.9423	5.3400e- 003	0.0000	19.0757
Maximum	5.8800e- 003	0.1449	0.2371	3.4000e-004	6.6500e- 003	1.1200e- 003	7.7600e-003	9.7000e- 004	1.1200e- 003	2.0900e-003	0.0000	29.6781	29.6781	8.7300e- 003	0.0000	29.8964

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	71.86	24.96	-11.27	0.00	54.98	86.22	71.20	55.09	85.19	81.36	0.00	0.00	0.00	0.00	0.00	0.00
Quarter	Sta	art Date	End	Date	Maxim	um Unmitig	ated ROG + N	OX (tons/qua	irter)	Maxi	mum Mitigate	ed ROG + NC	DX (tons/quar	ter)		
1	6-	3-2022	9-2-	2022			0.0922					0.0812				
2	9-	3-2022	12-2	-2022			0.0762					0.0460				
3	12	-3-2022	3-2-	2023	0.0802 0.0511											
4	3-	3-2023	6-2-	2023	0.0974 0.0650											
			Hig	hest			0.0974					0.0812				

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Area	0.0102	3.0000e-005	3.7300e- 003	0.0000		1.0000e- 005	1.0000e-005		1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0102	3.0000e-005	3.7300e- 003	0.0000	0.0000	1.0000e- 005	1.0000e-005	0.0000	1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ıs/yr							MT	/yr		
Area	0.0102	3.0000e-005	3.7300e- 003	0.0000		1.0000e- 005	1.0000e-005		1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0102	3.0000e-005	3.7300e- 003	0.0000	0.0000	1.0000e- 005	1.0000e-005	0.0000	1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	6/3/2022	6/14/2022	5	8	
2	Site Preparation	Site Preparation	6/10/2022	7/15/2022	5	26	
3	Grading	Grading	7/11/2022	7/15/2022	5	5	
4	Building Construction	Building Construction	9/13/2022	5/22/2023	5	180	
5	Paving	Paving	4/1/2023	5/2/2023	5	22	
6	Trenching	Trenching	8/8/2022	9/2/2022	5	20	

Acres of Grading (Site Preparation Phase): 1

Acres of Grading (Grading Phase): 2.5

Acres of Paving: 1.61

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating -

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
	Tractors/Loaders/Backhoes	1	6.00	-	0.37
Paving	Cement and Mortar Mixers	1	8.00	9	0.56

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Demolition	Concrete/Industrial Saws	1	5.00	81	0.73
Building Construction	Cranes	1	1.56	231	0.29
Building Construction	Forklifts	1	8.00	89	0.20
Trenching	Excavators	2	6.00	158	
Grading	Graders	1	8.00	187	0.41
Site Preparation	Graders	1	0.62	187	0.41
Paving	Pavers	1	0.36	130	
Paving	Paving Equipment	1	0.36	132	
Paving	Rollers	1	0.36	80	0.38
Demolition	Excavators	2	5.00	158	0.38
Grading	Excavators	1	8.00	158	
Demolition	Tractors/Loaders/Backhoes	1	5.00	97	0.37
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	1	0.62	97	0.37
Building Construction	Welders	1	2.67	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	4	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	2	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	4	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	3	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Trenching	3	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Use Cleaner Engines for Construction Equipment

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Fugitive Dust					0.0128	0.0000	0.0128	1.9400e- 003	0.0000	1.9400e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.3200e- 003	0.0201	0.0311	5.0000e-005		1.0300e- 003	1.0300e-003		9.8000e- 004	9.8000e-004	0.0000	4.3067	4.3067	1.0300e- 003	0.0000	4.3325
Total	2.3200e- 003	0.0201	0.0311	5.0000e-005	0.0128	1.0300e- 003	0.0139	1.9400e- 003	9.8000e- 004	2.9200e-003	0.0000	4.3067	4.3067	1.0300e- 003	0.0000	4.3325

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
																1
																1

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Fugitive Dust					5.7800e- 003	0.0000	5.7800e-003	8.7000e- 004	0.0000	8.7000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.8000e- 004	0.0204	0.0352	5.0000e-005		8.0000e- 005	8.0000e-005		8.0000e- 005	8.0000e-005	0.0000	4.3067	4.3067	1.0300e- 003	0.0000	4.3325
Total	7.8000e- 004	0.0204	0.0352	5.0000e-005	5.7800e- 003	8.0000e- 005	5.8600e-003	8.7000e- 004	8.0000e- 005	9.5000e-004	0.0000	4.3067	4.3067	1.0300e- 003	0.0000	4.3325

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

ſ	Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.3 Site Preparation - 2022 Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Fugitive Dust					5.3000e- 004	0.0000	5.3000e-004	6.0000e- 005	0.0000	6.0000e-005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	5.8000e- 004	6.9300e- 003	3.9600e-003	1.0000e-005		2.6000e- 004	2.6000e-004		2.4000e- 004	2.4000e-004	0.0000	0.8550	0.8550	2.8000e- 004	0.0000	0.8620
Total	5.8000e- 004	6.9300e- 003	3.9600e-003	1.0000e-005	5.3000e- 004	2.6000e- 004	7.9000e-004	6.0000e- 005	2.4000e- 004	3.0000e-004	0.0000	0.8550	0.8550	2.8000e- 004	0.0000	0.8620

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Fugitive Dust					2.4000e- 004	0.0000	2.4000e-004	3.0000e- 005	0.0000	3.0000e-005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.8000e- 004	3.1000e- 003	5.8600e-003	1.0000e-005		2.0000e- 005	2.0000e-005		2.0000e- 005	2.0000e-005	0.0000	0.8550	0.8550	2.8000e- 004	0.0000	0.8620
Total	1.8000e- 004	3.1000e- 003	5.8600e-003	1.0000e-005	2.4000e- 004	2.0000e- 005	2.6000e-004	3.0000e- 005	2.0000e- 005	5.0000e-005	0.0000	0.8550	0.8550	2.8000e- 004	0.0000	0.8620

