Appendix A Air Quality Assessment

ETERNA TOWER AIR QUALITY ASSESSMENT

San José, California

July 9, 2021 Revised January 13, 2022

Prepared for:

Leianne Humble Senior Planner Denise Duffy & Associates, Inc. 947 Cass Street, Suite 5 Monterey, CA 93940

Prepared by:

Casey Divine James A. Reyff

I&R Project: #21-041

Introduction

The purpose of this report is to address air quality and community health risk impacts associated with the proposed Eterna Tower project in downtown San José, California. The air quality impacts from this project would be associated with construction of the new buildings and infrastructure and operation of the project. Air pollutants associated with construction and operation of the project were predicted using appropriate computer models. In addition, the potential project health risk impacts (construction and operation) and the impacts of existing toxic air contaminant (TAC) sources affecting the nearby and proposed sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).¹

Project Description

The approximately 0.18-acre site is located at 17 and 29 E. Santa Clara Street in downtown San José. The site is currently developed with two commercial buildings. The project proposes to demolish the existing uses and construct a 27-story mixed-use building consisting of approximately 2,500-sf of ground-floor retail use and 200 residential units.² The project does not propose any parking. The project would include a basement level containing building utilities and one generator powered by a diesel engine. The project is within the San José Downtown Strategy 2040 Plan area.

Setting

The project is located in Santa Clara County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM₁₀), and fine particulate matter (PM_{2.5}).

Air Pollutants of Concern

High ozone levels are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO_X). These precursor pollutants react under certain meteorological conditions to form high ozone levels. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ozone levels. The highest ozone levels in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone levels aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant of the Bay Area. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM₁₀) and fine particulate matter where particles have a diameter of 2.5

¹ Bay Area Air Quality Management District, CEQA Air Quality Guidelines, May 2017.

² The project land uses have been updated since this analysis. The square footage of the retail use has increased to 5,217-sf, the number of residential units have decreased to 192, and a 5,238-sf BART/VTA station has been added on the basement level. These project modifications would result in similar or barely measurable increased emissions and risks, and would not change the project's impacts, as discussed further in the report.

micrometers or less (PM_{2.5}). Elevated concentrations of PM₁₀ and PM_{2.5} are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter levels aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

Toxic Air Contaminants

Toxic air contaminants (TAC) are a broad class of compounds known to cause morbidity or mortality (usually because they cause cancer) and include, but are not limited to, the criteria air pollutants. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about three-quarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs. The most recent Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines were published in February of 2015.³ See *Attachment 1* for a detailed description of the community risk modeling methodology used in this assessment.

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, the elderly over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, elementary schools, and parks. For cancer risk assessments, children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site are the future adjacent senior residents (19 N. 2nd Street Senior Housing) to the northeast of the project site. There are additional sensitive receptors at farther distances surrounding the site. The project would introduce new sensitive receptors (i.e., new residents) to the area.

⁻

³ OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

Regulatory Setting

Federal Regulations

The United States Environmental Protection Agency (EPA) sets nationwide emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA also sets nationwide fuel standards. California also has the ability to set motor vehicle emission standards and standards for fuel used in California, as long as they are the same or more stringent than the federal standards.

In the past decade the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel engines are a significant source of NO_X and particulate matter (PM₁₀ and PM_{2.5}) and because the EPA has identified DPM as a probable carcinogen. Implementation of the heavy-duty diesel onroad vehicle standards and the non-road diesel engine standards are estimated to reduce particulate matter and NO_X emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.⁴

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. The new standards reduced the amount of sulfur allowed by 97 percent for highway diesel fuel (from 500 parts per million by weight [ppmw] to 15 ppmw), and by 99 percent for off-highway diesel fuel (from about 3,000 ppmw to 15 ppmw). The low sulfur highway fuel (15 ppmw sulfur), also called ultra-low sulfur diesel (ULSD), is currently required for use by all vehicles in the U.S.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

State Regulations

To address the issue of diesel emissions in the state, CARB developed the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.⁵ In addition to requiring more stringent emission standards for new on-road and off-road mobile sources and stationary diesel-fueled engines to reduce particulate matter emissions by 90 percent, a significant component of the plan involves application of emission control strategies to existing diesel vehicles and equipment. Many of the measures of the Diesel Risk Reduction Plan have been approved and adopted, including the federal on-road and non-road diesel engine emission standards for new engines, as well as adoption of regulations for low sulfur fuel in California.

⁴ USEPA, 2000. Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements. EPA420-F-00-057. December.

⁵ California Air Resources Board, 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. October.

CARB has adopted and implemented a number of regulations for stationary and mobile sources to reduce emissions of DPM. Several of these regulatory programs affect medium and heavy-duty diesel trucks that represent the bulk of DPM emissions from California highways. CARB regulations require on-road diesel trucks to be retrofitted with particulate matter controls or replaced to meet 2010 or later engine standards that have much lower DPM and PM_{2.5} emissions. This regulation will substantially reduce these emissions between 2013 and 2023. While new trucks and buses will meet strict federal standards, this measure is intended to accelerate the rate at which the fleet either turns over so there are more cleaner vehicles on the road or is retrofitted to meet similar standards. With this regulation, older, more polluting trucks would be removed from the roads sooner.

CARB has also adopted and implemented regulations to reduce DPM and NOx emissions from inuse (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce particulate matter and NOx exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleetaveraged emission rates. Implementation of this regulation, in conjunction with stringent federal off-road equipment engine emission limits for new vehicles, will significantly reduce emissions of DPM and NOx.

Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the National Ambient Air Quality Standards and California Ambient Air Quality Standards. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area. The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program is being implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement

_

⁶ See BAAQMD: https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program, accessed 2/18/2021.

programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses will be used to focus emission reduction measures in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. The BAAQMD has identified six communities as impacted: Concord, Richmond/San Pablo, Western Alameda County, San José, Redwood City/East Palo Alto, and Eastern San Francisco. The project site is in the center of the San José area.

The BAAQMD California Environmental Quality Act (CEQA) Air Quality Guidelines⁷ were prepared to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They also include assessment methodologies for air toxics, odors, and greenhouse gas emissions. Attachment 1 includes detailed community risk modeling methodology.

BAAQMD Rules and Regulations

Combustion equipment associated with the proposed project that includes new diesel engines to power generators and possibly new natural gas-fired boilers would establish new sources of particulate matter and gaseous emissions. Emissions would primarily result from the testing of the emergency backup generators, operation of the boilers for space and water heating and some minor emissions from cooling towers. Certain emission sources would be subject to BAAQMD Regulations and Rules. The District's rules and regulations that may apply to the project include:

• Regulation 2 – Permits

Rule 2-1: General Requirements

Rule 2-2: New Source Review

• Regulation 6 – Particulate Matter and Visible Emissions

Rule 6-3: Wood-Burning Devices

• Regulation 9 – Inorganic Gaseous Pollutants

Rule 9-1: Sulfur Dioxide

Rule 9-7: Nitrogen Oxides and Carbon Monoxide from Industrial, Institutional, and Commercial Boilers, Steam Generators, And Process Heaters

Rule 9-8: Nitrogen Oxides and Carbon Monoxide from Stationary Internal Combustion Engines

Permits

Rule 2-1-301 requires that any person installing, modifying, or replacing any equipment, the use of which may reduce or control the emission of air contaminants, shall first obtain an Authority to Construct (ATC).

Rule 2-1-302 requires that written authorization from the BAAQMD in the form of a Permit to Operate (PTO) be secured before any such equipment is used or operated.

⁷ Bay Area Air Quality Management District, 2017. CEQA Air Quality Guidelines. May.

Rule 2-1 lists sources that are exempt from permitting. At the proposed facility, the diesel fuel storage tanks are expected to be exempt from permitting.

New Source Review

Rule 2-2, New Source Review (NSR), applies to all new and modified sources or facilities that are subject to the requirements of Rule 2-1-301. The purpose of the rule is to provide for review of such sources and to provide mechanisms by which no net increase in emissions will result.

Rule 2-2-301 requires that an applicant for an ATC or PTO apply Best Available Control Technology (BACT) to any new or modified source that results in an increase in emissions and has emissions of precursor organic compounds, non-precursor organic compounds, NOx, SO₂, PM₁₀, or CO of 10.0 pounds or more per highest day. Based on the estimated emissions from the proposed project, BACT will be required for NOx emissions from the diesel-fueled generator engines.

Stationary Diesel Airborne Toxic Control Measure

The BAAQMD administers the CARB's Airborne Toxic Control Measure (ACTM) for Stationary Diesel engines (section 93115, title 17 CA Code of Regulations). The project's stationary sources will be new stationary emergency stationary emergency standby diesel engines larger than 50 hp. These limits vary based on maximum engine power. All engines are limited to PM emission rates of 0.15 g/hp-hour, regardless of size. This ACTM limits engine operation 50 hours per year for routine testing and maintenance.

Offsets

Rule 2-2-302 require that offsets be provided for a new or modified source that emits more than 10 tons per year of NOx or precursor organic compounds. It is not expected that emissions of any pollutant will exceed the offset thresholds. Thus, is not expected that offsets for the proposed project would be required.

Prohibitory Rules

Regulation 6 pertains to particulate matter and visible emissions. Although the engines will be fueled with diesel, they will be modern, low emission engines. Thus, the engines are expected to comply with Regulation 6.

Rule 6-3 applies to emissions from wood-burning devices. Effective November 1, 2016, no person or builder shall install a wood-burning device in a new building construction. Project plans do not depict fireplaces.

Rule 9-1 applies to sulfur dioxide. The engines will use ultra-low sulfur diesel fuel (less than 15 ppm sulfur) and will not be a significant source of sulfur dioxide emissions and are expected to comply with the requirements of Rule 9-1.

Rule 9-7 limits the emissions of NOx CO from industrial, institutional and commercial boilers, steam generators and process heaters. This regulation typically applies to boilers with a heat rating of 2 million British Thermal Units (BTU) per hour

Rule 9-8 prescribes NOx and CO emission limits for stationary internal combustion engines. Since the proposed engines will be used with emergency standby generators, Regulation 9-8-110 exempts the engines from the requirements of this Rule, except for the recordkeeping requirements (9-8-530) and limitations on hours of operation for reliability-related operation (maintenance and testing). The engines will not operate more than 50 hours per year, which will satisfy the requirements of 9-8-111.

BACT for Diesel Generator Engines

Since the generators will be used exclusively for emergency use during involuntary loss of power, the BACT levels listed for IC compression engines in the BAAQMD BACT Guidelines would apply. These are provided for two separate size ranges of diesel engines:

<u>I.C. Engine – Compression Ignition >50hp and <1.000hp:</u> BAAQMD applies BACT 2 emission limits based on the ATCM for stationary emergency standby diesel engines larger than 50 brake-horsepower (BHP). NOx emission factor limit is subject to the CARB ACTM that ranges from 3.0 to 3.5 grams per horsepower hour (g/hp-hr). The PM (PM10 or PM2.5) limit is 0.15 g/hp-hr per CARB's ACTM.

<u>I.C. Engine – Compression Ignition <999hp</u>: BAAQMD applies specific BACT emission limits for stationary emergency standby diesel engines equal or larger than 1,000 brake-horsepower (BHP). NOx emission factor limit is subject to the CARB ACTM that ranges from 0.5 g/hp-hr. The PM (PM10 or PM2.5) limit is 0.02 g/hp-hr. POC (i.e., ROG) limits are 0.14 g/hp-hr.

San José Envision 2040 General Plan

The San José Envision 2040 General Plan includes goals, policies, and actions to reduce exposure of the City's sensitive population to exposure of air pollution and toxic air contaminants or TACs. The following goals, policies, and actions are applicable to the proposed project and this assessment:

Applicable Goals – Air Pollutant Emission Reduction Goal MS-10 Minimize emissions from new development.

Applicable Policies – Air Pollutant Emission Reduction

MS-10.1 Assess projected air emissions from new development in conformance with the Bay Area Air Quality Management District (BAAQMD) CEQA Guidelines and relative to state and federal standards. Identify and implement feasible air emission reduction measures.

- MS-10.2 Consider the cumulative air quality impacts from proposed developments for proposed land use designation changes and new development, consistent with the region's Clean Air Plan and State law.
- MS-10.3 Promote the expansion and improvement of public transportation services and facilities, where appropriate, to both encourage energy conservation and reduce air pollution.

Applicable Goals – Toxic Air Contaminants

Goal MS-11 Minimize exposure of people to air pollution and toxic air contaminants such as ozone, carbon monoxide, lead, and particulate matter.

Applicable Policies – Toxic Air Contaminants

- MS-11.2 For projects that emit toxic air contaminants, require project proponents to prepare health risk assessments in accordance with BAAQMD-recommended procedures as part of environmental review and employ effective mitigation to reduce possible health risks to a less than significant level. Alternatively, require new projects (such as, but not limited to, industrial, manufacturing, and processing facilities) that are sources of TACs to be located an adequate distance from residential areas and other sensitive receptors.
- MS-11.4 Encourage the installation of appropriate air filtration at existing schools, residences, and other sensitive receptor uses adversely affected by pollution sources.
- MS-11.5 Encourage the use of pollution absorbing trees and vegetation in buffer areas between substantial sources of TACs and sensitive land uses.

Actions – Toxic Air Contaminants

- MS-11.7 Consult with BAAQMD to identify stationary and mobile TAC sources and determine the need for and requirements of a health risk assessment for proposed developments.
- MS-11.8 For new projects that generate truck traffic, require signage which reminds drivers that the State truck idling law limits truck idling to five minutes.

Applicable Goals – Construction Air Emissions

Goal MS-13 Minimize air pollutant emissions during demolition and construction activities

Applicable Policies – Construction Air Emissions

MS-13.1 Include dust, particulate matter, and construction equipment exhaust control measures as conditions of approval for subdivision maps, site development and planned development permits, grading permits, and demolition permits. At minimum, conditions shall conform to construction mitigation measures recommended in the current BAAQMD CEQA Guidelines for the relevant project size and type.

Applicable Actions – Construction Air Emissions

MS-13.4 Adopt and periodically update dust, particulate, and exhaust control standard measures for demolition and grading activities to include on project plans as conditions of approval based upon construction mitigation measures in the BAAQMD CEQA Guidelines.

Downtown Strategy 2040 Plan

The San José Downtown Strategy (DTS) 2040 Plan⁸ is an urban design plan that guides development activities planned within the Downtown area. This strategy would increase the amount of new commercial office by an additional three million sf (approximately 10,000 jobs with the new total being 14.2 million sf of commercial by the year 2040. The residential capacity would be increased up to 4,360 units. The amount of new retail development (1.4 million sf) and hotel room (3,600 rooms) capacities of the DTS 2000 would be maintained. The integrated Final Environmental Impact Report was published December 2018.

The DTS identified less-than-significant construction period emissions if development projects are in conformance with 2017 BAAQMD CEQA Guidelines, GP Policy MS-13.1, and current City requirements that include various levels of construction emissions control measures. All projects are required to implement the following control measures:

City requirements, all projects will be required to implement the following control measures:

- All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- All vehicle speeds on unpaved roads shall be limited to 15 mph.
- All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible.
- Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations). Clear signage shall be provided for construction workers at all access points.
- All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified visible emissions evaluator.

⁸ City of San José, *Downtown Strategy 2040 FILE NO. PP15-102*, Web: <a href="https://www.sanjoseca.gov/your-government/departments/planning-building-code-enforcement/planning-division/environmental-planning/environmental-review/active-eirs/downtown-strategy-planning-division/environmental-planning-division/environ/environmental-planning-division/environmental-planning-division

2040#:~:text=The%20proposed%20Downtown%20Strategy%202040,Plan%204%2DYear%20Review%20recommendations.

• Post a publicly visible sign with the telephone number and person to contact at the lead agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number shall also be visible to ensure compliance with applicable regulations.

Future projects developed under the DTS that incorporate these measures and are below the screening levels would not result in a significant impact related to construction emissions of regional criteria pollutants. Projects that exceed the screening levels would be required to complete additional project level analysis of construction-related emissions of criteria pollutants and may require additional measures to ensure that construction emissions would not exceed the threshold for average daily emissions.

Operational emissions of regional criteria air pollutants with measures included to reduce emissions under the DTS were identified as significant and unavoidable. To reduce operational emissions associated with vehicle travel, future development will be required to implement a transportation demand management (TDM) program, consistent with the Downtown Transportation Plan. The TDM programs may incorporate, but would not be limited to, the following Transportation Control Measures (TCMs):

- Rideshare Measures: Implement carpool/vanpool program (e.g., carpool ride matching for employees, assistance with vanpool formation, provision of vanpool vehicles, etc.)
- Transit Measures:
- Construct transit facilities such as bus turnouts/bus bulbs, benches, shelters, etc.
- Design and locate buildings to facilitate transit access (e.g., locate building entrances near transit stops, eliminate building setbacks, etc.)
- Services Measures:
- Provide on-site shops and services for employees, such as cafeteria, bank/ATM, dry cleaners, convenience market, etc.;
- Provide on-site childcare or contribute to off-site childcare within walking distance.
- Shuttle Measures:
- Establish mid-day shuttle service from work site to food service establishments/ commercial areas;
- Provide shuttle service to transit stations/multimodal centers
- Parking Measures:
- Provide preferential parking (e.g., near building entrance, sheltered area, etc.) for carpool and vanpool vehicles;
- Implement parking fees for single occupancy vehicle commuters;
- Implement parking cash-out program for employees (i.e., non-driving employees receive transportation allowance equivalent to value of subsidized parking);
- Bicycle and Pedestrian Measures:
- Provide secure, weather-protected bicycle parking for employees;
- Provide safe, direct access for bicyclists to adjacent bicycle routes;
- Provide showers and lockers for employees bicycling or walking to work;

- Provide secure short-term bicycle parking for retail customers or non-commute trips;
- Provide direct, safe, attractive pedestrian access from Planning Area to transit stops and adjacent development;
- Other Measures:
- Implement compressed work week schedule (e.g., 4 days/40 hours, 9 days/80 hours);
- Implement home-based telecommuting program.