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.4 Grading - 2022 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Fugitive Dust					1.4000e- 003	0.0000	1.4000e-003	1.5000e- 004	0.0000	1.5000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.3700e- 003	0.0260	0.0237	5.0000e-005		1.0800e- 003	1.0800e-003		1.0000e- 003	1.0000e-003	0.0000	3.9605	3.9605	1.2800e- 003	0.0000	3.9925
Total	2.3700e- 003	0.0260	0.0237	5.0000e-005	1.4000e- 003	1.0800e- 003	2.4800e-003	1.5000e- 004	1.0000e- 003	1.1500e-003	0.0000	3.9605	3.9605	1.2800e- 003	0.0000	3.9925

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
																1
																1

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Fugitive Dust					6.3000e- 004	0.0000	6.3000e-004	7.0000e- 005	0.0000	7.0000e-005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.8000e- 004	0.0169	0.0303	5.0000e-005		7.0000e- 005	7.0000e-005		7.0000e- 005	7.0000e-005	0.0000	3.9605	3.9605	1.2800e- 003	0.0000	3.9925
Total	7.8000e- 004	0.0169	0.0303	5.0000e-005	6.3000e- 004	7.0000e- 005	7.0000e-004	7.0000e- 005	7.0000e- 005	1.4000e-004	0.0000	3.9605	3.9605	1.2800e- 003	0.0000	3.9925

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

ſ	Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.5 Building Construction - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		
Off-Road	0.0110	0.0931	0.0824	1.4000e-004		4.9400e- 003	4.9400e-003		4.6100e- 003	4.6100e-003	0.0000	11.6765	11.6765	3.2700e- 003	0.0000	11.7583
Total	0.0110	0.0931	0.0824	1.4000e-004		4.9400e- 003	4.9400e-003		4.6100e- 003	4.6100e-003	0.0000	11.6765	11.6765	3.2700e- 003	0.0000	11.7583

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		
Off-Road	2.6700e- 003	0.0601	0.0892	1.4000e-004		7.9000e- 004	7.9000e-004		7.9000e- 004	7.9000e-004	0.0000	11.6765	11.6765	3.2700e- 003	0.0000	11.7583
Total	2.6700e- 003	0.0601	0.0892	1.4000e-004		7.9000e- 004	7.9000e-004		7.9000e- 004	7.9000e-004	0.0000	11.6765	11.6765	3.2700e- 003	0.0000	11.7583

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Building Construction - 2023 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Off-Road	0.0129	0.1098	0.1041	1.8000e-004		5.4900e- 003	5.4900e-003		5.1200e- 003	5.1200e-003	0.0000	14.9281	14.9281	4.1500e- 003	0.0000	15.0318
Total	0.0129	0.1098	0.1041	1.8000e-004		5.4900e- 003	5.4900e-003		5.1200e- 003	5.1200e-003	0.0000	14.9281	14.9281	4.1500e- 003	0.0000	15.0318

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							МТ	/yr		
Off-Road	3.4100e- 003	0.0769	0.1140	1.8000e-004		1.0100e- 003	1.0100e-003		1.0100e- 003	1.0100e-003	0.0000	14.9281	14.9281	4.1500e- 003	0.0000	15.0318
Total	3.4100e- 003	0.0769	0.1140	1.8000e-004		1.0100e- 003	1.0100e-003		1.0100e- 003	1.0100e-003	0.0000	14.9281	14.9281	4.1500e- 003	0.0000	15.0318

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.6 Paving - 2023

Unmitigated Construction On-Site

21-094 Bellarmine Parking Garage - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	2.5700e- 003	0.0235	0.0316	5.0000e-005		1.1200e- 003	1.1200e-003		1.0400e- 003	1.0400e-003	0.0000	4.0142	4.0142	1.1900e- 003	0.0000	4.0439
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	2.5700e- 003	0.0235	0.0316	5.0000e-005		1.1200e- 003	1.1200e-003		1.0400e- 003	1.0400e-003	0.0000	4.0142	4.0142	1.1900e- 003	0.0000	4.0439

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

21-094 Bellarmine Parking Garage - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		
Off-Road	8.5000e- 004	0.0174	0.0301	5.0000e-005		7.0000e- 005	7.0000e-005		7.0000e- 005	7.0000e-005	0.0000	4.0142	4.0142	1.1900e- 003	0.0000	4.0439
Paving	0.0000				0	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	8.5000e- 004	0.0174	0.0301	5.0000e-005		7.0000e- 005	7.0000e-005		7.0000e- 005	7.0000e-005	0.0000	4.0142	4.0142	1.1900e- 003	0.0000	4.0439

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.7 Trenching - 2022

Unmitigated Construction On-Site

21-094 Bellarmine Parking Garage - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	4.2800e- 003	0.0393	0.0658	1.0000e-004		1.9700e- 003	1.9700e-003		1.8100e- 003	1.8100e-003	0.0000	8.8794	8.8794	2.8700e- 003	0.0000	8.9512
Total	4.2800e- 003	0.0393	0.0658	1.0000e-004		1.9700e- 003	1.9700e-003		1.8100e- 003	1.8100e-003	0.0000	8.8794	8.8794	2.8700e- 003	0.0000	8.9512

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10 Total	Fugitive	Exhaust	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
				DIALO	DIALO									1	1 1
				PM10	PM10		PM2.5	PM2.5						1 1	1 7
														4 1	1 7
														4 1	4

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Category					tons/yr						M	ſ/yr		
Off-Road	1.4800e- 003	0.0444	0.0766	1.0000e-004	1.7000e- 004	1.7000e-004	1.7000e- 004	1.7000e-004	0.0000	8.8794	8.8794	2.8700e- 003	0.0000	8.9512
Total	1.4800e- 003	0.0444	0.0766	1.0000e-004	1.7000e- 004	1.7000e-004	1.7000e- 004	1.7000e-004	0.0000	8.8794	8.8794	2.8700e- 003	0.0000	8.9512

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Ave	erage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unenclosed Parking Structure	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unenclosed Parking Structure	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unenclosed Parking Structure	0.572464	0.055653	0.187060	0.115672	0.020329	0.005102	0.007934	0.006404	0.000900	0.000380	0.024412	0.000914	0.002776

5.0 Energy Detail

Historical Energy Use: N

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							MT.	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	is/yr							MT	/yr		
Unenclosed Parking Structure	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	ns/yr							MT	/yr		
Unenclosed Parking Structure	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
Unenclosed Parking Structure	200835	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	Г/yr	
Unenclosed Parking Structure	200835	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Mitigated		3.0000e-005	003			005	1.0000e-005		005	1.0000e-005		7.2700e- 003	003	005		7.7500e- 003
Unmitigated	0.0102	3.0000e-005	3.7300e- 003	0.0000		1.0000e- 005	1.0000e-005		1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003

6.2 Area by SubCategory

<u>Unmitigated</u>

DOO	NOu	00	000	E	Eule au at	DM40 Tetel	E	Eule au at				Tatal 000	0114	NICO	000-
ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10 Total	Fugitive	Exhaust	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
				PM10	PM10		PM2.5	PM2.5							

21-094 Bellarmine Parking Garage - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

SubCategory					ton	is/yr				MT/yr					
Architectural Coating	2.3900e- 003					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	7.4200e- 003	а				0.0000	0.0000	 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	3.4000e- 004	3.0000e-005	3.7300e- 003	0.0000		1.0000e- 005	1.0000e-005	1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003
Total	0.0102	3.0000e-005	3.7300e- 003	0.0000		1.0000e- 005	1.0000e-005	1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	is/yr							MT	/yr		
Architectural Coating	2.3900e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	7.4200e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	3.4000e- 004	3.0000e-005	3.7300e- 003	0.0000		1.0000e- 005	1.0000e-005		1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003
Total	0.0102	3.0000e-005	3.7300e- 003	0.0000		1.0000e- 005	1.0000e-005		1.0000e- 005	1.0000e-005	0.0000	7.2700e- 003	7.2700e- 003	2.0000e- 005	0.0000	7.7500e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Total CO2	CH4	N2O	CO2e
Category		MT	Г/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

7.2 Water by Land Use <u>Unmitigated</u>

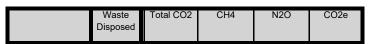
	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Unenclosed Parking Structure	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Unenclosed Parking Structure	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

8.0 Waste Detail


8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		M	T/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

8.2 Waste by Land Use

Unmitigated

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Land Use	tons		MT	/yr	
Unenclosed Parking Structure	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Unenclosed Parking Structure		0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
	_		-	-	_	

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type Number Hours/Day Hours/Year Horse Power Load Factor Fuel Type	Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	------------	-------------	-------------	-----------

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
User Defined Equipment					
Equipment Type	Number				
		-			
11.0 Vegetation					

Attachment 3: EMFAC2021 Calculations

Pollutants YEAR	ROG	NOx	со	SO2	Fugitive PM10 <i>Toi</i>	Exhaust PM10 ns	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	NBio- CO2	CH4 Metric 1	N2O Tons	CO2e
							Criteria F	Pollutants						
2022 & 2023	0.0187	0.1775	0.2255	0.0013	0.0516	0.0099	0.0615	0.0078	0.0043	0.0120	121.8793	0.0075	0.0150	126.5430
						Toxic Air Co	ntaminant	s (0.5 Mile	Trip Length					
2022 & 2023	0.0148	0.0449	0.0792	0.0001	0.0047	0.0009	0.0056	0.0007	0.0004	0.0011	14.2545	0.0020	0.0021	14.9162

Summary of Construction Traffic Emissions (EMFAC2021)

CalEEMod Construction Inputs

	CalEEMod	CalEEMod	Total	Total	CalEEMod									
	WORKER	VENDOR	Worker	Vendor	HAULING	Worker Trip	Vendor Tr	ip Hauling T	rip Worker Vehicle	Vendor Vehicle	Hauling Vehicle	Worker	Vendor	Hauling
Phase	TRIPS	TRIPS	Trips	Trips	TRIPS	Length	Length	Length	Class	Class	Class	VMT	VMT	VMT
Demolition	1	0 (C	80	0 11	.9 10.	8	7.3	20 LD_Mix	HDT_Mix	HHDT	864	0	2380
Site Preparation		5 ()	L30	0	0 10.	8	7.3	20 LD_Mix	HDT_Mix	HHDT	1404	0	0
Grading	1	0 0	C	50	0 16	2 10.	8	7.3	20 LD_Mix	HDT_Mix	HHDT	540	0	3240
Trenching/Foundation		8 ()	L60	0	0 10.	8	7.3	20 LD_Mix	HDT_Mix	HHDT	1728	0	0
Paving	1	3 (D :	286	0 2	0 10.	8	7.3	20 LD_Mix	HDT_Mix	HHDT	3088.8	0	400
Building Construction	4	8 19	9 8	540 342	0 124	0 10.	8	7.3	20 LD_Mix	HDT_Mix	HHDT	93312	24966	24800

Number of Days Per Year				
2022 & 2023	6/3/22	5/22/23	354	254
			354	254 Total Workdays

Phase	Start Date	End Date	Days/Week	Workdays
Demolition	6/3/2022	6/14/2022	5	8
Site Preparation	6/10/2022	7/15/2022	5	26
Grading	7/11/2022	7/15/2022	5	5
Trenching/Foundation	8/8/2022	9/2/2022	5	20
Paving	4/1/2023	5/2/2023	5	22
Building Construction	9/13/2022	5/22/2023	5	180

Source: EMFACR21 (V.L.D.) Emission Rates Region Fyre Courty Region: Syste Courty Region: Syste Court Source: Researce Researce Version: Courter: and Researce Version: Courter: maintaignet Researce Researce Researce Researce Researce Researce Researce Researce Researce Version: Researce Rese