During project-level supplemental review of future individual development projects, the measures will be evaluated for consistency with the DTS 2040 and General Plan policies. All feasible and applicable measures will be required as part of project design or as conditions of approval.

Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA and these significance thresholds were contained in the District's 2011 CEQA Air Quality Guidelines. These thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA. The thresholds were challenged through a series of court challenges and were mostly upheld. BAAQMD updated the CEQA Air Quality Guidelines in 2017 to include the latest significance thresholds, which were used in this analysis and are summarized in Table 1. Impacts above these thresholds are considered potentially significant. Note that the DTS Plan Draft Environmental Impact Report (DEIR) evaluated emissions of criteria air pollutants (and their precursors) from planned development that includes the Proposed Project. Operational emissions from the Proposed Project are predicted in this assessment for informational purposes only.

Table 1. BAAQMD CEQA Significance Thresholds

	Construction Thresholds	Operational Thresholds		
Criteria Air Pollutant	Average Daily Emissions (lbs./day)	Average Daily Emissions (lbs./day)	Annual Average Emissions (tons/year)	
ROG	54			
NO_x	54			
PM_{10}	82 (Exhaust)	Evaluated in DTS Strategy DEIR		
PM _{2.5}	54 (Exhaust)			
CO	Not Applicable]		
Fugitive Dust	Construction Dust Ordinance or other Best Management Practices	Not Applicable		
Health Risks and Hazards	Single Sources Within 1,000-foot Zone of Influence	Combined Sources (Cumulative from a sources within 1,000-foot zone of influence)		
Excess Cancer Risk	10 per one million	100 per one million		
Hazard Index	1.0	10.0		
Incremental annual PM _{2.5}	$0.3~\mu g/m^3$	0.8 μg/m³		

Note: ROG = reactive organic gases, NOx = nitrogen oxides, PM_{10} = course particulate matter or particulates with an aerodynamic diameter of 10 micrometers (μ m) or less, $PM_{2.5}$ = fine particulate matter or particulates with an aerodynamic diameter of 2.5 μ m or less.

AIR QUALITY IMPACTS AND MITIGATION MEASURES

Impact AIR-1: Conflict with or obstruct implementation of the applicable air quality plan?

BAAQMD is the regional agency responsible for overseeing compliance with State and Federal laws, regulations, and programs within the San Francisco Bay Area Air Basin (SFBAAB). BAAQMD, with assistance from the Association of Bay Area Governments (ABAG) and Metropolitan Transportation Commission (MTC), prepares and implements specific plans to meet the applicable laws, regulations, and programs. The most recent and comprehensive of which is the *Bay Area 2017 Clean Air Plan*. The primary goals of the Clean Air Plan are to attain air quality standards, reduce population exposure and protect public health, and reduce GHG emissions and protect the climate. The BAAQMD has also developed CEQA guidelines to assist lead agencies in evaluating the significance of air quality and GHG impacts. In formulating compliance strategies, BAAQMD relies on planned land uses established by local general plans. Land use planning affects vehicle travel, which, in turn, affects region-wide emissions of air pollutants and GHGs.

The 2017 Clean Air Plan, adopted by BAAQMD in April 2017, includes control measures that are intended to reduce air pollutant emissions in the Bay Area either directly or indirectly. Plans must show consistency with the control measures listed within the Clean Air Plan. At the project-level, there are no consistency measures or thresholds. The proposed project would not conflict with the latest Clean Air planning efforts since 1) the project is included in the adopted San José DTS 2040 Plan, 2) project would have construction and operational emissions below the BAAQMD thresholds (see Impact 2 below), 3) the project would be considered urban infill, 4) the project would be located near employment and service centers, 5) the project would be located near transit with regional connections.

Impact AIR-2: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

The Bay Area is considered a non-attainment area for ground-level ozone and PM_{2.5} under both the Federal Clean Air Act and the California Clean Air Act. The area is also considered non-attainment for PM₁₀ under the California Clean Air Act, but not the federal act. The area has attained both State and federal ambient air quality standards for carbon monoxide. As part of an effort to attain and maintain ambient air quality standards for ozone and PM₁₀, the BAAQMD has established thresholds of significance for these air pollutants and their precursors. These thresholds are for ozone precursor pollutants (ROG and NOx), PM₁₀, and PM_{2.5} and apply to both construction period and operational period impacts.

Construction Period Emissions

The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size, and anticipated construction schedule were input to

12

⁹ Bay Area Air Quality Management District (BAAQMD), 2017. Final 2017 Clean Air Plan.

CalEEMod. The CARB EMission FACtors 2021 (EMFAC2021) model was used to predict emissions from construction traffic, which includes worker travel, vendor trucks, and haul trucks. The CalEEMod model output along with construction inputs are included in *Attachment 2* and EMFAC2021 vehicle emissions modeling outputs are included in *Attachment 3*.

CalEEMod Inputs

Land Use Inputs

The proposed project land uses¹¹ were entered into CalEEMod as described in Table 2.

Table 2. Summary of Project Construction Land Use Inputs

Project Land Uses	Size	Units	Square Feet	Acreage
Apartments High Rise	200	Dwelling Units	184,960	0.18
Strip Mall	2.49	1,000 Square Feet	2,491	0.18

Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size, and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The model includes evaporative emissions from application of coatings (e.g., painting) and any paving.

The CalEEMod model generates a default set of construction assumptions for "typical construction site scenarios"; however, these are not appropriate for a project like this that involves demolition, excavation, and extensive vertical construction on a relatively small site. For this project, the construction build-out schedule was provided by the project applicant and equipment information were based on CalEEMod defaults for a project of this type and size. The project construction equipment worksheet provided by the applicant included the schedule for each phase. Within each phase, the quantity of equipment to be used along with the average hours per day and total number of workdays were based on CalEEMod defaults that were then verified by the applicant. Since different equipment would have different estimates of the working days per phase, the hours per day for each phase was computed by dividing the total number of hours that the equipment would be used by the total number of days in that phase. The construction schedule assumed that the earliest possible start date would be May 2028 and the project would be built out over a period of approximately 28 months or 604 construction workdays. The earliest year of operation was assumed to be 2031.

-

¹⁰ See CARB's EMFAC2021 Emissions Inventory at https://arb.ca.gov/emfac/emissions-inventory

¹¹ The project land uses have been updated since this analysis. The square footage of the retail use has increased to 5,217-sf, the number of residential units have decreased to 192, and a 5,238-sf BART/VTA station has been added on the basement level. However, construction activities (i.e., schedule, equipment quantities, hours used) would not change with the new project land uses. While emissions (i.e., ROG, Energy) would increase slightly from these land uses changes, the project's criteria pollutant and GHG emissions and the community risk impacts are far below the thresholds that any minor increase should not cause the emissions and impacts to exceed the thresholds.

¹² SCAQMD. 2005. Sample Construction Scenarios for Projects Less than Five Acres in Size February. Note that this is the supporting report used to develop CalEEMod default construction inputs (see Appendix E – Technical Source Documentation of the CalEEMod User's Guide).

Construction Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the estimate of demolition material to be exported, soil material imported and/or exported to the site, and the estimate of cement and asphalt truck trips. CalEEMod provides daily estimates of worker and vendor trips for each applicable phase. The total trips for those were computed by multiplying the daily trip rate by the number of days in that phase. Haul trips for demolition and grading were estimated from the provided demolition and grading volumes by assuming each truck could carry 10 tons per load. The number of concrete and asphalt total round haul trips were provided for the project and converted to total one-way trips, assuming two trips per delivery.

The latest version of the CalEEMod model is based on the older version of the CARB EMFAC2017 motor vehicle emission factor model. This model has been superseded by the EMFAC2021 model; however, CalEEMod has not been updated to include EMFAC2021. The construction traffic information was combined with EMFAC2021 motor vehicle emissions factors. EMFAC2021 provides aggregate emission rates in grams per mile for each vehicle type. The vehicle mix for this study was based on CalEEMod defaults, where worker trips are assumed to be comprised of light-duty autos (EMFAC category LDA) and light duty trucks (EMFAC category LDT1 and LDT2). Vendor trips are comprised of delivery and large trucks (EMFAC category MHDT and HHDT) and haul trips, including cement trucks, are comprised of large trucks (EMFAC category HHDT). Travel distances are based on CalEEMod default lengths, which are 10.8 miles for worker travel, 7.3 miles for vendor trips and 20 miles for hauling (demolition material export and soil import/export). Since CalEEMod does not address cement or asphalt trucks, these were treated as vendor travel distances. Each trip was assumed to include an idle time of 5 minutes. Emissions associated with vehicle starts were also included. On-road emission rates from the years 2028-2030 for Santa Clara County were used. Table 3 provides the traffic inputs that were combined with the EMFAC2021 emission database to compute vehicle emissions.

Table 3. Construction Traffic Data Used for EMFAC2021 Model Runs

CalEEMod	Trips by Trip Type			
Run/Land Uses and Construction Phase	Total Worker ¹	Total Vendor ¹	Total Haul ²	Notes
Vehicle mix ¹	67% LDA 4% LDT1 29% LDT2	32% MHDT 68% HHDT	100% HDDT	
Trip Length (miles)	10.8	7.3	20.0 (Demo/Soil) 7.3 (Cement/Asphalt)	CalEEMod default distance with 5-min truck idle time.
Demolition	900	-	35	7,762-sf existing building demolition. Default worker trips.
Site Preparation	720	-	-	CalEEMod default worker trips.
Grading	1,048	-	850	6,800-cy of export soil volumes. CalEEMod default worker trips.
Trenching	600	-	-	CalEEMod default worker trips.
Building Construction	46,400	7,040	64	32 cement truck round trips. CalEEMod default worker and vendor trips.
Architectural Coating	6,931	-	-	CalEEMod default worker trips.

Notes: ¹ Based on 2028-2030 EMFAC2021 light-duty vehicle fleet mix for Santa Clara County.

Summary of Computed Construction Period Emissions

Average daily emissions were annualized for each year of construction by dividing the annual construction emissions by the number of active workdays during that year. Table 4 shows the annualized average daily construction emissions of ROG, NOx, PM₁₀ exhaust, and PM_{2.5} exhaust during construction of the project. As indicated in Table 4, predicted annualized project construction emissions would not exceed the BAAQMD significance thresholds during any year of construction. Additionally, the DTS control measures requires to implement best management practices to control dust and exhaust during construction. Therefore, air pollutant emissions from the project would be further reduced.

Table 4. Construction Period Emissions

Table 4. Constituction I endu En	1112210112			
Year	ROG	NOx	PM ₁₀ Exhaust	PM _{2.5} Exhaust
Construction	n Emissions Per	Year (Tons)		
2028	0.06	0.43	0.02	0.02
2029	0.93	0.66	0.03	0.03
2030	0.54	0.31	0.01	0.01
Average Daily Construction Emissions Per Year (pounds/day)				
2028 (175 construction workdays)	0.71	4.93	0.25	0.19
2029 (261 construction workdays)	7.14	5.03	0.25	0.20
2030 (167 construction workdays)	6.49	3.69	0.14	0.10
BAAQMD Thresholds (pounds per day)	54 lbs./day	54 lbs./day	82 lbs./day	54 lbs./day
Exceed Threshold?	No	No	No	No

² Includes demolition and grading trips estimated by CalEEMod based on amount of material to be removed. Cement and asphalt trips estimated based on data provided by the applicant.

Operational Period Emissions

The impact of operational emissions was addressed in the DTS DEIR and found to be significant and unavoidable for the entire plan. Emissions from the project were computed for informational purposes. Operational air emissions from the project would be generated primarily from the project generator and autos driven by future residents, employees, and customers. Evaporative emissions from architectural coatings and maintenance products (classified as consumer products) are typical emissions from these types of uses. CalEEMod was used to estimate emissions from operation of the proposed project assuming full build-out.

CalEEMod Inputs

Land Uses

The project land uses were entered into CalEEMod as described above for the construction period modeling.

Model Year

Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CalEEMod. The earliest full year of operation would be 2031 if construction begins in 2028. Emissions associated with build-out later than 2031 would be lower.

Traffic Information

Project traffic data was not available at the time of this study because the project is not anticipated to generate substantial traffic and on-site parking would not be available. Therefore, the default trip generation rates, trip lengths, and trip types specified by CalEEMod were used.

EMFAC2021 Adjustment

The vehicle emission factors and fleet mix used in CalEEMod are based on EMFAC2014, which is an older CARB emission inventory for on road and off road mobile sources. Since the release of CalEEMod Version 2020.4.0, new emission factors have been produced by CARB. EMFAC2021 became available for use in January 2021. It includes the latest data on California's car and truck fleets and travel activity. Additionally, CARB has recently released EMFAC offmodel adjustment factors to account for the Safer Affordable Efficient (SAFE) Vehicle Rule Part one. ^{13,14} The CalEEMod vehicle emission factors and fleet mix were updated with the emission rates and fleet mix from EMFAC2021, which were adjusted with the CARB EMFAC off-model

¹³ California Air Resource Board, 2019. *EMFAC Off-Model Adjustment Factors to Account for the SAFE Vehicle Rule Part One*. November. Web: https://ww3.arb.ca.gov/msei/emfac off model adjustment factors final draft.pdf

¹⁴ California Air Resource Board, 2020. EMFAC Off-Model Adjustment Factors for Carbon Dioxide (CO₂0 Emissions to Accounts for the SAFE Vehicles Rule Part One and the Final SAFE Rule. June. Web: https://www3.arb.ca.gov/msei/emfac_off_model_co2_adjustment_factors_06262020-final.pdf?utm_medium=email&utm_source=govdelivery

adjustment factors. On road emission rates from 2028-2030 Santa Clara County were used (See *Attachment 3*). More details about the updates in emissions calculation methodologies and data are available in the EMFAC2021 Technical Support Document.¹⁵

Climate Smart San José

Climate Smart San José is a plan to reduce air pollution, save water, and create a stronger and healthier community. The City approved goals and milestones in February 2018 to ensure the City can substantially reduce GHG emissions through reaching the following goals and milestones:

- All new residential buildings will be Zero Net Carbon Emissions (ZNE) by 2020 and all new commercial buildings will be ZNE by 2030 (Note that ZNE buildings would be all electric with a carbon-free electricity source).
- San José Clean Energy (SJCE) will provide 100-percent carbon-free base power by 2021.
- One gigawatt of solar power will be installed in San José by 2040.
- 61 percent of passenger vehicles will be powered by electricity by 2030.

The California Energy Commission (CEC) updates the California Building Energy Efficiency Standards every three years, in alignment with the California Code of regulations. Title 24 Parts 6 and 11 of the California Building Energy Efficiency Standards and the California Green Building Standards Code (CALGreen) address the need for regulations to improve energy efficiency and combat climate change. The 2019 CAL Green standards include substantial changes intended to increase the energy efficiency of buildings. For example, the code encourages the installation of solar and heat pump water heaters in low-rise residential buildings. The 2019 California Code went before City Council in October 2019 for approval, with an effective date of January 1, 2020. As part of this action, the City adopted a "reach code" that requires development projects to exceed the minimum Building Energy Efficiency requirements. ¹⁶ The City's reach code applies only to new residential and non-residential construction in San José. It incentivizes all-electric construction, requires increased energy efficiency and electrification-readiness for those choosing to maintain the presence of natural gas. The code requires that non-residential construction include solar readiness. It also requires additional EV charging readiness and/or electric vehicle service equipment (EVSE) installation for all development types.

Energy

CalEEMod defaults for energy use were used, which include the 2019 Title 24 Building Standards. GHG emissions modeling includes those indirect emissions from electricity consumption. The electricity produced emission rate was modified in CalEEMod. CalEEMod has a default emission factor of 807.98 pounds of CO₂ per megawatt of electricity produced, which is based on San José Clean Energy (SJCE)'s 2021 emissions rate. This intensity factor was used in the model along with the assumption that the project would use electricity supplied by SJCE. SJCE would provide

¹⁵ See CARB 2021: https://ww2.arb.ca.gov/our-work/programs/mobile-source-emissions-inventory/road-documentation/msei-modeling-tools-emfac

¹⁶ City of San José Transportation and Environmental Committee, *Building Reach Code for New Construction Memorandum*, August 2019.

electricity that would be 100-percent carbon free by 2021 before the project becomes operational.¹⁷ Electricity was assumed to be 100-percent carbon free in the model since this project would be operational post-2021. Electricity emissions only affect indirect emission of GHG.

Project Generator

The project proposes to include one stand-by emergency diesel generator along the southern border of the basement level near E. Santa Clara Street. The generator specifications were not known at the time of the study, so it was estimated to be a 500-kilowatts (kW) generator powered by a 670 horsepower (HP) diesel engine. The generator would be tested periodically and power the buildings in the event of a power failure. For modeling purposes, it was assumed that the generator would be operated primarily for testing and maintenance purposes. CARB and BAAQMD requirements limit these engine operations to 50 hours each per year of non-emergency operation. During testing periods, the engine would typically be run for less than one hour. The engine would be required to meet CARB and EPA emission standards and consume commercially available California low-sulfur diesel fuel. Generator emissions were modeled using CalEEMod.

Wood-Burning Devices

CalEEMod default inputs assume new residential construction would include woodburning fireplaces and stoves. The project would not include wood-burning devices, as these devices are prohibited by BAAQMD Regulation 6, Rule 3. Therefore, the number of woodstoves and woodburning fireplaces in CalEEMod were set to zero and assigned as natural gas. Additionally, the City of San José passed an ordinance in December 2020 that prohibits the use of natural gas infrastructure in new buildings. This ordinance applies to any new construction starting August 1, 2021. All project natural gas use was set to zero and assigned to electricity use.

Other Inputs

Default model assumptions for emissions associated with solid waste generation and water/wastewater use were applied to the project. Water/wastewater use was changed to 100% aerobic conditions to represent wastewater treatment plant conditions. The project site would not send wastewater to septic tanks or facultative lagoons.

Summary of Computed Operational Emissions

Annual emissions were predicted using CalEEMod and daily emissions were estimating assuming 365 days of operation. Table 5 shows net average daily operational emissions of ROG, NO_X, total PM₁₀, and total PM_{2.5} during operation of the project. The operational period emissions would not exceed the BAAQMD significance thresholds.