Region	Calendar '	r Y Vehicle Cat	Model Yea Speed Fuel	Population Total VMT (VMT EVMT	Trips Energy	CorNOx_RUNENOx_	DLEX NOx_STRE: PM2.5_RU	PM2.5_IDL PM2.5_STFP	M2.5_PM PM2.5_PM PM10_R	UNPM10_IDLEPM10_STR	PM10_PM1PM10_PMICO2_	RUNECO2_IDLEXCO2	STRECH4_RUNE CH4	IDLEX CH4_STRE>N20_RUNE	N2O_IDLE>N2O_STRE ROG_RUN	ROG_IDLE/ROG_STRE:RO	G_HOTSROG_RUNIROG	DIUR TOG_RUNETOG	IDLEXTOG_STRE:TOG_HOT	STOG_RUNLTOG_DIUR I	H3_RUNECO_RUNEXCO_	IDLEX CO_STREX SOX_RUNE SO	Dx_IDLEX SOx_STREX
Santa Cla	ara 2023	22 HHDT	Aggregate Aggregate Gasoline	3.827367 105.1913	105.1913	0 76.57795	0 9.246272	0 1.235102 0.00578	0 0.001696	0.005 0.036521 0.0062	6 0 0.001845	0.02 0.104346 240	7.176 0 49.	64979 0.419155	0 0.000162 0.231899	0 0.038678 2.628217	0 0.000881 0	0.16301 1.46846 10.9	6573 3.835087	0 0.000965 0.1630	1.46846 10.96573	0.039703 94.77398	0 0.712144 0.023797	0 0.000491
Santa Cla	ara 2023	22 HHDT	Aggregate Aggregate Diesel	8126.63 984491.3	984491.3	0 118998.6	0 2.444518 67.7	79787 2.544846 0.027272	0.034513 0	0.008769 0.027987 0.0285	05 0.036074 0	0.035077 0.079962 167	7.544 12677.87	0 0.001458 0.3	236832 0 0.264298	1.997403 0 0.031398	5.098937 0	0 0	0 0.035744 5.80	4752 0	0 0	0.203666 0.125232 70.	47019 0 0.015885 0	0.120052 0
Santa Cla	ara 2023	22 HHDT	Aggregate Aggregate Natural G	a 660.7756 47681.36	47681.36	0 5809.397	0 1.356717 13.6	62116 0 0.001899	0.022358 0	0.009 0.047596 0.0020	55 0.024316 0	0.036 0.135989 1	429.3 10316.77	0 2.688526 36	13158 0 0.291372	2.10314 0 0.062535	0.56302 0	0 0	0 2.77132 36.9	2822 0	0 0	0.851705 14.53027 73.	87982 0 0	0 0
Santa Cla	ara 2023	22 LDA	Aggregate Aggregate Gasoline	604047.8 22374250	22374250	0 2805661	0 0.053791	0 0.287921 0.00126	0 0.002052	0.002 0.002656 0.001	37 0 0.002242	0.008 0.007588 287	1374 0 73.	33113 0.002925	0 0.081262 0.005394	0 0.035089 0.011654	0 0.381731 0.	.098272 0.249754 1.53	0333 0.017001	0 0.417946 0.09827	0.249754 1.530333	0.032827 0.847106	0 3.666246 0.002839	0 0.000725
Santa Cla	ara 2023	22 LDA	Aggregate Aggregate Diesel	1988.847 60930.09	60930.09	0 8564.495	0 0.263546	0 0.019976	. 0 0	0.002 0.00269 0.0208	79 0 0	0.008 0.007686 23	6.272 0	0 0.00151	0 0.037225	0 0.032513	0 0	0 0	0 0.037014	0 0	0 0	0.0031 0.352928	0 0.002239	0 0
Santa Cla	ara 2023	22 LDA	Aggregate Aggregate Electricity	49768.56 2058456	0 205	8456 247155.6 7947	33.9 0	0 0 0	0 0	0.002 0.001531	0 0 0	0.008 0.004374	0 0	0 0	0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	0 0
Santa Cla	ara 2023	22 LDA	Aggregate Aggregate Plug-in Hy	14080.33 626833.5	326494.8 3003	338.7 58222.18 9071	1.24 0.003418	0 0.11551 0.000718	0 0.002292	0.002 0.001368 0.0007	0 0.002492	0.008 0.003908 145	2228 0 67.	22203 0.000469	0 0.042745 0.000623	0 0.021047 0.001478	0 0.173285 0.	.039673 0.035067 0.45	1466 0.002157	0 0.189725 0.03967	8 0.035067 0.451466	0.019838 0.224082	0 1.339893 0.001436	0 0.000665
Santa Cla	ara 2023	22 LDT1	Aggregate Aggregate Gasoline	54974.08 1779154	1779154	0 245182.1	0 0.160037	0 0.42895 0.001971	0 0.003006	0.002 0.003236 0.0021	44 0 0.003269	0.008 0.009246 338	1243 0 90.	32051 0.007798	0 0.120165 0.011179	0 0.040992 0.03517	0 0.630523 0.	182138 0.532387 2.93	2213 0.051284	0 0.69034 0.18213	8 0.532387 2.932213	0.035502 1.699209	0 6.115696 0.003343	0 0.000893
Santa Cla	ara 2023	22 LDT1	Aggregate Aggregate Diesel	28.88602 444.5778	444.5778	0 84.95747	0 1.664076	0 0.241157	0 0	0.002 0.003731 0.2520	51 0 0	0.008 0.01066 415	6618 0	0 0.013984	0 0.065488	0 0.301058	0 0	0 0	0 0.342735	0 0	0 0	0.0031 1.609282	0 0.003939	0 0
Santa Cla	ara 2023	22 LDT1	Aggregate Aggregate Electricity	182.9928 6367.047	0 6367	7.047 860.9347 2458	206 0	0 0 0	0 0	0.002 0.001541	0 0 0	0.008 0.004403	0 0	0 0	0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	0 0
Santa Cla	ara 2023	22 LDT1	Aggregate Aggregate Plug-in Hy	¢ 24.31577 1158.953	555.2268 603.3	7259 100.5457 182.3	432 0.003144	0 0.11551 0.00042		0.002 0.001376 0.0004	57 0 0.001601	0.008 0.003931 13	3.572 0 73.	48077 0.00043	0 0.042675 0.000571	0 0.020981 0.001355	0 0.173285 0.	.025111 0.023155 0.30	0675 0.001984	0 0.189725 0.02511	0.023155 0.300675	0.020121 0.206104	0 1.339893 0.00132	0 0.000726