¹⁷ Kerrie Romanow and Rosalynn Hughey, City of San José, 2019. *Building reach Code for New Construction Memorandum*. August. Web: https://sanjose.legistar.com/LegislationDetail.aspx?ID=4090015&GUID=278596A7-1A2B-4248-B794-7A34E2279E85

¹⁸ Bay Area Air Quality Management District, https://www.baaqmd.gov/~/media/dotgov/files/rules/regulation-6-rule-3/documents/20191120 r0603 final-pdf.pdf?la=en

¹⁹ City of San Jose, 2020. "Expand Natural Gas Ban", December. Web: https://www.sanjoseca.gov/Home/Components/News/News/2210/4699

Table 5. Operational Period Emissions

Scenario	ROG	NOx	PM ₁₀	PM _{2.5}
2031 Annual Project Operational Emissions (tons/year)	1.34	0.44	0.75	0.20
BAAQMD Thresholds (tons /year)	10 tons	10 tons	15 tons	10 tons
Exceed Threshold?	No	No	No	No
2031 Daily Project Operational Emissions (pounds/day) ¹	7.36	2.42	4.13	1.10
BAAQMD Thresholds (pounds/day)	<i>54</i> lbs.	<i>54</i> lbs.	82 lbs.	<i>54</i> lbs.
Exceed Threshold?	No	No	No	No
Notes: ¹ Assumes 365-day operation.				

Impact AIR-3: Expose sensitive receptors to substantial pollutant concentrations?

Project impacts related to increased community risk can occur either by introducing a new source of TACs with the potential to adversely affect existing sensitive receptors in the project vicinity or by significantly exacerbating existing cumulative TAC impacts. This project would introduce new sources of TACs during construction (i.e., on-site construction and truck hauling emissions) and operation (i.e., stationary and mobile sources).

Project construction activity would generate dust and equipment exhaust that would affect nearby sensitive receptors. The project would also include the installation of a stand-by generator powered by a diesel engine and would generate some traffic consisting of mostly light-duty vehicles, which would produce TAC and air pollutant emissions.

Project impacts to existing sensitive receptors were addressed for temporary construction activities and long-term operational conditions. There are also several sources of existing TACs and localized air pollutants in the vicinity of the project. The impact of the existing sources of TAC was also assessed in terms of the cumulative risk which includes the project contribution, as well as the risk on the new sensitive receptors introduced by the project.

Community Risk Methodology for Construction and Operation

Community risk impacts were addressed by predicting increased cancer risk, the increase in annual PM_{2.5} concentrations and computing the Hazard Index (HI) for non-cancer health risks. The risk impacts from the project are the combination of risks from construction and operation sources. These sources include on-site construction activity, construction truck hauling, project generators, and increased traffic from the project. To evaluate the increased cancer risks from the project, a 30-year exposure period was used, per BAAQMD guidance, with the sensitive receptors being exposed to both project construction and operation emissions during this timeframe.

The project increased cancer risk is computed by summing the project construction cancer risk and operation cancer risk contributions. Unlike, the increased maximum cancer risk, the annual PM_{2.5} concentration and HI values are not additive but based on the annual maximum risk for the entirety of the project. The project maximally exposed individual (MEI) is identified as the sensitive receptor that is most impacted by the project's construction and operation.

²⁰ BAAQMD, 2016. BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. December 2016.

The methodology for computing community risks impacts is contained in *Attachment 1*. This involved the calculation of TAC and PM_{2.5} emissions, dispersion modeling of these emissions, and computations of cancer risk and non-cancer health effects.

Modeled Sensitive Receptors

Receptors for this assessment included locations where sensitive populations would be present for extended periods of time (i.e., chronic exposures). This includes the future senior residences to the northeast and the existing residences surrounding the project site, as shown in Figure 1. Residential receptors are assumed to include all receptor groups (i.e., third trimester, infants, children, and adults) with almost continuous exposure to project emissions. Community risks were also computed for seniors at the future 19 N. 2nd Street Affordable Senior Housing (adults only).

Community Risks from Project Construction

Construction equipment and associated heavy-duty truck traffic generates diesel exhaust, which is a known TAC. These exhaust air pollutant emissions would not be considered to contribute substantially to existing or projected air quality violations. Construction exhaust emissions may still pose health risks for sensitive receptors such as surrounding residents. The primary community risk impact issue associated with construction emissions are cancer risk and exposure to PM2.5. Diesel exhaust poses both a potential health and nuisance impact to nearby receptors. A health risk assessment of the project construction activities was conducted that evaluated potential health effects to nearby sensitive receptors from construction emissions of DPM and PM2.5. ²¹ This assessment included dispersion modeling to predict the offsite and onsite concentrations resulting from project construction, so that increased cancer risks and non-cancer health effects could be evaluated.

Construction Emissions

The CalEEMod and EMFAC2021 models provided total annual PM₁₀ exhaust emissions (assumed to be DPM) for the off-road construction equipment and for exhaust emissions from on-road vehicles, with total emissions from all construction stages of 0.05 tons (94 pounds). The on-road emissions are a result of haul truck travel during demolition and grading activities, worker travel, and vendor deliveries during construction. A trip length of half a mile was used to represent vehicle travel while at or near the construction site. Fugitive PM_{2.5} dust emissions were calculated by CalEEMod as 0.05 tons (109 pounds) for the overall construction period.

Dispersion Modeling

The U.S. EPA AERMOD dispersion model was used to predict DPM and PM_{2.5} concentrations at sensitive receptors (residences, senior housing) in the vicinity of the project construction area. The AERMOD dispersion model is a BAAQMD-recommended model for use in modeling analysis of

_

²¹ DPM is identified by California as a toxic air contaminant due to the potential to cause cancer.

these types of emission activities for CEQA projects.²² Emission sources for the construction site were grouped into two categories: exhaust emissions of DPM and fugitive PM_{2.5} dust emissions.

Construction Sources

Combustion equipment DPM exhaust emissions were modeled as a series of point sources with a nine-foot release height (construction equipment exhaust stack height) placed at 20 feet (6 meter) intervals throughout the construction site. This resulted in 23 individual point sources being used to represent mobile equipment DPM exhaust emissions in the construction area, with DPM emissions occurring throughout the project construction site. In addition, the following stack parameters were used: a vertical release, a stack diameter of 2.5 inches, an exhaust temperature of 918°F, and an exit velocity of 309 feet per second. Since these are point sources, plume rise is calculated by the AERMOD dispersion model. Emissions from vehicle travel on- and off-site were also distributed among the point sources throughout the site. The locations of the point sources used for the modeling are identified in Figure 1.

For modeling fugitive PM_{2.5} emissions, a near-ground level release height of 7 feet (2 meters) was used for the area source. Fugitive dust emissions at construction sites come from a variety of sources, including truck and equipment travel, grading activities, truck loading (with loaders) and unloading (rear or bottom dumping), loaders and excavators moving and transferring soil and other materials, etc. All of these activities result in fugitive dust emissions at various heights at the point(s) of generation. Once generated, the dust plume will tend to rise as it moves downwind across the site and exit the site at a higher elevation than when it was generated. For all these reasons, a 7-foot release height was used as the average release height across the construction site. Emissions from the construction equipment and on-road vehicle travel were distributed throughout the modeled area sources.

AERMOD Inputs and Meteorological Data

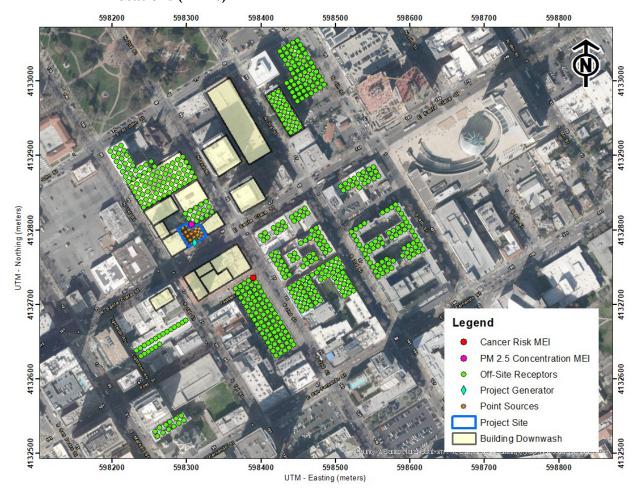
Since there are a number of tall buildings adjacent to or in close proximity to the project construction site, the effects of building downwash on the construction equipment exhaust plumes were included in the modeling analysis. The locations of the point sources used for the modeling and the buildings that were evaluated for potential downwash effects are identified in Figure 1.

The modeling used a five-year meteorological data set (2013-2017) from the San José Airport prepared for use with the AERMOD model by the BAAQMD. Construction emissions were modeled as occurring daily between 8:00 a.m. to 5:00 p.m. Monday through Friday per the project applicant's construction schedule. Annual DPM and PM_{2.5} concentrations from construction activities during the 2028-2030 period were computed by the model. DPM and PM_{2.5} concentrations were computed at nearby sensitive receptor locations. Receptor heights of 20 feet (6.1 meters) and 30 feet (9.1 meters) were used to represent the breathing heights of residents in nearby residential units on the second and third floors, respectively.²³

.

²² Bay Area Air Quality Management District (BAAQMD), 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May.

²³ Bay Area Air Quality Management District, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en


Summary of Construction Community Risk Impacts

The increased cancer risk calculations were based on applying the BAAQMD recommended age sensitivity factors to the TAC concentrations, as described in *Attachment 1*. Age-sensitivity factors reflect the greater sensitivity of infants and small children to cancer causing TACs. Third trimester, infant, child, and adult exposures were assumed to occur at all residences during the entire construction period. Sensitive receptors at the affordable senior housing building were assumed to be senior adults only. The adult (ages 16 and older) cancer risk parameters were used to calculate the increased cancer risk for the senior sensitive receptors.

The maximum modeled annual PM_{2.5} concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI values was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation reference exposure level of 5 $\mu g/m^3$.

The maximum modeled annual DPM and PM_{2.5} concentrations, which includes both the DPM and fugitive PM_{2.5} concentrations, were identified at nearby sensitive receptors to find the MEI. Results of this assessment indicated that the construction MEIs were located in two places. The cancer risk MEI was located at a residence on the second floor (20 feet above ground) in the northeast corner of the future Fountain Alley project to the south of the project site opposite E. Santa Clara Street. The PM_{2.5} concentration MEI was located at the adjacent senior residence on the second floor (20 feet above ground) in the southwest corner of the future 19 N. 2nd Street Affordable Senior Housing project to the northeast of the project site. The location of the MEIs and nearby sensitive receptors are shown in Figure 1. Table 6 lists the community risks from construction at the location of the construction MEIs. *Attachment 4* to this report includes the emission calculations used for the construction modeling and the cancer risk calculations.

Figure 1. Locations of Project Construction Site, Modeled DPM Point Sources, Project Generator, Buildings Evaluated for Downwash Effects, and Maximum TAC Locations (MEIs)

Community Risks from Project Operation – Traffic and Generators

Operation of the project would have long-term emissions from mobile sources (i.e., traffic) and stationary sources (i.e., generators). While these emissions would not be as intensive at or near the site as construction activity, they would contribute to long-term effects to sensitive receptors.

Project Traffic

Diesel powered vehicles are the primary concern with local traffic-generated TAC impacts. Per BAAQMD recommended risks and methodology, a road with less than 10,000 total vehicle per day is considered a low-impact source of TACs and not considered in the CEQA analysis. ²⁴ Project traffic data was not available at the time of this study because the project is not anticipated to generate substantial traffic and on-site parking would not be available. Any project trips would

-

²⁴ Bay Area Air Quality Management District, 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May. Web: https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en

mostly be from light-duty gasoline-powered vehicles (i.e., passenger cars). Therefore, emissions from project-generated traffic are considered negligible and not included in this analysis.

Project Stand-By Diesel Generators

The project proposes to include one stand-by emergency diesel generator along the southern border of the basement level near E. Santa Clara Street. It was assumed that the generator's emissions would be released along the boundary of the building's generator room (see Figure 1). The generator was estimated to be 500-kW powered by a 670-HP diesel engine.

Operation of a diesel generator would be a source of TAC emissions. The generator would be operated for testing and maintenance purposes, with a maximum of 50 hours per year of non-emergency operation under normal conditions. During testing periods, the engine would typically be run for less than one hour under light engine loads. The generator engine would be required to meet EPA emission standards and consume commercially available low sulfur diesel fuel. The emissions from the operation of the generators were calculated using the CalEEMod model.

This diesel engines would be subject to CARB's Stationary Diesel Airborne Toxics Control Measure (ATCM) and require permits from the BAAQMD, since it will be equipped with an engine larger than 50-HP. BACT requirements would apply to the generator that would limit DPM emissions. As part of the BAAQMD permit requirements for toxics screening analysis, the engine emissions will have to meet Best Available Control Technology for Toxics (BACT) and pass the toxic risk screening level of less than ten in a million. The risk assessment would be prepared by BAAQMD. Depending on results, BAAQMD would set limits for DPM emissions (e.g., more restricted engine operation periods). Sources of air pollutant emissions complying with all applicable BAAQMD regulations generally will not be considered to have a significant air quality community risk impact.

To obtain an estimate of potential cancer risks and PM_{2.5} impacts from operation of the emergency generator the U.S. EPA AERMOD dispersion model was used to calculate the maximum annual DPM concentration at off-site sensitive receptor locations (nearby residences). The same receptors, breathing heights, and BAAQMD San José Airport meteorological data used in the construction dispersion modeling were used for the generator models. Stack parameters (stack height, exhaust flow rate, and exhaust gas temperature) for modeling the generators was based on BAAQMD default parameters for emergency generators.²⁵ Annual average DPM and PM_{2.5} concentrations were modeled assuming that generator testing could occur at any time of the day (24 hours per day, 365 days per year).

To calculate the increased cancer risk from the generator at the MEIs, the cancer risks were also adjusted for exposure duration to account for the MEI being exposed to construction for the first 3 years of the 30-year period. The exposure duration was adjusted for 27 years of exposure. Table 6 lists the community risks from stand-by diesel generator at the location of residential MEIs. The emissions and health risk calculations for the proposed generator are included in *Attachment 4*.

24

²⁵ The San Francisco Community Risk Reduction Plan: Technical Support Document, BAAQMD, San Francisco Dept. of Public Health, and San Francisco Planning Dept., December 2012

Cumulative Community Risks of all TAC Sources at Project MEI

The cumulative risk impacts from a project are the combination of construction and operation sources. These sources include on-site construction activity, project generator, and increased traffic from the project. The project impact is computed by adding the construction cancer risk for an infant/child to the increased cancer risk for the project operational conditions for the generator at the MEIs over a 30-year period. The project MEIs are identified as the sensitive receptors that are most impacted by the project's construction and operation.

For this project, the sensitive receptors identified in Figure 1 as the construction MEIs are also the project MEIs. At these locations, the MEIs would be exposed to 3 years of construction cancer risks and 27 years of operational (includes stand-by generator) cancer risks. The cancer risks from construction and operation of the project were summed together. Unlike, the increased maximum cancer risk, the annual PM2.5 concentration and HI risks are not additive but based on an annual maximum risk for the entirety of the project.

Project risk impacts are shown in Table 6. The unmitigated maximum cancer risks and from construction activities at the residential project MEI locations would exceed the single-source significance threshold. However, with the incorporation of the DTS best management practices to control dust and exhaust during construction and *Mitigation Measure AQ-1*, the mitigated risk and hazard values would no longer exceed the BAAQMD single-source significance thresholds. The unmitigated annual PM_{2.5} concentration and non-cancer hazards at the MEI, and health risk impacts at the maximum school receptor, from project construction and operation activities would be below the single-source significance thresholds.

Table 6. Construction and Operation Risk Impacts at the Off-Site Project MEI

		Cancer Risk*	Annual PM _{2.5} *	Hazard
Source		(per million)	$(\mu g/m^3)$	Index
Project Construction (Years 0-3)	Unmitigated	15.85 (infant)	0.32***	0.01
	Mitigated*	2.90 (infant)	0.09	< 0.01
Project Generator, One 500-kW, 670-HP (Year	rs 3-30)	1.34	0.01	< 0.01
Total/Maximum Project Impact (Years 0-30)	Unmitigated	17.19 (infant)	0.32***	0.01
	Mitigated*	4.24 (infant)	0.09	< 0.01
BAAQMD Single-So	urce Threshold	10	0.3	1.0
Exceed Threshold?	Unmitigated	Yes	No	No
	Mitigated*	No	No	No

^{*} Maximum cancer risk and maximum PM2.5 concentration occur at different receptors.

^{**} Construction equipment with Tier 4 interim engines and BMPs as Mitigation.

^{***} As the threshold is presented with only one significant figure after the decimal, the project PM_{2.5} concentration when rounded does not exceed the threshold.

Cumulative Community Risks of all TAC Sources at the Offsite Project MEI

Community health risk assessments typically look at all substantial sources of TACs that can affect sensitive receptors that are located within 1,000 feet of a project site (i.e., influence area). These sources include rail lines, freeways or highways, busy surface streets, and stationary sources identified by BAAQMD.

A review of the project area indicated that traffic on E. Santa Clara Street would exceed 10,000 vehicles per day. Other nearby streets are assumed to have less than 10,000 vehicles per day. A review of BAAQMD's stationary source map website identified eight stationary sources with the potential to affect the project MEIs. In addition, there are several development projects whose construction would contribute to the cumulative risk. The risk impacts from these developments are included within the analysis. Figure 2 shows the location of the sources affecting the MEIs. Community risk impacts from these sources upon the MEIs reported in Table 7. Details of the modeling and community risk calculations are included in *Attachment 5*.

Figure 2. Project Site and Nearby TAC and PM_{2.5} Sources

26

<u>Local Roadways – E. Santa Clara Street</u>

A refined analysis of potential health impacts from vehicle traffic on the E. Santa Clara Street was conducted since the roadway was estimated to have average daily traffic (ADT) exceeding 10,000 vehicles. The refined analysis involved predicting emissions for the traffic volume and mix of vehicle types on the roadway near the project site and using an atmospheric dispersion model to predict exposure to TACs. The associated cancer risks are then computed based on the modeled exposures. *Attachment 1* includes a description of how community risk impacts, including cancer risk are computed.