Santa Cla	ara 2023	22 LDT2	Aggregate Aggregate Gasoline	274728.5 9911730	9911730	0 1286654	0 0.087216	0 0.387125 0.001308	0 0.002055	0.002 0.003124 0.0014	22 0 0.002235	0.008 0.008926 357	.8859 0 92.	09899 0.003418	0 0.092802 0.006919	0 0.040202 0.013801	0 0.439671 0.	.088088 0.231141 1.44	2564 0.020134	0 0.481384 0.08808	8 0.231141 1.442564	0.034673 0.960886	0 4.129331 0.003538	0 0.00091
Santa Cla	ara 2023	22 LDT2	Aggregate Aggregate Diesel	933.788 35569.23	35569.23	0 4479.453	0 0.049482	0 0.005617	0 0	0.002 0.003089 0.0058	71 0 0	0.008 0.008825 319	.8313 0	0 0.000662	0 0.05039	0 0.01425	0 0	0 0	0 0.016223	0 0	0 0	0.0031 0.132603	0 0 0.003031	0 0
Santa Cla	ara 2023	22 LDT2	Aggregate Aggregate Electricity	669.3585 23693.95	0 2369	33.95 3436.204 9147.	.819 0	0 0 0	0 0	0.002 0.001524	0 0 0	0.008 0.004354	0 0	0 0	0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	0 0
Santa Cla	ara 2023	22 LDT2	Aggregate Aggregate Plug-in Hy	¢ 1256.28 57825.99	28723.51 2910	2.47 5194.718 8789	814 0.003259	0 0.11551 0.000565	0 0.001911	0.002 0.001372 0.0006	4 0 0.002078	0.008 0.00392 138	.4921 0 79.	93529 0.000446	0 0.042681 0.000592	0 0.020988 0.00141	0 0.173285 0.	.026873 0.02547 0.33	3582 0.002057	0 0.189725 0.02687	8 0.02547 0.333582	0.020799 0.213696	0 1.339893 0.001369	0 0.00079
Santa Cla	ara 2023	22 LHDT1	Aggregate Aggregate Gasoline	19023.54 692949.2	692949.2	0 283422.4	0 0.22563 0.0	03858 0.680855 0.001666	0 0.000355	0.002 0.0273 0.0018	12 0 0.000386	0.008 0.078 91	0.666 121.4496 25	.8752 0.010696 0	11838 0.036173 0.012587	0.003045 0.052713 0.053941	0.441903 0.181796 0.	.053097 0.287419 3.00	5479 0.078711 0.64	4824 0.199044 0.05309	7 0.287419 3.005479	0.044851 1.310703 3.7	50518 3.032062 0.009003 0	0.001201 0.000256
Santa Cla	ara 2023	22 LHDT1	Aggregate Aggregate Diesel	9466.897 364941.3	364941.3	0 119081.7	0 2.046185 2.14	48991 0 0.042212	0.027161 0	0.003 0.0273 0.0441	21 0.028389 0	0.012 0.078 640	1321 134.8074	0 0.009365 0.0	005098 0 0.100853	0.021239 0 0.201618	0.10976 0	0 0	0 0.229529 0.12	04954 0	0 0	0.156672 0.574472 0.9	09745 0 0.006066 0	0.001277 0
Santa Cla	ara 2023	22 LHDT2	Aggregate Aggregate Gasoline	2479.119 89333.8	89333.8	0 36935.18	0 0.214022 0.03	38116 0.662237 0.001522	0 0.000288	0.002 0.03185 0.0016	55 0 0.000313	0.008 0.091 101	7.016 140.0339 25.	93331 0.008303 0.	117781 0.035049 0.012366	0.003023 0.05141 0.03933	0.436803 0.174741 0.	.049582 0.263161 2.77	3988 0.057391 0.63	37382 0.19132 0.04958	0.263161 2.773988	0.044954 1.055116 3.7	55463 3.106689 0.010054 0	0.001384 0.000256
Santa Cla	ara 2023	22 LHDT2	Aggregate Aggregate Diesel	4276.175 167672	167672	0 53788.9	0 1.602621 2.11	14348 0 0.036809	0.027077 0	0.003 0.03185 0.0384	73 0.028302 0	0.012 0.091 773	.4619 214.911	0 0.00832 0.0	005098 0 0.121859	0.033859 0 0.179126	0.10976 0	0 0	0 0.203923 0.12	04954 0	0 0	0.1727 0.476085 0.9	09745 0 0.007329 0	0.002036 0
Santa Cla	ara 2023	22 MCY	Aggregate Aggregate Gasoline	27595.09 162924	162924	0 55190.18	0 0.60517	0 0.149724 0.001772	0 0.003556	0.001 0.0042 0.0018	91 0 0.003773	0.004 0.012 188	9834 0 50.	90901 0.173457	0 0.19335 0.041009	0 0.008761 1.156556	0 1.442993 3.	.560376 3.734124 3.98	10024 1.378949	0 1.568432 3.56037	5 3.734124 3.980024	0.008705 13.58248	0 8.107621 0.001868	0 0.000503
Santa Cla	ara 2023	22 MDV	Aggregate Aggregate Gasoline	150747.3 5216512	5216512	0 697659.3	0 0.136769	0 0.517519 0.001357	0 0.002255	0.002 0.003193 0.0014	75 0 0.002452	0.008 0.009123 434	2294 0 112	.1929 0.005018	0 0.119363 0.009481	0 0.045397 0.021781		.106179 0.293735 1.76	2049 0.031733	0 0.672881 0.10617	0.293735 1.762049	0.034617 1.174347	0 4.66825 0.004293	0 0.001109
Santa Cla	ara 2023	22 MDV	Aggregate Aggregate Diesel	2337.328 86668.85	86668.85	0 11158.46	0 0.05815	0 0.005454	0 0	0.002 0.003153 0.00	57 0 0	0.008 0.009009 417	.1884 0	0 0.000553	0 0.065728	0 0.011906	0 0	0 0	0 0.013554	0 0	0 0	0.0031 0.20344	0 0.003953	0 0