Traffic Emissions Modeling

This analysis involved the development of DPM, organic TACs, and PM_{2.5} emissions for traffic on E. Santa Clara Street using the Caltrans version of the CARB EMFAC2017 emissions model, known as CT-EMFAC2017. CT-EMFAC2017 provides emission factors for mobile source criteria pollutants and TACs, including DPM. Emission processes modeled include running exhaust for DPM, PM_{2.5} and total organic compounds (TOG), running evaporative losses for TOG, and tire and brake wear and fugitive road dust for PM_{2.5}. All PM_{2.5} emissions from all vehicles were used, rather than just the PM_{2.5} fraction from diesel powered vehicles, because all vehicle types (i.e., gasoline and diesel powered) produce PM_{2.5}. Additionally, PM_{2.5} emissions from vehicle tire and brake wear and from re-entrained roadway dust were included in these emissions. DPM emissions are projected to decrease in the future and are reflected in the CT-EMFAC2017 emissions data. Inputs to the model include region (Santa Clara County), type of road (major/collector), truck percentage for non-state highways in Santa Clara County (3.51 percent), ²⁶ traffic mix assigned by CT-EMFAC2017 for the county, year of analysis (2028 – construction start year), and season (annual).

To estimate TAC and PM_{2.5} emissions over the 30-year exposure period used for calculating the increased cancer risks for sensitive receptors at the MEI and project site, the CT-EMFAC2017 model was used to develop vehicle emission factors for the year 2028 (project construction year). Emissions associated with vehicle travel depend on the year of analysis because emission control technology requirements are phased-in over time. Therefore, the earlier the year analyzed in the model, the higher the emission rates utilized by CT-EMFAC2017. Year 2028 emissions were conservatively assumed as being representative of future conditions over the time period that cancer risks are evaluated since, as discussed above, overall vehicle emissions, and in particular diesel truck emissions, will decrease in the future.

The ADT on E. Santa Clara Street was based on traffic data from another nearby development project. Assuming a 1 percent per year increase, the predicted ADT on E. Santa Clara Street would be 17,810 vehicles. Average hourly traffic distributions for Santa Clara County roadways were developed using the EMFAC model,²⁷ which were then applied to the ADT volumes to obtain estimated hourly traffic volumes and emissions for the roadway. For all hours of the day, an

.

²⁶ Bay Area Air Quality Management District, 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May. Web: https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en

may-2012.pdf?la=en

27 The Burden output from EMFAC2007, a previous version of CARB's EMFAC model, was used for this since the current webbased version of EMFAC2014 does not include Burden type output with hour by hour traffic volume information.

average speed of 20 mph on E. Santa Clara Street was assumed for all vehicles based on posted speed limit signs on the roadway and assuming 5 mph below to account for downtown traffic

Dispersion Modeling

Dispersion modeling of TAC and PM_{2.5} emissions was conducted using the U.S. EPA AERMOD dispersion model, which is recommended by the BAAQMD for this type of analysis.²⁸ TAC and PM_{2.5} emissions from traffic on E. Santa Clara Street within about 1,000 feet of the project site was evaluated with the model. Emissions from vehicle traffic were modeled in AERMOD using a series of volume sources along a line (line volume sources), with line segments used to represent the eastbound and westbound travel lanes on E. Santa Clara Street. The same meteorological data and off-site sensitive receptors used in the previous construction dispersion modeling were used in the roadway modeling. Other inputs to the model included road geometry, hourly traffic emissions, and receptor locations and heights. Annual TAC and PM_{2.5} concentrations for 2028 from traffic on E. Santa Clara Street were calculated using the model. Concentrations were calculated at the project MEIs with receptor heights of 20 feet (6.1 meters) to represent the breathing heights on the second floor of the nearby residence.

Computed Cancer and Non-Cancer Health Impacts

The cancer risk, PM_{2.5} concentration, and HI impacts from E. Santa Clara Street on the project MEI are shown in Table 7. Figure 2 shows the roadway links used for the modeling and receptor locations where concentrations were calculated. Details of the emission calculations, dispersion modeling and cancer risk calculations for the receptors with the maximum cancer risk from Santa Clara Street traffic are provided in *Attachment 5*.

BAAQMD Permitted Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's *Permitted Stationary Sources 2018* GIS website,²⁹ which identifies the location of nearby stationary sources and their estimated risk and hazard impacts, including emissions and adjustments to account for new OEHHA guidance. Eight sources were identified using this tool with seven sources being diesel generators and one being a gas dispensing facility. The BAAQMD GIS website provided screening risks and hazards for this source, so a stationary source information request was not required to be submitted to BAAQMD.

The screening level risks and hazards provided by BAAQMD for the remaining stationary sources were adjusted for distance using BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion Engines and Gas Dispensing Facilities*. Community risk impacts from the stationary sources upon the MEI are reported in Table 7.

²⁸ BAAQMD. Recommended Methods for Screening and Modeling Local Risks and Hazards. May 2012

²⁹ BAAQMD, https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=2387ae674013413f987b1071715daa65

Construction Risk Impacts from Nearby Developments

From the City's website,³⁰ the following planned or approved projects are located within 1,000 feet of the proposed project:

- 19 N. 2nd Street this project is adjacent to the northeast of the project site. This mixed-use project would include 220 residential units and 37,240-sf of commercial space. This project is currently in the planning review phase. However, the construction schedule for this project shows completion by June 2025, which would three years prior to the start of the proposed project. Cumulative construction is therefore not assumed.
- Fountain Alley Mixed-Use this project is located at 35 South 2nd Street, approximately 265 feet south of the project site. The project would include a 21-story mixed-use building with 194 residential units and 405,000 square feet of office space and 31,959 square feet of ground-level retail. This project is currently in the planning review phase. However, Fountain Alley is expected to be completed prior to the start of the proposed project. Cumulative construction is therefore not assumed.
- Fountain Alley Office this project is located at 26 S. 1st Street and is approximately 260 feet south of the project site. This project is approved but not yet constructed. This project includes a six-story building with 91,992-sf of commercial office and retail space. Fountain Alley Office is expected to be completed prior to the start of the proposed project. Cumulative construction is therefore not assumed.
- **27 West** this project is located at 27 S. 1st Street, which is about 310 feet southwest of the project site. This project has been approved and consists of a 22-story mixed-use building with 374 residential units and 35,712-sf of retail space. Construction for this project has begun and would be completed prior to the proposed project. Cumulative construction is therefore not assumed.
- **Miro (SJSC Towers)** this project is located at 39 North 5th Street, which is located 850 feet east of the project site. This project is currently under construction and near completion. Construction of this project should be completed prior to construction of the project. This would not result in a cumulative construction impact.
- **Hotel Clariana** this project is located at 27 S. 4th Street, which is about 575 feet southeast of the project site. This project is currently under review and would consist of a five-story hotel and seven-story condominium building. Construction dates for this project have not been confirmed but would be expected to be completed prior to construction of the proposed project. Cumulative construction is therefore not assumed.
- **BDG Mixed-Use** this project site is located at 148 to 150 E. Santa Clara Street, 17 S. 4th Street, and 130 to 134 E. Santa Clara Street. This project is more than 500 feet southeast of the project site. This project is in the planning review phase and would consist of a would

29

³⁰ City of San Jose, Private / Key Economic Development Projects Map, Web: https://gis.sanjoseca.gov/maps/devprojects/

consist of a six-story mixed-use building with ground-level retail/restaurant uses and office space on the upper floors. However, BDG Mixed-Use is expected to be completed prior to the start of the proposed project. Cumulative construction is therefore not assumed.

• **Icon-Echo** – this project is located at 147 E. Santa Clara Street and would include the construction of two towers: a residential tower with 415 units and an office tower with 525,000-sf of office space. This project is currently in the planning review phase and not expected to start before January 2023. However, construction of Icon-Echo is expected to be completed prior to the start of the proposed project. Cumulative construction is therefore not assumed.

All the listed nearby developments would complete construction by the time the proposed project begins construction in 2028. Therefore, there would be no construction health risks associated with the nearby developments that would overlap the proposed project. No nearby development health risks were included in this assessment.

Summary of Cumulative Risks at the Project MEI

Table 7 reports both the project and cumulative community risk impacts at the sensitive receptors most affected by project construction and operation (i.e., the project MEIs). The project would have an exceedance with respect to community risk caused by project construction and operation activities, since the maximum unmitigated cancer risk exceeds the BAAQMD single-source threshold. With the implementation of the DTS best management practices to control dust and exhaust during construction and *Mitigation Measure AQ-1*, the project's cancer risk would be lowered to a level below the single-source thresholds. The cancer risk, annual PM_{2.5} concentration, and HI, unmitigated and mitigated, does not exceed the cumulative thresholds.

Table 7. Cumulative Community Risk Impacts at the Location of the Project MEIs

Source		Maximum Cancer Risk (per million)	PM _{2.5} Concentration (μg/m ³)	Hazard Index
	Project Impac	ts		
Total/Maximum Project Impact	Unmitigated	17.19 (infant)	0.32	0.01
	Mitigated	4.24 (infant)	0.09	< 0.01
BAAQMD Single-Source Threshold		10	0.3	1.0
Exceed Threshold?	Unmitigated	Yes	No	No
	Mitigated	No	No	No
	Cumulative Sour	rces		
E. Santa Clara Street, ADT 17,810		0.88	0.07	< 0.01
Verizon Business - SBEZCA (Facility ID MEI at 875 feet) #12969, Generator),	2.31	< 0.01	< 0.01
60 SOMA Fee Owner CA,LLC c/o Harve (Facility ID #19758, Generator), MEI at		0.51	< 0.01	-
Judicial Council of California, JCC 43-B #20324, Generator), MEI at 1,000 feet	2 (Facility ID	4.99	0.01	0.01
CoreSite (Facility ID #20903, Generator)	, MEI at 875 feet	3.75	0.01	< 0.01
Essex OSM Reit LLC (Facility ID #224 at 850 feet		0.18	-	-
Digital Realty (Facility ID #22612, Gene	rator), MEI at 735 ft	0.10	-	_
SV Towers Investments LLC, C/O Harve (Facility ID #23479, Generator), MEI at 1	est Properties	0.68	-	-
Chevron #4259 (Facility ID #23479, Gas feet		0.39	-	< 0.01
Combined Sources	Unmitigated	30.98	< 0.43	< 0.06
	Mitigated	18.03	< 0.20	< 0.06
BAAQMD Cumulati	ive Source Threshold	100	0.8	10.0
Exceed Threshold?	Unmitigated	No	No	No
	Mitigated	No	No	No

Mitigation Measure AQ-1: Use construction equipment that has low diesel particulate matter exhaust emissions.

A feasible plan to reduce emissions such that increased cancer risk and annual PM_{2.5} concentrations from construction would be reduced below significance levels is as follows:

- 1. All construction equipment larger than 25 horsepower used at the site for more than two continuous days or 20 hours total shall meet U.S. EPA Tier 4 emission standards for particulate matter (PM₁₀ and PM_{2.5}), if feasible, otherwise,
 - a. If use of Tier 4 equipment is not available, alternatively use equipment that meets U.S. EPA emission standards for Tier 3 engines and include particulate matter emissions control equivalent to CARB Level 3 verifiable diesel emission control devices that altogether achieve a minimum of 50 percent reduction in particulate matter exhaust in comparison to uncontrolled equipment.
 - b. Use of alternatively fueled or electric equipment.

Alternatively, the applicant could develop a separate feasible plan that reduces on- and near-site construction diesel particulate matter emissions by a minimum of 50 percent or greater. Such a plan would have to be reviewed and approved by the City.

Effectiveness of the DTS Best Management Practices and Mitigation Measure AQ-1

CalEEMod was used to compute emissions associated with this mitigation measure assuming that all equipment met U.S. EPA Tier 4 interim engines standards and the DTS best management practices for construction were included. With these implemented, the project's construction cancer risk levels (assuming infant exposure) would be reduced by 82 percent to 2.90 chances per million. Once the construction risk is combined with the operational generator cancer risk, the project's total mitigated cancer risk level would be 4.24 chances per million. The project's annual $PM_{2.5}$ concentrations would be reduced by 71 percent to 0.09 μ g/m³. The project's risk impacts would no longer exceed the BAAQMD single-source significance thresholds.

Non-CEQA: On-Site Community Risk Assessment for TAC Sources - New Project Residences

In addition to evaluating health impact from project construction, a health risk assessment was completed to assess the impact existing TAC sources would have on the new proposed sensitive receptors (residents) that that project would introduce. The same TAC sources identified above were used in this health risk assessment.³¹

<u>Local Roadways – E. Santa Clara Street</u>

The roadway analysis for the project residents was conducted in the same manner as described above for the off-site MEIs. The project set of receptors were placed across the project area and were spaced every 20 feet (6 meters). Project residences in the project site would be located on the second floor and higher of the proposed tower. Roadway impacts were modeled at receptor heights of 20 feet (6.1 meters) and 30 feet (9.1 meters) representing sensitive receptors on the second and third floors. Project sensitive receptors higher than the third floor would have roadway impacts less than those on the third floor. The portions of E. Santa Clara Street included in the modeling are shown in Figure 3 along with the project site and receptor locations where impacts were modeled.

Maximum increased cancer risks were calculated for the residents at the project site using the maximum modeled TAC concentrations. A 30-year exposure period was used in calculating cancer risks assuming the residents would include third trimester pregnancy and infants/children and were assumed to be in the new building area for 24 hours per day for 350 days per year. The highest impacts from E. Santa Clara Street occurred at second-floor receptors of the unit in the southeast corner of the project's tower closest to the roadway. Cancer risks associated with E. Santa Clara

³¹ We note that to the extent this analysis considers *existing* air quality issues in relation to the impact on *future residents* of the Project, it does so for informational purposes only pursuant to the judicial decisions in *CBIA v. BAAQMD* (2015) 62 Cal.4th 369, 386 and *Ballona Wetlands Land Trust v. City of Los Angeles* (2011) 201 Cal.App.4th 455, 473, which confirm that the impacts of the existing environment on a project are excluded from CEQA.

Street are greatest closest to the roadway and decrease with distance from the road. The roadway's community risk impacts at the project site are shown in Table 8. Details of the emission calculations, dispersion modeling, and cancer risk calculations are contained in *Attachment 5*.

Stationary Sources

The stationary source screening analysis for the new project sensitive receptors was conducted in the same manner as described above for the project MEIs. Table 8 shows the health risk assessment results from the stationary sources.

598300 598500 598700 598800 UTM - Northing (meters) Legend Santa Clara St On-Site TAC Impact On-Site Receptors Santa Clara Street Model Stationary Stationary Project Site 1,000-ft Influence Area 598600 598100 598300 598400 598700 598800 UTM - Easting (meters)

Figure 3. Project Site, On-Site Residential Receptors, Roadway Segments Evaluated, and Locations of Maximum Roadway TAC Impacts

Cumulative Community Health Risk at Project Site

Community risk impacts from the existing TAC sources upon the project site are reported in Table 8. The risks from the singular TAC sources are compared against the BAAQMD single-source threshold. The risks from all the sources are then combined and compared against the BAAQMD cumulative-source threshold. As shown, none of the sources exceed the cancer risk, annual PM_{2.5} concentration, or HI single-source or cumulative-source thresholds.

 Table 8.
 Impacts from Combined Sources to Project Site Receptors

Source	Cancer Risk (per million)	Annual PM _{2.5} (μg/m³)	Hazard Index
E. Santa Clara Street, ADT 17,810	1.07	0.08	< 0.01
Verizon Business - SBEZCA (Facility ID #12969, Generator), MEI at 875 feet	2.31	<0.01	< 0.01
60 SOMA Fee Owner CA,LLC c/o Harvest Properties (Facility ID #19758, Generator), MEI at 650 feet	0.51	<0.01	-
Judicial Council of California, JCC 43-B2 (Facility ID #20324, Generator), MEI at 1,000 feet	6.24	0.01	0.01
CoreSite (Facility ID #20903, Generator), MEI at 875 feet	3.75	0.01	< 0.01
Essex OSM Reit LLC (Facility ID #22415, Generator), MEI at 850 feet	0.25	-	-
Digital Realty (Facility ID #22612, Generator), MEI at 735 ft	0.06	-	-
SV Towers Investments LLC, C/O Harvest Properties (Facility ID #23479, Generator), MEI at 300 feet	1.37	-	-
Chevron #4259 (Facility ID #23479, Gas Station), MEI at 650 feet	0.42	-	< 0.01
BAAQMD Single-Source Threshold	10	0.3	1.0
Exceed Threshold?	No	No	No
Cumulative Total	15.98	< 0.12	< 0.05
BAAQMD Cumulative Source Threshold	100	0.8	10.0
Exceed Threshold?	No	No	No

Supporting Documentation

Attachment 1 is the methodology used to compute community risk impacts, including the methods to compute increased cancer risk from exposure to project emissions.

Attachment 2 includes the CalEEMod output for project construction and operational criteria air pollutant. Also included are any modeling assumptions.

Attachment 3 includes the EMFAC2021 emissions modeling. The input files for these calculations are voluminous and are available upon request in digital format.

Attachment 4 is the health risk assessment. This includes the summary of the dispersion modeling and the cancer risk calculations for construction and operation. The AERMOD dispersion modeling files for this assessment, which are quite voluminous, are available upon request and would be provided in digital format.

Attachment 5 includes the cumulative community risk calculations, modeling results, and health risk calculations from sources affecting the construction MEIs and project sensitive receptors.

Attachment 1: Health Risk Calculation Methodology

Health Risk Calculation Methodology

A health risk assessment (HRA) for exposure to Toxic Air Contaminates (TACs) requires the application of a risk characterization model to the results from the air dispersion model to estimate potential health risk at each sensitive receptor location. The State of California Office of Environmental Health Hazard Assessment (OEHHA) and California Air Resources Board (CARB) develop recommended methods for conducting health risk assessments. The most recent OEHHA risk assessment guidelines were published in February of 2015. These guidelines incorporate substantial changes designed to provide for enhanced protection of children, as required by State law, compared to previous published risk assessment guidelines. CARB has provided additional guidance on implementing OEHHA's recommended methods. This HRA used the 2015 OEHHA risk assessment guidelines and CARB guidance. The BAAQMD has adopted recommended procedures for applying the newest OEHHA guidelines as part of Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants. Exposure parameters from the OEHHA guidelines and the recent BAAQMD HRA Guidelines were used in this evaluation.

Cancer Risk

Potential increased cancer risk from inhalation of TACs is calculated based on the TAC concentration over the period of exposure, inhalation dose, the TAC cancer potency factor, and an age sensitivity factor to reflect the greater sensitivity of infants and children to cancer causing TACs. The inhalation dose depends on a person's breathing rate, exposure time and frequency and duration of exposure. These parameters vary depending on the age, or age range, of the persons being exposed and whether the exposure is considered to occur at a residential location or other sensitive receptor location.

The current OEHHA guidance recommends that cancer risk be calculated by age groups to account for different breathing rates and sensitivity to TACs. Specifically, they recommend evaluating risks for the third trimester of pregnancy to age zero, ages zero to less than two (infant exposure), ages two to less than 16 (child exposure), and ages 16 to 70 (adult exposure). Age sensitivity factors (ASFs) associated with the different types of exposure are an ASF of 10 for the third trimester and infant exposures, an ASF of 3 for a child exposure, and an ASF of 1 for an adult exposure. Also associated with each exposure type are different breathing rates, expressed as liters per kilogram of body weight per day (L/kg-day) or liters per kilogram of body weight per 8-hour period for the case of worker or school child exposures. As recommended by the BAAQMD for residential exposures, 95th percentile breathing rates are used for the third trimester and infant exposures, and 80th percentile breathing rates for child and adult exposures. For children at schools and daycare facilities, BAAQMD recommends using the 95th percentile 8-hour breathing rates.

³² OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

³³ CARB, 2015. Risk Management Guidance for Stationary Sources of Air Toxics. July 23.

³⁴BAAQMD, 2016. BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. December 2016.

Additionally, CARB and the BAAQMD recommend the use of a residential exposure duration of 30 years for sources with long-term emissions (e.g., roadways). For workers, assumed to be adults, a 25-year exposure period is recommended by the BAAQMD. For school children a 9-year exposure period is recommended by the BAAQMD.

Under previous OEHHA and BAAQMD HRA guidance, residential receptors are assumed to be at their home 24 hours a day, or 100 percent of the time. In the 2015 Risk Assessment Guidance, OEHHA includes adjustments to exposure duration to account for the fraction of time at home (FAH), which can be less than 100 percent of the time, based on updated population and activity statistics. The FAH factors are age-specific and are: 0.85 for third trimester of pregnancy to less than 2 years old, 0.72 for ages 2 to less than 16 years, and 0.73 for ages 16 to 70 years. Use of the FAH factors is allowed by the BAAQMD if there are no schools in the project vicinity have a cancer risk of one in a million or greater assuming 100 percent exposure (FAH = 1.0).

Functionally, cancer risk is calculated using the following parameters and formulas:

```
Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 10<sup>6</sup>

Where:

CPF = Cancer potency factor (mg/kg-day)<sup>-1</sup>

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = Cair x DBR* x A x (EF/365) x 10<sup>-6</sup>

Where:

Cair = concentration in air (µg/m³)

DBR = daily breathing rate (L/kg body weight-day)

8HrBR = 8-hour breathing rate (L/kg body weight-8 hours)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

10<sup>-6</sup> = Conversion factor
```

^{*} An 8-hour breathing rate (8HrBR) is used for worker and school child exposures.

The health risk parameters used in this evaluation are summarized as follows:

Exposure Type >		Infant		Child	Adult
Parameter	Age Range →	3 rd	0<2	2 < 16	16 - 30
		Trimester			
DPM Cancer Potency Factor (1	1.10E+00	1.10E+00	1.10E+00	1.10E+00	
Daily Breathing Rate (L/kg-da	273	758	572	261	
Daily Breathing Rate (L/kg-da	361	1,090	745	335	
8-hour Breathing Rate (L/kg-8	-	1,200	520	240	
Inhalation Absorption Factor	1	1	1	1	
Averaging Time (years)	Averaging Time (years)		70	70	70
Exposure Duration (years)		0.25	2	14	14*
Exposure Frequency (days/year)		350	350	350	350*
Age Sensitivity Factor	10	10	3	1	
Fraction of Time at Home (FA	H)	0.85-1.0	0.85-1.0	0.72-1.0	0.73*

^{*} For worker exposures (adult) the exposure duration and frequency are 25 years 250 days/year and FAH is not applicable.

Non-Cancer Hazards

Non-cancer health risk is usually determined by comparing the predicted level of exposure to a chemical to the level of exposure that is not expected to cause any adverse effects (reference exposure level), even to the most susceptible people. Potential non-cancer health hazards from TAC exposure are expressed in terms of a hazard index (HI), which is the ratio of the TAC concentration to a reference exposure level (REL). OEHHA has defined acceptable concentration levels for contaminants that pose non-cancer health hazards. TAC concentrations below the REL are not expected to cause adverse health impacts, even for sensitive individuals. The total HI is calculated as the sum of the HIs for each TAC evaluated and the total HI is compared to the BAAQMD significance thresholds to determine whether a significant non-cancer health impact from a project would occur.

Typically, for residential projects located near roadways with substantial TAC emissions, the primary TAC of concern with non-cancer health effects is diesel particulate matter (DPM). For DPM, the chronic inhalation REL is 5 micrograms per cubic meter ($\mu g/m^3$).

Annual PM_{2.5} Concentrations

While not a TAC, fine particulate matter (PM_{2.5}) has been identified by the BAAQMD as a pollutant with potential non-cancer health effects that should be included when evaluating potential community health impacts under the California Environmental Quality Act (CEQA). The thresholds of significance for PM_{2.5} (project level and cumulative) are in terms of an increase in the annual average concentration. When considering PM_{2.5} impacts, the contribution from all sources of PM_{2.5} emissions should be included. For projects with potential impacts from nearby local roadways, the PM_{2.5} impacts should include those from vehicle exhaust emissions, PM_{2.5} generated from vehicle tire and brake wear, and fugitive emissions from re-suspended dust on the roads.

Attachment 2: CalEEMod Input Assumptions and Outputs

	Air Quality/Noise Construction Information Data Request							
Project N	ame: See Equipment Type TAB for type		29 E Santa Clara					Complete ALL Portions in Yellow
	Project Size	200	Dwelling Units	0.105	total project	acres distur	bed	
	,		s.f. residential					Pile Driving? Y/N? N
			s.f. retail					
			•					Project include OPERATIONAL GENERATOR OR FIRE PUMP on-site? Y/N?Y_
		2,491	s.f. office/commercial					
		6,682	s.f. other, specify: Roo	f Terrace Area				IF YES (if BOTH separate values)>
		None	s.f. parking garage	None	spaces	***************************************		Kilowatts/Horsepower:TBD
		None	s.f. parking lot	None	spaces			Fuel Type:Diesel Generator
								Leasting to market (Disco Declared & Australia). Because of
	Construction Hours	8	am to	5	pm			Location in project (Plans Desired if Available): Basement
	Tonou action Front				p			DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT
					Total	Avg.	HP	
Quantity	Description	HP	Load Factor	Hours/day	Work Days	Hours per day	Annual Hours	Comments
	Demolition	Start Date:	5/1/2028	Total phase:	90			Overall Import/Export Volumes
	Concrete lindustrial Comm	End Date:	9/1/2028			0.0	4700	Damelikie- V-1
1	Concrete/Industrial Saws Excavators	81 158	0.73 0.38	8		0.9 0.9	4730 4803	Square footage of buildings to be demolished
	Rubber-Tired Dozers Tractors/Loaders/Backhoes	247 97	0.4 0.37	8	10	0.9 0.9	7904 2871	
	Other Equipment?	31	0.01	0	10	0.9	2011	_?_ Hauling volume (tons)
	Site Preparation	Start Date:	5/1/2028	Total phase:	90			Any pavement demolished and hauled? 0 tons
	-	End Date:	9/1/2028		20	0.7	40404	
	Graders Rubber Tired Dozers	187 247	0.41 0.4	8	30 30	2.7 2.7	18401 23712	
	Tractors/Loaders/Backhoes Other Equipment?	97	0.37	8	30	2.7	8614	
	, ,							
	Grading / Excavation	Start Date:	7/1/2028 1/1/2029	Total phase:	131			O-II Harding Valuers
1	Excavators	End Date: 158	0.38	8	60	3.7	28819	Soil Hauling Volume Export volume = 6,800 cubic yards?
	Graders Rubber Tired Dozers	187 247	0.41 0.4			0.0 0.0	0	Import volume = <u>0</u> cubic yards?
1	Concrete/Industrial Saws	81	0.73	8	60	3.7	28382	
	Tractors/Loaders/Backhoes Other Equipment?	97	0.37	8	60	3.7	17227	
	Trenching/Foundation	Start Date: End Date:	1/1/2029 6/15/2029	Total phase:	120			
1	Tractor/Loader/Backhoe	97	0.37	8	60	4.0	17227	
	Excavators Other Equipment?	158	0.38	8	60	4.0	28819	
		Ott D-t	0/4/0000	T-4-1 -1	200			Camant Tayaka 2 TDD Tatal Davind Tring
	Building - Exterior	Start Date: End Date:	6/1/2029 8/22/2030	Total phase:	320			Cement Trucks? TBD Total Round-Trips
1 1	Cranes Forklifts	231 89	0.29 0.2	8	280 120	7.0 3.0	150058 17088	Electric? (Y/N)_N Otherwise assumed diesel Liquid Propane (LPG)? (Y/N)_N Otherwise Assumed diesel
1	Generator Sets	84	0.74	8	200	5.0	99456	Or temporary line power? (Y/N) _ N_
1	Tractors/Loaders/Backhoes Welders	97 46	0.37 0.45	8	80	0.0 2.0	13248	
	Other Equipment?							
Building - Inte	erior/Architectural Coating	Start Date:		Total phase:	239			
1	Air Compressors	End Date: 78	5/1/2030 0.48	8	200	6.7	59904	
1	Aerial Lift	62	0.40	8	180	6.0	27677	
	Other Equipment?							
	Paving	Start Date:	N/A	Total phase:				
	Cement and Mortar Mixers	Start Date:	N/A 0.56			#DIV/0!	0	
	Pavers	130	0.42			#DIV/0!	0	Asphalt?_0 cubic yards or round trips?
	Paving Equipment Rollers	132 80	0.36 0.38			#DIV/0! #DIV/0!	0	
	Tractors/Loaders/Backhoes	97	0.37			#DIV/0!	0	
	Other Equipment?							
	Additional Phases	Start Date: Start Date:		Total phase:				
		- tall Date.				#DIV/0!	0	
						#DIV/0! #DIV/0!	0	
						#DIV/0!	0	
						#DIV/0!	0	
Equipment ty	pes listed in "Equipment Types" w	orksheet tab.						
	ed in this sheet is to provide an exam			Complete	one	sneet	tor ea	ach project component
	hat water trucks would be used during act phases and equipment, as appro							
	power or load factor, as appropriate							

		Construction (Criteria Air Pollut	ants		
Unmitigated	ROG	NOX	PM10 Exhaust	PM2.5 Exhaust	CO2e	
Year			Tons		MT	
		Construc	tion Equipment			
2028	0.04	0.38	0.02	0.01	73.15	
2029	0.90	0.58	0.02	0.02	120.74	
2030	0.52	0.26	0.01	0.01	101.75	
			EMFAC			
2028	0.02	0.05	0.01	0.002	80.31	
2029	0.03	0.08	0.01	0.003	117.64	
2030	0.02	0.05	0.01	0.002	74.15	
	7	Total Construct	tion Emissions by	Year		
2028	0.06	0.43	0.02	0.02	153.46	
2029	0.93	0.66	0.03	0.03	238.37	
2030	0.54	0.31	0.01	0.01	175.89	
		Total Const	ruction Emissions			
Tons	1.54	1.40	0.07	0.05	567.72	
Pounds/Workdays		Average	Daily Emissions		Work	days
2028	0.71	4.93	0.25	0.19		175
2029	7.14	5.03	0.25	0.20		261
2030	6.49	3.69	0.14	0.10		167
Threshold - lbs/day	54.0	54.0	82.0	54.0		
-	Total Construction Emissions					
Pounds	14.34	13.65	0.64	0.49	0.00	
Average	5.09	4.63	0.22	0.17	0.00	603.00
Threshold - lbs/day	54.0	54.0	82.0	54.0		

	Operational Criteria Air Pollutants						
Unmitigated	ROG	NOX	Total PM10	Total PM2.5			
Year			Tons				
Total	1.34	0.44	0.75	0.20			
		Existing	Use Emissions				
Total							
	Net Annual Operational Emissions						
Tons/year	1.34	0.44	0.75	0.20			
Threshold - Tons/year	10.0	10.0	15.0	10.0			
	Average Daily Emissions						
Pounds Per Day	7.36	7.36 2.42 4.13 1.10					
Threshold - lbs/day	54.0	54.0	82.0	54.0			

Category			CO2e				
	Project	Existing	Project 2030	Existing			
Area	10.52						
Energy	0.00						
Mobile	751.83						
Waste	47.58						
Water	45.09						
TOTAL	855.02	0.00	0.00	0.00			
Net GHG Emissions		855.02		0.00			
Service Population	628.00						
Per Capita Emissions		1.36		0.00			
	200 units						
CA DOF 2020=	3.14	pphh					

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Eterna Tower, 17 & 29 E Santa Clara St, San Jose Santa Clara County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Apartments High Rise	200.00	Dwelling Unit	0.18	184,960.00	572
Strip Mall	2.49	1000sqft	0.00	2,491.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	58
Climate Zone	4			Operational Year	2031
Utility Company	San Jose Clean Energy				
CO2 Intensity (lb/MWhr)	807.98	CH4 Intensity (lb/MWhr)	0.033	N2O Intensity (lb/MWhr)	0.004

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Provided land uses - construction worksheet and project plans

Construction Phase - Provided construction schedule

Off-road Equipment - Provided construction hours, assumed 1 equip per equip w/ hours

Off-road Equipment - Provided construction hours, assumed 1 equip per equip w/ hours

Off-road Equipment - Provided construction hours, assumed 1 equip per equip w/ hours

Off-road Equipment - Provided construction hours, assumed 1 equip per equip w/ hours

Off-road Equipment - Provided construction hours, assumed 1 equip per equip w/ hours

Off-road Equipment - Provided construction hours, assumed 1 equip per equip w/ hours

Grading - grading = 6,800-cy export

Demolition - existing building demo = 7,762-sf

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Trips and VMT - 0 Trips for EMFAC2021 post-calcs, estimated 32 cement truck round trips

Vehicle Trips - Default trip gen - no traffic data

Vehicle Emission Factors - EMFAC2021 Vehicle Emisisons Factors Santa Clara County 2031

Fleet Mix - EMFAC2021Fleet Mix Santa Clara County 2031

Woodstoves - No wood burning, all gas

Energy Use - San Jose Reach Code, no natural gas all electric

Water And Wastewater - Wastewater Treatment, 100% aerobic, no septic tanks or lagoons

Stationary Sources - Emergency Generators and Fire Pumps - Estimated - one 500-kW, 670-hp diesel generator in basement, 50 hr/yr

Energy Mitigation - SJCE 100% carbon free energy by 2021

Construction Off-road Equipment Mitigation - BMPs, Tier 4 interim mitigation

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	4.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
4.10 4F i Mili ii	.	· · · · · · · · · · · · · · · · · · ·	
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstructionPhase	NumDays	5.00	239.00
tblConstructionPhase	NumDays	100.00	320.00
tblConstructionPhase	NumDays	10.00	90.00
tblConstructionPhase	NumDays	2.00	131.00
tblConstructionPhase	NumDays	1.00	90.00
tblConstructionPhase	PhaseEndDate	10/18/2028	5/1/2030
tblConstructionPhase	PhaseEndDate	10/4/2028	8/22/2030
tblConstructionPhase	PhaseEndDate	5/12/2028	9/1/2028
tblConstructionPhase	PhaseEndDate	5/17/2028	1/1/2029
tblConstructionPhase	PhaseEndDate	5/15/2028	9/1/2028
tblConstructionPhase	PhaseStartDate	10/12/2028	6/1/2029
tblConstructionPhase	PhaseStartDate	5/18/2028	6/1/2029
tblConstructionPhase	PhaseStartDate	5/16/2028	7/1/2028
tblConstructionPhase	PhaseStartDate	5/13/2028	5/1/2028
tblEnergyUse	NT24E	3,054.10	3,055.00
tblEnergyUse	NT24NG	3,155.00	0.00
tblEnergyUse	T24E	70.89	72.42
tblEnergyUse	T24NG	5,226.68	0.00
tblEnergyUse	T24NG	2.34	0.00
tblFireplaces	FireplaceWoodMass	228.80	0.00
tblFireplaces	NumberGas	30.00	64.00
tblFireplaces	NumberWood	34.00	0.00
tblFleetMix	HHD	6.0640e-003	0.02

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

451714845	1110	0.0040 - 000	0.00
tblFleetMix	HHD	6.0640e-003	0.02
tblFleetMix	LDA	0.58	0.53
tblFleetMix	LDA	0.58	0.53
tblFleetMix	LDT1	0.06	0.03
tblFleetMix	LDT1	0.06	0.03
tblFleetMix	LDT2	0.18	0.23
tblFleetMix	LDT2	0.18	0.23
tblFleetMix	LHD1	0.02	0.03
tblFleetMix	LHD1	0.02	0.03
tblFleetMix	LHD2	5.4420e-003	6.5200e-003
tblFleetMix	LHD2	5.4420e-003	6.5200e-003
tblFleetMix	MCY	0.02	3.4690e-003
tblFleetMix	MCY	0.02	3.4690e-003
tblFleetMix	MDV	0.12	0.13
tblFleetMix	MDV	0.12	0.13
tblFleetMix	MH	2.5090e-003	6.0900e-004
tblFleetMix	MH	2.5090e-003	6.0900e-004
tblFleetMix	MHD	8.1970e-003	0.01
tblFleetMix	MHD	8.1970e-003	0.01
tblFleetMix	OBUS	8.4400e-004	1.6650e-003
tblFleetMix	OBUS	8.4400e-004	1.6650e-003
tblFleetMix	SBUS	8.2400e-004	5.3600e-004
tblFleetMix	SBUS	8.2400e-004	5.3600e-004
tblFleetMix	UBUS	3.2900e-004	1.2180e-003
tblFleetMix	UBUS	3.2900e-004	1.2180e-003
tblGrading	MaterialExported	0.00	6,800.00
tblLandUse	LandUseSquareFeet	200,000.00	184,960.00
tblLandUse	LotAcreage	3.23	0.18
tblLandUse	LotAcreage	0.06	0.00