Santa Cla	ara 2023		Aggregate Aggregate Electricity			215.8 3205.616 8577.		0 0 0	0 0	0.002 0.001523	0 0 0	0.008 0.004351	0 0	0 0	0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0	0 0
Santa Cla	ara 2023		Aggregate Aggregate Plug-in Hy			37.63 3264.836 4964		0 0.11551 0.000723		0.002 0.001369 0.0007		0.008 0.003913 142		86367 0.000458	0 0.042456 0.000605	0 0.020778 0.001454		.030414 0.029758 0.38			0.029758 0.381921		0 1.339893 0.001413	0 0.000987
Santa Cla			Aggregate Aggregate Gasoline			0 264.3141	0 0.551445	0 0.40416 0.001917	0 0.000461	0.003 0.015756 0.0020		0.012 0.045017 194		13484 0.02167	0 0.038467 0.030967	0 0.041056 0.101032	0 0.168576 1	3.95792 0.32254 4.98		0 0.184569 13.9579	0.32254 4.985527	0.044583 2.705832	0 3.782453 0.01927	0 0.000318
Santa Cla	ara 2023	22 MH	Aggregate Aggregate Diesel	940.8008 9155.21	9155.21	0 94.08008	0 4.438358	0 0 0.104654		0.004 0.015675 0.1093		0.016 0.044785 10	80.89 0	0 0.005865	0 0 0.170295	0 0.126278	0 0	0 0	0 0.143759	0 0	0 0	0.143863 0.424501	0 0 0.010242	0 0
Santa Cla			Aggregate Aggregate Gasoline	1426.535 69284.18	69284.18	0 28542.11	0 0.686176 0.08	188062 0.462297 0.001432	0 0.000593	0.003 0.015756 0.0015		0.012 0.045017 181	9.358 542.4673 48.	22005 0.022377 0.	249961 0.051086 0.030967			.041091 0.336192 3.32			0.336192 3.327263	0.044929 2.41434 15.	04306 6.517433 0.017986 0	0.005363 0.000477
Santa Cla	ara 2023		Aggregate Aggregate Diesel	10189.55 428042.3		0 121266.8		28688 1.483339 0.020297		0.003 0.015941 0.0212		0.012 0.045546 115		0 0.002426 0.0				0 0	0 0.05947 0.32		0 0	0.196531 0.168917 7.2		0.022008 0
Santa Cla			Aggregate Aggregate Natural G			0 796.8889	0 0.162027 6.47			0.003 0.016011 0.0011		0.012 0.045746 100		0 0.725882 17				0 0	0 0.740815 18.2		0 0	1.06 2.991509 30.		0 0
Santa Cla	ara 2023	22 OBUS	Aggregate Aggregate Gasoline			0 9422.235		164966 0.407047 0.000863		0.003 0.01568 0.0009				13915 0.017165 0.				033671 0.142865 2.55	9429 0.123815 1.0	66895 0.213436 0.03367			66114 4.119591 0.017838 (
Santa Cla	ara 2023	22 OBUS	Aggregate Aggregate Diesel	852.1679 61336.68	61336.68	0 8739.295	0 1.430263 8.18	86956 1.463102 0.021712	0.009363 0	0.003 0.01808 0.0226		0.012 0.051656 128		0 0.002446 0.0				0 0	0 0.059942 0.5		0 0	0.209454 0.176751 7.2	12161 0 0.012197 0	0.015165 0
Santa Cla	ara 2023	22 OBUS	Aggregate Aggregate Natural G	a 6.12419 392.3599	392.3599	0 54.50529	0 0.261572 1.56	67279 0 0.000722		0.003 0.016148 0.0007		0.012 0.046137 10		0 0.750937 4.				0 0	0 0.766387 4.70		0 0	1.06 3.149633 5.7		0 0
Santa Cla	ara 2023	22 SBUS	Aggregate Aggregate Gasoline			0 641.6556		25562 0.689048 0.000853		0.002 0.015721 0.0009		0.008 0.044917 820		14656 0.01243 2.4				108472 0.246255 1.51	0943 0.088229 15.5	50744 0.467053 0.10847	0.246255 1.510943	0.045 1.548936 82.	15497 10.71476 0.008107 0	
Santa Cla	ara 2023			662.5162 15413.71		0 9593.235		22.873 0.450634 0.022112	0.02288 0	0.003 0.015721 0.0231		0.012 0.044917 115		0 0.002834 0.0				0 0	0 0.069464 0.20		0 0	0.140239 0.185604 4.4		0.021272 0
Santa Cla			Aggregate Aggregate Natural G			0 327.2012		95722 0 0.003378		0.003 0.015721 0.0036			1.922 4050.07	0 3.549889 15				0 0		88337 0	0 0	1.06 12.18179 19.		0 0
Santa Cla			Aggregate Aggregate Gasoline			0 183.2442	0 0.03147	0 0.560776 0.000899		0.002 0.03185 0.0009		0.008 0.091 974		21309 0.002303	0 0.053785 0.004696	0 0.082445 0.006534		.064874 0.125778 0.78		0 0.216458 0.06487	0.125778 0.787098	0.045 0.577943	0 5.5933 0.009635	0 0.000378
Santa Cla			Aggregate Aggregate Diesel	435.6475 48716.13		0 1742.59	0 0.386257	0 0.007023	. 0 0	0.0083 0.0385 0.007	34 0 0	0.0332 0.11 110	0.743 0	0 0.003215	0 0 0.173422	0 0.069208	0 0	0 0	0 0.078788	0 0	0 0 0	0.187775 0.079368	0 0 0.01043	0 0
Santa Cla			Aggregate Aggregate Electricity			0027 20.18703 346.9		0 0 0	0 0	0.009 0.01925	0 0 0	0.036 0.055	0 0	0 0	0 0 0	0 0 0	0 0	0 0	0 0	0 0	0 0 0	0 0	0 0 0	0 0
Santa Cla	ara 2023	22 UBUS	Aggregate Aggregate Natural G	a 41.84875 4783.781	4783.781	0 167.395	0 0.058772	0 0 0.000282	0 0	0.008181 0.0385 0.0002	95 0 0	0.032723 0.11 129	9.039 0	0 4.245393	0 0 0.264818	0 0.060658	0 0	0 0	0 4.332735	0 0	0 0 0	0.97 49.03622	0 0 0	0 0

Attachment 4: Project Construction Emissions and Health Risk Calculations

Bellarmine Stockton Ave Parking Garage, San Jose, CA

DPM Emissions	and Modeling	Emission	Rates -	Unmitigated

Construction		DPM	Area	D	PM Emissi	ions	Modeled Area	DPM Emission Rate
Year	Activity	(ton/year)	Source	(lb/yr)	(lb/hr)	(g/s)	(m ²)	$(g/s/m^2)$
2022 & 2023	Construction	0.0168	CON_DPM	33.5	0.01021	1.29E-03	6,509	1.98E-07
Total		0.0168		33.5	0.0102	0.0013		
		Construct	ion Hours					
		hr/day =	9	(8am - 5pi	n)			
		days/yr =	365					
	ho	ours/year =	3285					

Bellarmine Stockton Ave Parking Garage, San Jose, CA

PM2.5 Fugitive Dust Emissions for Modeling - Unmitigated

Construction		Area		PM2.5	Emissions		Modeled Area	PM2.5 Emission Rate
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m ²)	g/s/m ²
2022 & 2023	Construction	CON_FUG	0.0029	5.7	0.00175	2.20E-04	6,509	3.38E-08
Total			0.0029	5.7	0.0017	0.0002		
		Constructio	on Hours					
		hr/day =	9	(8am - 5p	m)			
		days/yr=	365					
		hours/year =	3285					

Bellarmine Stockton Ave Parking Garage, San Jose, CA Construction Health Impact Summary

	Maximum Conc	entrations				Maximum
Emissions	Exhaust PM10/DPM	Fugitive PM2.5	Cancer (per mi		Hazard Index	Annual PM2.5 Concentration
Year	(μg/m ³)	(µg/m ³)	Infant/Child	Adult	(-)	(μg/m ³)
2022 & 2023 Total	0.0302	0.0130	5.37 5.37	0.09 0.09	0.01	0.04 -
Maximum	0.0302	0.0130	-	-	0.01	0.04

Maximum Impacts at MEI Location - Without Mitigation

Bellarmine Stockton Ave Parking Garage, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 7.6 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I	nfant/Child		Adult
Age>	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT=	70	70	70	70
FAH=	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Exposure l	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure				Age	Cancer	Model		Age	Cancer		Maximum	
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2022 - 2023	0.0023	10	0.03	2022 - 2023	0.0023	-	-			
1	1	0 - 1	2022 - 2023	0.0023	10	0.38	2022 - 2023	0.0023	1	0.01	0.000	0.000	0.00
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	lisk				0.41				0.01			

* Third trimester of pregnancy

Bellarmine Stockton Ave Parking Garage, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$ Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	1	nfant/Child		Adult
Age ->	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT=	70	70	70	70
FAH=	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Exposure l	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure				Age	Cancer	Model		Age	Cancer		Maximum	
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2022 - 2023	0.0023	10	0.03	2022 - 2023	0.0023	-	-			
1	1	0 - 1	2022 - 2023	0.0023	10	0.38	2022 - 2023	0.0023	1	0.01	0.000	0.000	0.00
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	lisk				0.41				0.01			

* Third trimester of pregnancy

Bellarmine Stockton Ave Parking Garage, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$ Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	1	nfant/Child		Adult
Age ->	3rd Trimester	0 - 2	2 - 16	16-30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT=	70	70	70	70
FAH=	1.00	1.00	1.00	0.73

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	- Exposure l	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure				Age	Cancer	Model	ed	Age	Cancer		Maximum	
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2022 & 2023	0.0302	10	0.41	2022 & 2023	0.0302	-	-			
1	1	0 - 1	2022 & 2023	0.0302	10	4.96	2022 & 2023	0.0302	1	0.09	0.01	0.013	0.04
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	isk				5.37				0.09			


Total Increased Cancer Risk * Third trimester of pregnancy

Attachment 5: Community Risk Modeling Information and Calculations

CalTrain Cancer Risk

CalTrain Annual PM2.5 Concentration

Risk & Hazard Stationary Source Inquiry Form

This form is required when users request stationary source data from BAAQMD

This form is to be used with the BAAQMD's Google Earth stationary source screening tables.

Click here for guidance on coducting risk & hazard screening, including roadways & freeways, refer to the District's Risk & Hazard Analysis flow chart.

Click here for District's Recommended Methods for Screening and Modeling Local Risks and Hazards document.

Table A: Reques	ter Contact Information	
Date of Request	7/28/2021	For Air District assistance, the following steps must be comple
Contact Name	Zachary Palm	1. Complete all the contact and project information rec
Affiliation	Illingworth & Rodkin, Inc.	2. Download and install the free program Google Earth
Phone	707-794-0400 x117	source application files from the District's website, htt
Email	zpalm@illingworthrodkin.com	small points on the map represent stationary sources p stations, dry cleaners, boilers, printers, auto spray boot estimated cancer risk, hazard index, and PM2.5 concen
Project Name	Bellarmine Parking Garage	3. Find the project site in Google Earth by inputting the
Address	Bellarmine Stockton Ave	4. Identify stationary sources within at least a 1000ft ra
City	San Jose	Information Table, by using the Google Earth address s
County	Santa Clara	
Type (residential, commercial, mixed use, industrial, etc.)	Parking	 5. List the stationary source information in 6. Note that a small percentage of the stationary source noted by an asterisk next to the Plant Name (Map B on
Project Size (# of units or building		7. Email this completed form to District staff. District st information or data are not available, source emissions
square feet)	407 Parking Space	
Comments:		Note that a public records request received for the same stati Submit forms, maps, and questions to Areana Flores at 415-74

1. Complete all the contact and project information requested in

2. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's website, http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx. The small points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc. Click on a point to view the source's Information Table, including the name, location, and preliminary estimated cancer risk, hazard index, and PM2.5 concentration. 3. Find the project site in Google Earth by inputting the site's address in the Google Earth search box.

nonly

4. Identify stationary sources within at least a 1000ft radius of project site. Verify that the location of the source on the map matches with the source's address in the Information Table, by using the Google Earth address search box to confirm the source's address location. Please report any mapping errors to the District.