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblOffRoadEquipment	LoadFactor	0.38	0.38
tblOffRoadEquipment	LoadFactor	0.31	0.31
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Rubber Tired Dozers
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType		Concrete/Industrial Saws
tblOffRoadEquipment	OffRoadEquipmentType		Tractors/Loaders/Backhoes
tblOffRoadEquipment	OffRoadEquipmentType		Excavators
tblOffRoadEquipment	OffRoadEquipmentType	:	Generator Sets
tblOffRoadEquipment	OffRoadEquipmentType		Welders
tblOffRoadEquipment	OffRoadEquipmentType		Aerial Lifts
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	UsageHours	6.00	6.70
tblOffRoadEquipment	UsageHours	8.00	0.90
tblOffRoadEquipment	UsageHours	4.00	7.00
tblOffRoadEquipment	UsageHours	6.00	3.00
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	8.00	2.70
tblOffRoadEquipment	UsageHours	1.00	0.90
tblOffRoadEquipment	UsageHours	6.00	0.00
tblOffRoadEquipment	UsageHours	8.00	0.00
tblOffRoadEquipment	UsageHours	6.00	0.90
tblOffRoadEquipment	UsageHours	7.00	3.70
tblOffRoadEquipment	UsageHours	8.00	2.70
tblStationaryGeneratorsPumpsEF	CH4_EF	0.07	0.07

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblStationaryGeneratorsPumpsEF	ROG_EF	2.2480e-003	2.2477e-003
tblStationaryGeneratorsPumpsUse	HorsePowerValue	0.00	670.00
tblStationaryGeneratorsPumpsUse	HoursPerYear	0.00	50.00
tblStationaryGeneratorsPumpsUse	NumberOfEquipment	0.00	1.00
tblTripsAndVMT	HaulingTripNumber	35.00	0.00
tblTripsAndVMT	HaulingTripNumber	850.00	0.00
tblTripsAndVMT	VendorTripNumber	22.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	0.00
tblTripsAndVMT	WorkerTripNumber	8.00	0.00
tblTripsAndVMT	WorkerTripNumber	8.00	0.00
tblTripsAndVMT	WorkerTripNumber	145.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblTripsAndVMT	WorkerTripNumber	29.00	0.00
tblVehicleEF	HHD	0.02	0.19
tblVehicleEF	HHD	0.04	0.08
tblVehicleEF	HHD	6.29	4.95
tblVehicleEF	HHD	0.41	0.60
tblVehicleEF	HHD	6.9440e-003	8.9300e-004
tblVehicleEF	HHD	914.09	701.49
tblVehicleEF	HHD	1,200.04	1,353.64
tblVehicleEF	HHD	0.05	9.0240e-003
tblVehicleEF	HHD	0.14	0.11
tblVehicleEF	HHD	0.19	0.22
tblVehicleEF	HHD	2.0000e-006	3.0000e-006
tblVehicleEF	HHD	5.19	3.75
tblVehicleEF	HHD	2.51	1.39
tblVehicleEF	HHD	2.31	2.56
tblVehicleEF	HHD	2.0920e-003	1.6750e-003
tblVehicleEF	HHD	0.06	0.08

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	HHD	0.04	0.04
tblVehicleEF	HHD	0.02	0.02
tblVehicleEF	HHD	1.0000e-006	0.00
tblVehicleEF	HHD	2.0010e-003	1.5960e-003
tblVehicleEF	HHD	0.03	0.03
tblVehicleEF	HHD	8.9080e-003	8.7880e-003
tblVehicleEF	HHD	0.02	0.02
tblVehicleEF	HHD	1.0000e-006	0.00
tblVehicleEF	HHD	1.0000e-006	3.2000e-005
tblVehicleEF	HHD	5.6000e-005	1.0000e-005
tblVehicleEF	HHD	0.42	0.31
tblVehicleEF	HHD	1.0000e-006	3.2000e-005
tblVehicleEF	HHD	0.02	0.01
tblVehicleEF	HHD	2.4000e-005	9.0000e-005
tblVehicleEF	HHD	2.0000e-006	0.00
tblVehicleEF	HHD	8.5050e-003	6.0520e-003
tblVehicleEF	HHD	0.01	0.01
tblVehicleEF	HHD	1.0000e-006	0.00
tblVehicleEF	HHD	1.0000e-006	3.2000e-005
tblVehicleEF	HHD	5.6000e-005	1.0000e-005
tblVehicleEF	HHD	0.49	0.53
tblVehicleEF	HHD	1.0000e-006	3.2000e-005
tblVehicleEF	HHD	0.07	0.10
tblVehicleEF	HHD	2.4000e-005	9.0000e-005
tblVehicleEF	HHD	2.0000e-006	0.00
tblVehicleEF	LDA	8.9400e-004	1.1970e-003
tblVehicleEF	LDA	0.03	0.04
tblVehicleEF	LDA	0.40	0.48
tblVehicleEF	LDA	1.67	2.04
= i			•••••••••••••••••••••••••••••••••••••••

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	LDA	211.13	232.53
tblVehicleEF	LDA	44.48	59.30
tblVehicleEF	LDA	3.1240e-003	3.0930e-003
tblVehicleEF	LDA	0.02	0.02
tblVehicleEF	LDA	0.02	0.02
tblVehicleEF	LDA	0.12	0.17
tblVehicleEF	LDA	0.04	7.2130e-003
tblVehicleEF	LDA	8.7000e-004	8.0600e-004
tblVehicleEF	LDA	1.2220e-003	1.4010e-003
tblVehicleEF	LDA	0.02	2.5240e-003
tblVehicleEF	LDA	8.0100e-004	7.4200e-004
tblVehicleEF	LDA	1.1230e-003	1.2880e-003
tblVehicleEF	LDA	0.02	0.22
tblVehicleEF	LDA	0.06	0.06
tblVehicleEF	LDA	0.02	0.22
tblVehicleEF	LDA	2.9800e-003	4.1100e-003
tblVehicleEF	LDA	0.02	0.17
tblVehicleEF	LDA	0.11	0.19
tblVehicleEF	LDA	1.9400e-003	2.1340e-003
tblVehicleEF	LDA	4.0900e-004	5.4400e-004
tblVehicleEF	LDA	0.02	0.22
tblVehicleEF	LDA	0.06	0.06
tblVehicleEF	LDA	0.02	0.22
tblVehicleEF	LDA	4.3290e-003	5.9930e-003
tblVehicleEF	LDA	0.02	0.17
tblVehicleEF	LDA	0.12	0.20
tblVehicleEF	LDT1	1.4850e-003	2.9650e-003
tblVehicleEF	LDT1	0.03	0.07
tblVehicleEF	LDT1	0.51	0.86

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	LDT1	1.80	3.23
tblVehicleEF	LDT1	255.25	314.31
tblVehicleEF	LDT1	54.39	80.54
tblVehicleEF	LDT1	3.5750e-003	5.4470e-003
tblVehicleEF	LDT1	0.02	0.03
tblVehicleEF	LDT1	0.03	0.06
tblVehicleEF	LDT1	0.14	0.26
tblVehicleEF	LDT1	0.04	9.3130e-003
tblVehicleEF	LDT1	9.9500e-004	1.1960e-003
tblVehicleEF	LDT1	1.3920e-003	1.9450e-003
tblVehicleEF	LDT1	0.02	3.2600e-003
tblVehicleEF	LDT1	9.1500e-004	1.0990e-003
tblVehicleEF	LDT1	1.2790e-003	1.7880e-003
tblVehicleEF	LDT1	0.04	0.45
tblVehicleEF	LDT1	0.09	0.11
tblVehicleEF	LDT1	0.04	0.45
tblVehicleEF	LDT1	5.6580e-003	0.01
tblVehicleEF	LDT1	0.05	0.34
tblVehicleEF	LDT1	0.14	0.31
tblVehicleEF	LDT1	2.3450e-003	2.8850e-003
tblVehicleEF	LDT1	5.0000e-004	7.3900e-004
tblVehicleEF	LDT1	0.04	0.45
tblVehicleEF	LDT1	0.09	0.11
tblVehicleEF	LDT1	0.04	0.45
tblVehicleEF	LDT1	8.2550e-003	0.02
tblVehicleEF	LDT1	0.05	0.34
tblVehicleEF	LDT1	0.15	0.34
tblVehicleEF	LDT2	1.5990e-003	1.8080e-003
tblVehicleEF	LDT2	0.04	0.06

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	LDT2	0.54	0.64
tblVehicleEF	LDT2	2.24	2.68
tblVehicleEF	LDT2	262.50	324.35
tblVehicleEF	LDT2	56.43	81.79
tblVehicleEF	LDT2	3.8960e-003	4.3600e-003
tblVehicleEF	LDT2	0.02	0.03
tblVehicleEF	LDT2	0.03	0.04
tblVehicleEF	LDT2	0.16	0.24
tblVehicleEF	LDT2	0.04	9.0250e-003
tblVehicleEF	LDT2	9.6700e-004	9.5500e-004
tblVehicleEF	LDT2	1.2900e-003	1.5710e-003
tblVehicleEF	LDT2	0.02	3.1590e-003
tblVehicleEF	LDT2	8.9100e-004	8.7900e-004
tblVehicleEF	LDT2	1.1860e-003	1.4440e-003
tblVehicleEF	LDT2	0.05	0.25
tblVehicleEF	LDT2	0.08	0.06
tblVehicleEF	LDT2	0.05	0.25
tblVehicleEF	LDT2	6.0090e-003	6.5570e-003
tblVehicleEF	LDT2	0.05	0.18
tblVehicleEF	LDT2	0.17	0.25
tblVehicleEF	LDT2	2.4120e-003	
tblVehicleEF	LDT2	5.1800e-004	7.5100e-004
tblVehicleEF	LDT2	0.05	0.25
tblVehicleEF	LDT2	0.08	0.06
tblVehicleEF	LDT2	0.05	0.25
tblVehicleEF	LDT2	8.7300e-003	9.5530e-003
tblVehicleEF	LDT2	0.05	0.18
tblVehicleEF	LDT2	0.19	0.28
tblVehicleEF	LHD1	4.0410e-003	4.1630e-003
- i			

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	LHD1	4.8800e-003	3.5720e-003
tblVehicleEF	LHD1	8.4490e-003	0.02
tblVehicleEF	LHD1	0.18	0.18
tblVehicleEF	LHD1	0.44	0.50
tblVehicleEF	LHD1	0.87	2.00
tblVehicleEF	LHD1	8.16	7.60
tblVehicleEF	LHD1	688.90	642.93
tblVehicleEF	LHD1	9.90	15.44
tblVehicleEF	LHD1	7.2500e-004	5.7400e-004
tblVehicleEF	LHD1	0.04	0.03
tblVehicleEF	LHD1	0.02	0.03
tblVehicleEF	LHD1	0.04	0.03
tblVehicleEF	LHD1	0.26	0.28
tblVehicleEF	LHD1	0.22	0.31
tblVehicleEF	LHD1	9.2300e-004	6.5400e-004
tblVehicleEF	LHD1	0.08	0.07
tblVehicleEF	LHD1	9.9140e-003	9.3110e-003
tblVehicleEF	LHD1	6.7160e-003	8.6070e-003
tblVehicleEF	LHD1	2.0500e-004	1.2200e-004
tblVehicleEF	LHD1	8.8300e-004	6.2600e-004
tblVehicleEF	LHD1	0.03	0.03
tblVehicleEF	LHD1	2.4780e-003	2.3280e-003
tblVehicleEF	LHD1	6.3820e-003	8.2050e-003
tblVehicleEF	LHD1	1.8900e-004	1.1200e-004
tblVehicleEF	LHD1	1.3340e-003	0.08
tblVehicleEF	LHD1	0.05	0.02
tblVehicleEF	LHD1	0.02	0.02
tblVehicleEF	LHD1	7.4400e-004	0.08
tblVehicleEF	LHD1	0.07	0.05

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	LHD1	0.16	0.12
tblVehicleEF	LHD1	0.04	0.07
tblVehicleEF	LHD1	7.9000e-005	7.4000e-005
tblVehicleEF	LHD1	6.7170e-003	6.2730e-003
tblVehicleEF	LHD1	9.8000e-005	1.5300e-004
tblVehicleEF	LHD1	1.3340e-003	0.08
tblVehicleEF	LHD1	0.05	0.02
tblVehicleEF	LHD1	0.02	0.02
tblVehicleEF	LHD1	7.4400e-004	0.08
tblVehicleEF	LHD1	0.08	0.06
tblVehicleEF	LHD1	0.16	0.12
tblVehicleEF	LHD1	0.04	0.08
tblVehicleEF	LHD2	2.4410e-003	2.4310e-003
tblVehicleEF	LHD2	5.2370e-003	4.1910e-003
tblVehicleEF	LHD2	4.4970e-003	8.3010e-003
tblVehicleEF	LHD2	0.13	0.13
tblVehicleEF	LHD2	0.48	0.36
tblVehicleEF	LHD2	0.47	1.10
tblVehicleEF	LHD2	12.87	13.32
tblVehicleEF	LHD2	671.11	689.54
tblVehicleEF	LHD2	6.31	8.39
tblVehicleEF	LHD2	1.6530e-003	1.6810e-003
tblVehicleEF	LHD2	0.06	0.07
tblVehicleEF	LHD2	0.01	0.01
tblVehicleEF	LHD2	0.07	0.07
tblVehicleEF	LHD2	0.35	0.45
tblVehicleEF	LHD2	0.12	0.17
tblVehicleEF	LHD2	1.5020e-003	1.4610e-003
tblVehicleEF	LHD2	0.09	0.09

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	LHD2	0.01	0.01
tblVehicleEF	LHD2	0.01	0.02
tblVehicleEF	LHD2	1.0400e-004	5.2000e-005
tblVehicleEF	LHD2	1.4370e-003	1.3980e-003
tblVehicleEF	LHD2	0.04	0.03
tblVehicleEF	LHD2	2.7130e-003	2.6190e-003
tblVehicleEF	LHD2	0.01	0.02
tblVehicleEF	LHD2	9.6000e-005	4.8000e-005
tblVehicleEF	LHD2	6.1000e-004	0.05
tblVehicleEF	LHD2	0.02	0.01
tblVehicleEF	LHD2	0.01	0.01
tblVehicleEF	LHD2	3.6000e-004	0.05
tblVehicleEF	LHD2	0.10	0.08
tblVehicleEF	LHD2	0.05	0.06
tblVehicleEF	LHD2	0.02	0.04
tblVehicleEF	LHD2	1.2300e-004	1.2700e-004
tblVehicleEF	LHD2	6.4730e-003	6.6320e-003
tblVehicleEF	LHD2	6.2000e-005	8.3000e-005
tblVehicleEF	LHD2	6.1000e-004	0.05
tblVehicleEF	LHD2	0.02	0.01
tblVehicleEF	LHD2	0.02	0.02
tblVehicleEF	LHD2	3.6000e-004	0.05
tblVehicleEF	LHD2	0.11	0.09
tblVehicleEF	LHD2	0.05	0.06
tblVehicleEF	LHD2	0.02	0.04
tblVehicleEF	MCY	0.32	0.14
tblVehicleEF	MCY	0.25	0.15
tblVehicleEF	MCY	17.51	10.94
tblVehicleEF	MCY	9.22	7.81
=	1		•

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	MCY	209.72	185.71
tblVehicleEF	MCY	59.03	42.09
tblVehicleEF	MCY	0.07	0.04
tblVehicleEF	MCY	0.02	6.1180e-003
tblVehicleEF	MCY	1.14	0.50
tblVehicleEF	MCY	0.27	0.10
tblVehicleEF	MCY	0.01	0.01
tblVehicleEF	MCY	2.1500e-003	2.0260e-003
tblVehicleEF	MCY	2.8350e-003	3.3830e-003
tblVehicleEF	MCY	5.0400e-003	4.2000e-003
tblVehicleEF	MCY	2.0050e-003	1.8900e-003
tblVehicleEF	MCY	2.6500e-003	3.1630e-003
tblVehicleEF	MCY	0.89	3.60
tblVehicleEF	MCY	0.63	3.55
tblVehicleEF	MCY	0.47	3.60
tblVehicleEF	MCY	2.12	0.88
tblVehicleEF	MCY	0.45	3.78
tblVehicleEF	MCY	1.87	1.11
tblVehicleEF	MCY	2.0750e-003	1.8360e-003
tblVehicleEF	MCY	5.8400e-004	4.1600e-004
tblVehicleEF	MCY	0.89	0.08
tblVehicleEF	MCY	0.63	3.55
tblVehicleEF	MCY	0.47	0.08
tblVehicleEF	MCY	2.66	1.08
tblVehicleEF	MCY	0.45	3.78
tblVehicleEF	MCY	2.04	1.20
tblVehicleEF	MDV	1.6280e-003	1.9900e-003
tblVehicleEF	MDV	0.04	0.06
tblVehicleEF	MDV	0.53	0.66

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	MDV	2.26	2.72
tblVehicleEF	MDV	316.03	386.75
tblVehicleEF	MDV	66.56	96.89
tblVehicleEF	MDV	5.0750e-003	5.1690e-003
tblVehicleEF	MDV	0.02	0.03
tblVehicleEF	MDV	0.03	0.04
tblVehicleEF	MDV	0.17	0.26
tblVehicleEF	MDV	0.04	9.0760e-003
tblVehicleEF	MDV	9.7300e-004	9.3700e-004
tblVehicleEF	MDV	1.2910e-003	1.5230e-003
tblVehicleEF	MDV	0.02	3.1770e-003
tblVehicleEF	MDV	8.9700e-004	8.6300e-004
tblVehicleEF	MDV	1.1870e-003	1.4000e-003
tblVehicleEF	MDV	0.06	0.27
tblVehicleEF	MDV	0.09	0.07
tblVehicleEF	MDV	0.06	0.27
tblVehicleEF	MDV	6.2570e-003	7.5970e-003
tblVehicleEF	MDV	0.05	0.20
tblVehicleEF	MDV	0.18	0.28
tblVehicleEF	MDV	2.9060e-003	3.5480e-003
tblVehicleEF	MDV	6.1200e-004	8.8900e-004
tblVehicleEF	MDV	0.06	0.27
tblVehicleEF	MDV	0.09	0.07
tblVehicleEF	MDV	0.06	0.27
tblVehicleEF	MDV	9.0660e-003	0.01
tblVehicleEF	MDV	0.05	0.20
tblVehicleEF	MDV	0.20	0.31
tblVehicleEF	MH	4.7680e-003	5.6970e-003
tblVehicleEF	MH	0.02	0.02
=i	ñ		

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	МН	0.29	0.34
tblVehicleEF	МН	1.60	1.86
tblVehicleEF	МН	1,332.83	1,653.04
tblVehicleEF	МН	15.24	19.85
tblVehicleEF	МН	0.05	0.07
tblVehicleEF	МН	0.03	0.03
tblVehicleEF	МН	1.04	1.25
tblVehicleEF	МН	0.24	0.30
tblVehicleEF	МН	0.13	0.04
tblVehicleEF	МН	0.01	0.01
tblVehicleEF	МН	0.02	0.02
tblVehicleEF	МН	2.0900e-004	2.2700e-004
tblVehicleEF	МН	0.06	0.02
tblVehicleEF	МН	3.2990e-003	3.3400e-003
tblVehicleEF	МН	0.01	0.02
tblVehicleEF	МН	1.9200e-004	2.0900e-004
tblVehicleEF	МН	0.32	18.86
tblVehicleEF	МН	0.03	4.45
tblVehicleEF	МН	0.13	18.86
tblVehicleEF	МН	0.04	0.05
tblVehicleEF	МН	4.9890e-003	0.11
tblVehicleEF	MH	0.07	0.09
tblVehicleEF	MH	0.01	0.02
tblVehicleEF	МН	1.5100e-004	1.9600e-004
tblVehicleEF	МН	0.32	18.86
tblVehicleEF	МН	0.03	4.45
tblVehicleEF	МН	0.13	18.86
tblVehicleEF	МН	0.05	0.06
tblVehicleEF	МН	4.9890e-003	0.11
•			

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF tblVehicleEF	MHD MHD	3.8830e-003	0.02
	MHD		
		9.9100e-004	9.3460e-003
tblVehicleEF	MHD	8.4160e-003	6.2710e-003
tblVehicleEF	MHD	0.41	0.61
tblVehicleEF	MHD	0.15	0.14
tblVehicleEF	MHD	0.86	0.67
tblVehicleEF	MHD	64.07	138.50
tblVehicleEF	MHD	981.41	1,029.46
tblVehicleEF	MHD	8.54	6.48
tblVehicleEF	MHD	9.2100e-003	0.02
tblVehicleEF	MHD	0.12	0.13
tblVehicleEF	MHD	7.8740e-003	4.5510e-003
tblVehicleEF	MHD	0.33	0.70
tblVehicleEF	MHD	1.42	0.52
tblVehicleEF	MHD	1.68	1.16
tblVehicleEF	MHD	1.4200e-004	5.3800e-004
tblVehicleEF	MHD	0.13	0.04
tblVehicleEF	MHD	6.9790e-003	4.7230e-003
tblVehicleEF	MHD	1.1300e-004	7.9000e-005
tblVehicleEF	MHD	1.3600e-004	5.1400e-004
tblVehicleEF	MHD	0.06	0.01
tblVehicleEF	MHD	6.6700e-003	4.5110e-003
tblVehicleEF	MHD	1.0400e-004	7.3000e-005
tblVehicleEF	MHD	2.8600e-004	0.01
tblVehicleEF	MHD	0.01	3.1100e-003
tblVehicleEF	MHD	0.02	0.02
tblVehicleEF	MHD	1.6900e-004	0.01
tblVehicleEF	MHD	0.01	0.01

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	MHD	0.02	0.03
tblVehicleEF	MHD	0.04	0.03
tblVehicleEF	MHD	6.0800e-004	1.2730e-003
tblVehicleEF	MHD	9.3660e-003	9.7360e-003
tblVehicleEF	MHD	8.5000e-005	6.4000e-005
tblVehicleEF	MHD	2.8600e-004	0.01
tblVehicleEF	MHD	0.01	3.1100e-003
tblVehicleEF	MHD	0.03	0.04
tblVehicleEF	MHD	1.6900e-004	0.01
tblVehicleEF	MHD	0.01	0.02
tblVehicleEF	MHD	0.02	0.03
tblVehicleEF	MHD	0.05	0.04
tblVehicleEF	OBUS	7.1030e-003	7.4900e-003
tblVehicleEF	OBUS	2.0910e-003	0.01
tblVehicleEF	OBUS	0.02	0.01
tblVehicleEF	OBUS	0.65	0.55
tblVehicleEF	OBUS	0.25	0.27
tblVehicleEF	OBUS	1.56	1.41
tblVehicleEF	OBUS	96.78	89.40
tblVehicleEF	OBUS	1,197.98	1,222.16
tblVehicleEF	OBUS	13.32	11.54
tblVehicleEF	OBUS	0.01	0.01
tblVehicleEF	OBUS	0.12	0.15
tblVehicleEF	OBUS	0.01	0.01
tblVehicleEF	OBUS	0.43	0.32
tblVehicleEF	OBUS	1.46	0.80
tblVehicleEF	OBUS	1.13	0.91
tblVehicleEF	OBUS	1.4300e-004	2.9300e-004
tblVehicleEF	OBUS	0.13	0.05

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	OBUS	7.9760e-003	0.01
tblVehicleEF	OBUS	1.5900e-004	1.1400e-004
tblVehicleEF	OBUS	1.3700e-004	2.8000e-004
tblVehicleEF	OBUS	0.06	0.02
tblVehicleEF	OBUS	7.6160e-003	0.01
tblVehicleEF	OBUS	1.4600e-004	1.0500e-004
tblVehicleEF	OBUS	1.0700e-003	0.07
tblVehicleEF	OBUS	0.02	0.01
tblVehicleEF	OBUS	0.05	0.04
tblVehicleEF	OBUS	4.9200e-004	0.07
tblVehicleEF	OBUS	0.02	0.03
tblVehicleEF	OBUS	0.05	0.07
tblVehicleEF	OBUS	0.08	0.07
tblVehicleEF	OBUS	9.1900e-004	8.4200e-004
tblVehicleEF	OBUS	0.01	0.01
tblVehicleEF	OBUS	1.3200e-004	1.1400e-004
tblVehicleEF	OBUS	1.0700e-003	0.07
tblVehicleEF	OBUS	0.02	0.01
tblVehicleEF	OBUS	0.06	0.05
tblVehicleEF	OBUS	4.9200e-004	0.07
tblVehicleEF	OBUS	0.02	0.04
tblVehicleEF	OBUS	0.05	0.07
tblVehicleEF	OBUS	0.08	0.07
tblVehicleEF	SBUS	0.07	0.08
tblVehicleEF	SBUS	4.1220e-003	0.09
tblVehicleEF	SBUS	6.6000e-003	5.2120e-003
tblVehicleEF	SBUS	3.05	1.83
tblVehicleEF	SBUS	0.36	0.67
tblVehicleEF	SBUS	0.89	0.66

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	SBUS	334.94	178.74
tblVehicleEF	SBUS	955.71	919.19
tblVehicleEF	SBUS	5.24	3.91
tblVehicleEF	SBUS	0.04	0.02
tblVehicleEF	SBUS	0.11	0.11
tblVehicleEF	SBUS	6.7700e-003	4.8890e-003
tblVehicleEF	SBUS	2.55	1.02
tblVehicleEF	SBUS	2.79	1.39
tblVehicleEF	SBUS	1.25	0.52
tblVehicleEF	SBUS	1.8040e-003	6.5600e-004
tblVehicleEF	SBUS	0.74	0.04
tblVehicleEF	SBUS	0.01	0.01
tblVehicleEF	SBUS	0.02	7.7560e-003
tblVehicleEF	SBUS	7.1000e-005	4.6000e-005
tblVehicleEF	SBUS	1.7260e-003	6.2600e-004
tblVehicleEF	SBUS	0.32	0.02
tblVehicleEF	SBUS	2.6600e-003	2.6050e-003
tblVehicleEF	SBUS	0.02	7.4040e-003
tblVehicleEF	SBUS	6.6000e-005	4.2000e-005
tblVehicleEF	SBUS	9.4600e-004	0.05
tblVehicleEF	SBUS	8.9890e-003	0.01
tblVehicleEF	SBUS	0.34	0.20
tblVehicleEF	SBUS	4.5200e-004	0.05
tblVehicleEF	SBUS	0.06	0.04
tblVehicleEF	SBUS	0.02	0.03
tblVehicleEF	SBUS	0.04	0.03
tblVehicleEF	SBUS	3.1960e-003	1.6090e-003
tblVehicleEF	SBUS	9.1510e-003	8.5260e-003
tblVehicleEF	SBUS	5.2000e-005	3.9000e-005
-			•

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

tblVehicleEF	SBUS	9.4600e-004	0.05
tblVehicleEF	SBUS	8.9890e-003	0.01
tblVehicleEF	SBUS	0.48	0.32
tblVehicleEF	SBUS	4.5200e-004	0.05
tblVehicleEF	SBUS	0.07	0.13
tblVehicleEF	SBUS	0.02	0.03
tblVehicleEF	SBUS	0.04	0.03
tblVehicleEF	UBUS	1.86	0.63
tblVehicleEF	UBUS	2.2810e-003	2.4280e-003
tblVehicleEF	UBUS	14.11	7.35
tblVehicleEF	UBUS	0.14	0.51
tblVehicleEF	UBUS	1,668.58	854.61
tblVehicleEF	UBUS	1.40	2.99
tblVehicleEF	UBUS	0.28	0.13
tblVehicleEF	UBUS	1.2840e-003	4.3750e-003
tblVehicleEF	UBUS	0.71	0.21
tblVehicleEF	UBUS	0.02	0.02
tblVehicleEF	UBUS	0.07	0.18
tblVehicleEF	UBUS	0.03	0.08
tblVehicleEF	UBUS	5.1160e-003	3.9660e-003
tblVehicleEF	UBUS	1.5000e-005	1.3000e-005
tblVehicleEF	UBUS	0.03	0.06
tblVehicleEF	UBUS	8.3320e-003	0.02
tblVehicleEF	UBUS	4.8930e-003	3.7910e-003
tblVehicleEF	UBUS	1.4000e-005	1.2000e-005
tblVehicleEF	UBUS	7.5000e-005	7.1100e-003
tblVehicleEF	UBUS	1.0470e-003	2.2020e-003
tblVehicleEF	UBUS	4.5000e-005	7.1100e-003
tblVehicleEF	UBUS	0.03	0.05

CalEEMod Version: CalEEMod.2020.4.0

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleEF	UBUS	2.4500e-004	7.8800e-003
tblVehicleEF	UBUS	9.6900e-003	8.0720e-003
tblVehicleEF	UBUS	0.01	6.3010e-003
tblVehicleEF	UBUS	1.4000e-005	3.0000e-005
tblVehicleEF	UBUS	7.5000e-005	7.1100e-003
tblVehicleEF	UBUS	1.0470e-003	2.2020e-003
tblVehicleEF	UBUS	4.5000e-005	7.1100e-003
tblVehicleEF	UBUS	1.90	0.68
tblVehicleEF	UBUS	2.4500e-004	7.8800e-003
tblVehicleEF	UBUS	0.01	8.8370e-003
tblWater	AerobicPercent	87.46	100.00
tblWater	AerobicPercent	87.46	100.00
tblWater	AnaerobicandFacultativeLagoonsPercent	2.21	0.00
tblWater	AnaerobicandFacultativeLagoonsPercent	2.21	0.00
tblWater	SepticTankPercent	10.33	0.00
tblWater	SepticTankPercent	10.33	0.00
tblWoodstoves	WoodstoveWoodMass	582.40	0.00

2.0 Emissions Summary

2.1 Overall Construction <u>Unmitigated Construction</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	/yr		
2028	0.0408	0.3768	0.4401	8.3000e-004	0.1118	0.0157	0.1274	0.0527	0.0147	0.0673	0.0000	72.6961	72.6961	0.0182	0.0000	73.152

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2029	0.902	0.5778		1.3900e-003			0.0242	6.0000e-	0.0227	0.0228		120.1232			0.0000	120.7352
					004			005								
2030	0.5231	0.2602		1.1900e-003			5.9800e-003			5.9800e-003		101.6575			0.0000	101.7472
														003		
Maximum	0.9020	0.5778	0.7351	1.3900e-003	0.1118	0.0239	0.1274	0.0527	0.0227	0.0673	0.0000	120.1232	120.1232	0.0245	0.0000	120.7352

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	ns/yr							МТ	/yr		
2028	0.0142	0.2989	0.5367	8.3000e-004	0.0503	1.2900e- 003	0.0516	0.0237	1.2900e- 003	0.0250	0.0000	72.6960	72.6960	0.0182	0.0000	73.1519
2029	0.8612	0.5172	0.8764	1.3900e-003	1.7000e- 004	4.9400e- 003	5.1100e-003	3.0000e- 005	4.9400e- 003	4.9600e-003	0.0000	120.1230	120.1230	0.0245	0.0000	120.7351
2030	0.4980	0.3733	0.6371	1.1900e-003	0.0000	3.6600e- 003	3.6600e-003	0.0000	3.6600e- 003	3.6600e-003	0.0000	101.6574	101.6574	3.5900e- 003	0.0000	101.7471
Maximum	0.8612	0.5172	0.8764	1.3900e-003	0.0503	4.9400e- 003	0.0516	0.0237	4.9400e- 003	0.0250	0.0000	120.1230	120.1230	0.0245	0.0000	120.7351

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
ercent duction	6.31	2.09	-23.38	0.00	55.00	78.26	61.71	55.00	77.20	65.02	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	5-1-2028	7-31-2028	0.2135	0.1256
2	8-1-2028	10-31-2028	0.1471	0.1258
3	11-1-2028	1-31-2029	0.0714	0.0835
4	2-1-2029	4-30-2029	0.0454	0.0598

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5	5-1-2029	7-31-2029	0.4227	0.3933
6	8-1-2029	10-31-2029	0.6022	0.5465
7	11-1-2029	1-31-2030	0.5697	0.5465
8	2-1-2030	4-30-2030	0.4892	0.5287
9	5-1-2030	7-31-2030	0.0968	0.1245
10	8-1-2030	9-30-2030	0.0221	0.0287
		Highest	0.6022	0.5465

2.2 Overall Operational <u>Unmitigated Operational</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	MT/yr										
Area	0.9087	0.0240	1.4841	1.2000e-004		8.7900e- 003	8.7900e-003		8.7900e- 003	8.7900e-003	0.0000	10.4155	10.4155	2.4600e- 003	1.5000e-004	10.5208
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	293.0679	293.0679	0.0120	1.4500e-003	293.7995
Mobile	0.4063	0.3411	2.3470	7.5100e-003	0.7367	4.8100e- 003	0.7415	0.1841	4.5100e- 003	0.1886	0.0000	740.2421	740.2421	0.0291	0.0365	751.8311
Stationary	0.0275	0.0768	0.0701	1.3000e-004		4.04E-03	4.0400e-003		4.0400e- 003	4.0400e-003	0.0000	12.7567	12.7567	1.7900e- 003	0.0000	12.8014
Waste						0.0000	0.0000		0.0000	0.0000	19.2050	0.0000	19.2050	1.1350	0.0000	47.5795
Water						0.0000	0.0000		0.0000	0.0000	4.6756	36.8898	41.5654	0.0176	0.0104	45.0898
Total	1.3425	0.4419	3.9012	7.7600e-003	0.7367	0.0176	0.7544	0.1841	0.0173	0.2014	23.8805	1,093.3720	1,117.2526	1.1979	0.0484	1,161.6220

CalEEMod Version: CalEEMod.2020.4.0

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Area	0.9087	0.0240	1.4841	1.2000e-004		8.7900e- 003	8.7900e-003		8.7900e- 003	8.7900e-003	0.0000	10.4155	10.4155	2.4600e- 003	1.5000e-004	10.5208
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0
Mobile	0.4063	0.3411	2.3470	7.5100e-003	0.7367	4.8100e- 003	0.7415	0.1841	4.5100e- 003	0.1886	0.0000	740.2421	740.2421	0.0291	0.0365	751.8311
Stationary	0.0275	0.0768	0.0701	1.3000e-004		4.0400e- 003	4.0400e-003		4.0400e- 003	4.0400e-003	0.0000	12.7567	12.7567	1.7900e- 003	0.0000	12.8014
Waste						0.0000	0.0000		0.0000	0.0000	19.2050	0.0000	19.2050	1.1350	0.0000	47.5795
Water						0.0000	0.0000		0.0000	0.0000	4.6756	36.8898	41.5654	0.0176	0.0104	45.0898
Total	1.3425	0.4419	3.9012	7.7600e-003	0.7367	0.0176	0.7544	0.1841	0.0173	0.2014	23.8805	800.3042	824.1847	1.1859	0.0470	867.8226

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	26.80	26.23	1.00	3.00	25.29

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	5/1/2028	9/1/2028	5	90	
2	Site Preparation	Site Preparation	5/1/2028	9/1/2028	5	90	
3	Grading	Grading	7/1/2028	1/1/2029	5	131	
4	Building Construction	Building Construction	6/1/2029	8/22/2030	5	320	