5. List the stationary source information in Table B

Risk Screening Assessment (HRSA) data INSTEAD of screening level data. These sources will be 6. Note that a small percentage of the stationary source noted by an asterisk next to the Plant Name (Map B on right). If HRSA values are presented, these values have already been modeled and cannot be adjusted further.

7. Email this completed form to District staff. District staff will provide the most recent risk, hazard, and PM2.5 data that are available for the source(s). If this information or data are not available, source emissions data will be provided. Staff will respond to inquiries within three weeks.

Note that a public records request received for the same stationary source information will cancel the processing of your SSIF request.

Submit forms, maps, and questions to Areana Flores at 415-749-4616, or aflores@baaqmd.gov

			Table B: Googl	e Earth data						Construc	Construction MEI		
Distance from										Distance	Adjusted	Adjusted	
Receptor (feet) or										Adjustment	Cancer Risk	Hazard	Adjusted
MEI ¹	Plant No.	Facility Name	Address	Cancer Risk ² Hazard Risk ²	PM _{2.5} ²	Source No. ³	Type of Source ⁴	Fuel Code ⁵	Status/Comments	Multiplier	Estimate	Risk	PM2.5
350		2049 Central Concrete Supply Company, I	nc 790 Stockton Avenue		595.471		Crushed Stone Proc	essing (5), Mat	e 2018 Dataset	0.47	0.00	0.00	282.25
870		18409 Michael J's Body Shop	597 W Taylor St	0.00369588			Auto Body Coating	Operation	2018 Dataset	0.17	#VALUE!	0.00	#VALUE!
850		20397 Progressive Collision Repair	790 Chestnut St	0.00072311			Auto Body Coating	Operation	2018 Dataset	0.18	#VALUE!	0.00	#VALUE!

Footnotes:

1. Maximally exposed individual

2. These Cancer Risk, Hazard Index, and PM2.5 columns represent the values in the Google Earth Plant Information Table.

3. Each plant may have multiple permits and sources.

4. Permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc.

5. Fuel codes: 98 = diesel, 189 = Natural Gas.

6. If a Health Risk Screening Assessment (HRSA) was completed for the source, the application number will be listed here.

7. The date that the HRSA was completed.

8. Engineer who completed the HRSA. For District purposes only.

9. All HRSA completed before 1/5/2010 need to be multiplied by an age sensitivity factor of 1.7.

10. The HRSA "Chronic Health" number represents the Hazard Index.

11. Further information about common sources:

a. Sources that only include diesel internal combustion engines can be adjusted using the BAAQMD's Diesel Multiplier worksheet.

b. The risk from natural gas boilers used for space heating when <25 MM BTU/hr would have an estimated cancer risk of one in a million or less, and a chronic hazard index of 0.003 or less.

c. BAAQMD Reg 11 Rule 16 required that all co-residential (sharing a wall, floor, ceiling or is in the same building as a residential unit) dry cleaners cease use of perc on July 1, 2010.

Therefore, there is no cancer risk, hazard or PM2.5 concentrations from co-residential dry cleaning businesses in the BAAQMD.

d. Non co-residential dry cleaners must phase out use of perc by Jan. 1, 2023. Therefore, the risk from these dry cleaners does not need to be factored in over a 70-year period, but instead should reflect

e. Gas stations can be adjusted using BAAQMD's Gas Station Distance Mulitplier worksheet.

f. Unless otherwise noted, exempt sources are considered insignificant. See BAAQMD Reg 2 Rule 1 for a list of exempt sources.

g. This spray booth is considered to be insignificant.

Date last updated:


03/13/2018

Area of Interest (AOI) Information

Area : 3,961,949.07 ft2

Jul 28 2021 15:07:57 Pacific Daylight Time

Permitted Facilities 2018

1:9,028 0 0.05 0.1 0.2 mi 1 0.07 0.15 0.3 km

City of San Jose, County of Santa Clara, Bureau of Land Management, Esn, HERE, Garmin, INCREMENT P, Intermap, USGS, METI/NASA, EPA, USDA

Summary

Name	Count	Area(ft²)	Length(ft)
Permitted Facilities 2018	4	N/A	N/A

Permitted Facilities 2018

#	FACID	Name	Address	City	St
1	2049	Central Concrete Supply Company, Inc	790 Stockton Avenue	San Jose	СА
2	18409	Michael J's Body Shop	597 W Taylor St	San Jose	CA
3	20397	Progressive Collision Repair	790 Chestnut St	San Jose	CA
4	21753	Eric Reich & Assoc Inc	848 Chestnut Street	San Jose	CA

#	Zip	County	Cancer	Hazard	PM_25	Туре	Count
1	95126	Santa Clara	0.000	0.000	595.470	Contact BAAQMD	1
2	95110	Santa Clara	0.000	0.000	0.000	Contact BAAQMD	1
3	95110	Santa Clara	0.000	0.000	0.000	Contact BAAQMD	1
4	95110	Santa Clara	0.000	0.000	0.000	Contact BAAQMD	1

Note: The estimated risk and hazard impacts from these sources would be expected to be substantially lower when site specific Health Risk Screening Assessments are conducted.

The screening level map is not recommended for evaluating sensitive land uses such as schools, senior centers, day cares, and health facilities.

© Copyright 2018 Bay Area Air Quality Management District