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5	Architectural Coating	Architectural Coating	6/1/2029	5/1/2030	5	239	
6	Trenching	Trenching	1/1/2029	6/15/2029	 5	120	

Acres of Grading (Site Preparation Phase): 30.38

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 374,544; Residential Outdoor: 124,848; Non-Residential Indoor: 3,737; Non-Residential Outdoor: 1,246; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	6.70	78	0.48
Demolition	Excavators	1	0.90	158	0.38
Demolition	Concrete/Industrial Saws	1	0.90	81	0.73
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	1	3.00	89	0.20
Grading	Graders	0	0.00	187	0.41
Site Preparation	Graders	1	2.70	187	0.41
	Rubber Tired Dozers	1	2.70	247	0.40
Grading	Excavators	1	3.70	158	0.38
Demolition	Rubber Tired Dozers	1	0.90	247	0.40
	Rubber Tired Dozers	0	0.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	0	0.00	97	0.37
Demolition	Tractors/Loaders/Backhoes	1	0.90	97	0.37
Grading	Tractors/Loaders/Backhoes	1	3.70	97	0.37
Grading	Concrete/Industrial Saws	1	3.70	81	0.73
Site Preparation	Tractors/Loaders/Backhoes	1	2.70	97	0.37
Trenching	Tractors/Loaders/Backhoes	1	4.00	97	0.37
Trenching	Excavators	1	4.00	158	0.38

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Building Construction	Generator Sets	1	5.00	84	0.74
Building Construction	Welders	1	2.00	46	0.45
Architectural Coating	Aerial Lifts	1	6.00	63	0.31

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	4	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	3	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	4	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Trenching	2	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	2	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Use Cleaner Engines for Construction Equipment

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 **Demolition - 2028**

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					3.8200e- 003	0.0000	3.8200e-003	5.8000e- 004	0.0000	5.8000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	6.2900e- 003	0.0580	0.0614	1.2000e-004		2.5200e- 003	2.5200e-003		2.3500e- 003	2.3500e-003	0.0000	10.2049	10.2049	2.5400e- 003	0.0000	10.2684

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	6.2900e-	0.0580	1.2000e-004	3.8200e-	2.5200e-	6.3400e-003	5.8000e-	2.3500e-	2.9300e-003	10.2049	10.2049	2.5400e-	0.0000	10.2684
	003			003	003		004	003				003		

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					1.7200e- 003	0.0000	1.7200e-003	2.6000e- 004		2.6000e-004		0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.9600e- 003	0.0411	0.0742	1.2000e-004		1.8000e- 004	1.8000e-004		1.8000e- 004	1.8000e-004	0.0000	10.2049	10.2049	2.5400e- 003	0.0000	10.2684

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	1.9600e-	0.0411	0.0742	1.2000e-004	1.7200e-	1.8000e-	1.9000e-003	2.6000e-	1.8000e-	4.4000e-004	0.0000	10.2049	10.2049	2.5400e-	0.0000	10.2684
	003				003	004		004	004					003		1

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ns/yr				МТ	/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.3 Site Preparation - 2028

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
Fugitive Dust					0.1076	0.0000	0.1076	0.0520	0.0000	0.0520		0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0166	0.1735	0.1036	2.8000e-004		6.9200e- 003	6.9200e-003		6.3600e- 003	6.3600e-003	0.0000	24.3766	24.3766	7.8800e- 003	0.0000	24.5737

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	0.0166	0.1735	0.1036	2.8000e-004	0.1076	6.9200e-	0.1145	0.0520	6.3600e-	0.0584	0.0000	24.3766	24.3766	7.8800e-	0.0000	24.5737
iotai	0.0100	0.1700	0.1000	2.00000-004	0.1070	0.52000-	0.1140	0.0020		0.0004	0.0000	24.0700	24.0700	7.00000	0.0000	24.0707
						000			000					000	. ,	
						003			003					003	. ,	
															. ,	
															. ,	

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					0.0484	0.0000	0.0484	0.0234	0.0000	0.0234	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.8200e- 003	0.0812	0.1578	2.8000e-004		4.5000e- 004	4.5000e-004		4.5000e- 004	4.5000e-004	0.0000	24.3765	24.3765	7.8800e- 003	0.0000	24.5736

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	4.8200e-	0.0812	0.1578	2.8000e-004	0.0484	4.5000e-	0.0489	0.0234	4.5000e-	0.0239	0.0000	24.3765	24.3765	7.8800e-	0.0000	24.5736
	003					004			004					003		1

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.4 Grading - 2028

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					3.8000e- 004	0.0000	3.8000e-004	6.0000e- 005		6.0000e-005			0.0000	0.0000	0.0000	0.0000
Off-Road	0.0179	0.1453		4.4000e-004		003	6.2300e-003		5.9500e- 003	5.9500e-003		38.1146		003	0.0000	38.3099

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	0.0179	0.1453	0.2751	4.4000e-004	3.8000e-	6.2300e-	6.6100e-003	6.0000e-	5.9500e-	6.0100e-003	0.0000	38.1146	38.1146	7.8100e-	0.0000	38.3099
					004	003		005	003					003		1

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					1.7000e- 004	0.0000	1.7000e-004	3.0000e- 005	0.0000	3.0000e-005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	7.4600e- 003	0.1766	0.3048	4.4000e-004		6.6000e- 004	6.6000e-004		6.6000e- 004	6.6000e-004	0.0000	38.1146	38.1146	7.8100e- 003	0.0000	38.3098

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	7.4600e-	0.1766	0.3048	4.4000e-004	1.7000e-	6.6000e-	8.3000e-004	3.0000e-	6.6000e-	6.9000e-004	0.0000	38.1146	38.1146	7.8100e-	0.0000	38.3098
	003				004	004		005	004					003		

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.4 Grading - 2029

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ıs/yr							МТ	7/yr		
Fugitive Dust					3.8000e- 004	0.0000	3.8000e-004	6.0000e- 005		6.0000e-005		0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.4000e- 004	1.1200e- 003	2.1200e-003	0.0000		5.0000e- 005	5.0000e-005		5.0000e- 005	5.0000e-005	0.0000	0.2932	0.2932	6.0000e- 005	0.0000	0.2947

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	1.4000e-	1.1200e-	2.1200e-003	0.0000	3.8000e-	5.0000e-	4.3000e-004	6.0000e-	5.0000e-	1.1000e-004	0.0000	0.2932	0.2932	6.0000e-	0.0000	0.2947
	004	003			004	005		005	005					005		

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					1.7000e- 004	0.0000	1.7000e-004	3.0000e- 005		3.0000e-005		0.0000	0.0000	0.0000	0.0000	0.0000
	6.0000e- 005	003	2.3400e-003			005	1.0000e-005		1.0000e- 005	1.0000e-005		0.2932	0.2932	6.0000e- 005	0.0000	0.2947

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	6.0000e-	1.3600e-	2.3400e-003	0.0000	1.7000e-	1.0000e-	1.8000e-004	3.0000e-	1.0000e-	4.0000e-005	0.0000	0.2932	0.2932	6.0000e-	0.0000	0.2947
	005	003			004	005		005	005					005		1

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.5 Building Construction - 2029

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.0401	0.3733	0.3530	7.9000e-004		0.0155	0.0155		0.0147	0.0147	0.0000	67.9636	67.9636	0.0135	0.0000	68.3004
Total	0.0401	0.3733	0.3530	7.9000e-004		0.0155	0.0155		0.0147	0.0147	0.0000	67.9636	67.9636	0.0135	0.0000	68.3004

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ns/yr							МТ	-/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/	/yr							МТ	/yr		
Off-Road	0.0138	0.2635	0.4585	7.9000e-004		2.0000e- 003	2.0000e-003		2.0000e- 003	2.0000e-003	0.0000	67.9635	67.9635	0.0135	0.0000	68.3003
Total	0.0138	0.2635	0.4585	7.9000e-004		2.0000e- 003	2.0000e-003		2.0000e- 003	2.0000e-003	0.0000	67.9635	67.9635	0.0135	0.0000	68.3003

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.5 Building Construction - 2030

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Off-Road	0.0359	0.2001	0.3617	9.8000e-004		4.5900e- 003	4.5900e-003		4.5900e- 003	4.5900e-003	0.0000	83.4951	83.4951	2.9100e- 003	0.0000	83.5679
Total	0.0359	0.2001	0.3617	9.8000e-004		4.5900e- 003	4.5900e-003		4.5900e- 003	4.5900e-003	0.0000	83.4951	83.4951	2.9100e- 003	0.0000	83.5679

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.0153	0.2912	0.5068	9.8000e-004		2.2200e- 003	2.2200e-003		2.2200e- 003	2.2200e-003	0.0000	83.4950	83.4950	2.9100e- 003	0.0000	83.5678
Total	0.0153	0.2912	0.5068	9.8000e-004		2.2200e- 003	2.2200e-003		2.2200e- 003	2.2200e-003	0.0000	83.4950	83.4950	2.9100e- 003	0.0000	83.5678

Mitigated Construction Off-Site

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.6 Architectural Coating - 2029

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Archit. Coating	0.8363					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0164	0.1267	0.2154	3.5000e-004		4.8800e- 003	4.8800e-003		4.8400e- 003	4.8400e-003	0.0000	30.0288	30.0288	3.8900e- 003	0.0000	30.1259
Total	0.8528	0.1267	0.2154	3.5000e-004	-	4.8800e- 003	4.8800e-003		4.8400e- 003	4.8400e-003	0.0000	30.0288	30.0288	3.8900e- 003	0.0000	30.1259

Unmitigated Construction Off-Site

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating	0.8363					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	6.9700e- 003	0.1434	0.2277	3.5000e-004		2.5200e- 003	2.5200e-003		2.5200e- 003	2.5200e-003	0.0000	30.0288	30.0288	3.8900e- 003	0.0000	30.1259
Total	0.8433	0.1434	0.2277	3.5000e-004		2.5200e- 003	2.5200e-003		2.5200e- 003	2.5200e-003	0.0000	30.0288	30.0288	3.8900e- 003	0.0000	30.1259

Mitigated Construction Off-Site

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.6 Architectural Coating - 2030 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	ıs/yr							МТ	/yr		
Archit. Coating	0.4787					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	8.4500e- 003	0.0601	0.1248	2.1000e-004		1.3900e- 003	1.3900e-003		1.3900e- 003	1.3900e-003	0.0000	18.1624	18.1624	6.7000e- 004	0.0000	18.1793
Total	0.4871	0.0601	0.1248	2.1000e-004		1.3900e- 003	1.3900e-003		1.3900e- 003	1.3900e-003	0.0000	18.1624	18.1624	6.7000e- 004	0.0000	18.1793

Unmitigated Construction Off-Site

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating	0.4787					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	3.9900e- 003	0.0821	0.1304	2.1000e-004		1.4400e- 003	1.4400e-003		1.4400e- 003	1.4400e-003	0.0000	18.1624	18.1624	6.7000e- 004	0.0000	18.1792
Total	0.4827	0.0821	0.1304	2.1000e-004		1.4400e- 003	1.4400e-003		1.4400e- 003	1.4400e-003	0.0000	18.1624	18.1624	6.7000e- 004	0.0000	18.1792

Mitigated Construction Off-Site

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.7 Trenching - 2029

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ıs/yr							МТ	/yr		
Off-Road	8.9800e- 003	0.0767	0.1647	2.5000e-004		3.4200e- 003	3.4200e-003		3.1500e- 003	3.1500e-003	0.0000	21.8376	21.8376	7.0600e- 003	0.0000	22.0142
Total	8.9800e- 003	0.0767	0.1647	2.5000e-004		3.4200e- 003	3.4200e-003		3.1500e- 003	3.1500e-003	0.0000	21.8376	21.8376	7.0600e- 003	0.0000	22.0142

Unmitigated Construction Off-Site

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Category					tor	ıs/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	s/yr							МТ	/yr		
Off-Road	3.9900e- 003	0.1089	0.1878	2.5000e-004		4.1000e- 004	4.1000e-004		4.1000e- 004	4.1000e-004	0.0000	21.8376	21.8376	7.0600e- 003	0.0000	22.0141
Total	3.9900e- 003	0.1089	0.1878	2.5000e-004		4.1000e- 004	4.1000e-004		4.1000e- 004	4.1000e-004	0.0000	21.8376	21.8376	7.0600e- 003	0.0000	22.0141

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	7/yr		

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0 0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					to	ns/yr							M	Γ/yr		
Mitigated	0.4063	0.3411		7.5100e-003		003			4.5100e- 003			740.2421				751.8311
Unmitigated	0.4063	0.3411	2.3470	7.5100e-003	0.7367	4.8100e- 003	0.7415	0.1841	4.5100e- 003	0.1886	0.0000	740.2421	740.2421	0.0291	0.0365	751.8311

4.2 Trip Summary Information

	Ave	erage Daily Trip Rat	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments High Rise	890.00	906.00	718.00	2,004,079	2,004,079
Strip Mall	110.40	104.72	50.89	155,679	155,679
Total	1,000.40	1,010.72	768.89	2,159,759	2,159,759

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments High Rise	10.80	4.80	5.70	31.00	15.00	54.00	86	11	3
Strip Mall	9.50	7.30	7.30	16.60	64.40	19.00	45	40	15

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments High Rise	0.529137	0.031005	0.234316	0.130484	0.026305	0.006520	0.011184	0.023553	0.001665	0.001218	0.003469	0.000536	0.000609
Strip Mall	0.529137	0.031005	0.234316	0.130484	0.026305	0.006520	0.011184	0.023553	0.001665	0.001218	0.003469		0.000609

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Percent of Electricity Use Generated with Renewable Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	293.0679	293.0679		1.4500e-003	
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

NaturalGas	0.0000	0.0000	0.0000	0.0000	 0.0000	0.0000	:	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated															

5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

NaturalGa ROG NOx CO SO2 Fugitive Exhaust PM10 Total Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 N20 CO2e PM2.5 PM10 PM10 PM2.5 s Use kBTU/yr MT/yr Land Use tons/yr 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Apartments High Rise 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Strip Mall 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Total

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	es/yr							МТ	/yr		
Apartments High Rise	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Strip Mall	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	T/yr	
Apartments High Rise	773772	283.5825	0.0116	1.4000e-003	284.2904
Strip Mall	25881.5	9.4854	3.9000e-004	5.0000e-005	9.5091
Total		293.0679	0.0120	1.4500e-003	293.7995

Mitigated

	Electricity	Total CO2	CH4	N2O	CO2e
	Use				
Land Use	kWh/yr		МТ	-/yr	
Apartments High Rise	0	0.0000	0.0000	0.0000	0.0000
Strip Mall	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.9087	0.0240	1.4841	1.2000e-004		8.7900e- 003	8.7900e-003		8.7900e- 003	8.7900e-003	0.0000	10.4155	10.4155	2.4600e- 003	1.5000e-004	10.5208
Unmitigated	0.9087	0.0240	1.4841	1.2000e-004		8.7900e- 003	8.7900e-003		8.7900e- 003	8.7900e-003	0.0000	10.4155	10.4155		1.5000e-004	10.5208

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating	0.1315					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.7321					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	8.1000e- 004	6.9000e-003	2.9400e- 003	4.0000e-005		5.6000e- 004	5.6000e-004		5.6000e- 004	5.6000e-004	0.0000	7.9897	7.9897	1.5000e- 004	1.5000e-004	8.0372
Landscaping	0.0443	0.0171		8.0000e-005		003	8.2400e-003		003	8.2400e-003		2.4258	2.4258	2.3100e- 003	0.0000	2.4836

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Total	0.9087	0.0240	1.4841	1.2000e-004	8.800	e- o.ouuue-uu	3	8.8000e-	8.8000e-003	0.0000	10.4155	10.4155	2.4600e-	1.5000e-004	10.5208
					003			003					003		

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	SubCategory tons/yr							MT/yr								
Architectural Coating	0.1315					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.7321					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	8.1000e- 004	6.9000e-003	2.9400e- 003	4.0000e-005		5.6000e- 004	5.6000e-004		5.6000e- 004	5.6000e-004	0.0000	7.9897	7.9897	1.5000e- 004	1.5000e-004	8.0372
Landscaping	0.0443	0.0171	1.4811	8.0000e-005		8.2400e- 003	8.2400e-003		8.2400e- 003	8.2400e-003	0.0000	2.4258	2.4258	2.3100e- 003	0.0000	2.4836
Total	0.9087	0.0240	1.4841	1.2000e-004		8.8000e- 003	8.8000e-003		8.8000e- 003	8.8000e-003	0.0000	10.4155	10.4155	2.4600e- 003	1.5000e-004	10.5208

7.0 Water Detail

7.1 Mitigation Measures Water

Total CO2	CH4	N2O	CO2e
-----------	-----	-----	------

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Category	MT/yr							
Mitigated	41.5654	0.0176	0.0104	45.0898				
Unmitigated	41.5654	0.0176	0.0104	45.0898				

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Apartments High Rise	13.0308 / 8.21507	40.9894	0.0174	0.0102	44.4646
Strip Mall	0.184441 / 0.113044	0.5760	2.5000e-004	1.4000e-004	0.6252
Total		41.5654	0.0176	0.0104	45.0898

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
Apartments High Rise	13.0308 / 8.21507	40.9894	0.0174	0.0102	44.4646

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Strip Mall	0.184441 / 0.113044	0.5760	2.5000e-004	1.4000e-004	0.6252
Total		41.5654	0.0176	0.0104	45.0898

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		М	T/yr	
Mitigated	19.2050	1.1350	0.0000	47.5795
Unmitigated	19.2050	1.1350	0.0000	47.5795

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	-/yr	
Apartments High Rise	92	18.6752	1.1037	0.0000	46.2669

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Strip Mall	 0.5298	0.0313	0.0000	1.3126
Total	19.2050	1.1350	0.0000	47.5795

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	-/yr	
Apartments High Rise	92	18.6752	1.1037	0.0000	46.2669
Strip Mall	2.61	0.5298	0.0313	0.0000	1.3126
Total		19.2050	1.1350	0.0000	47.5795

9.0 Operational Offroad

	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Emergency Generator	1	0	50	670	0.73	Diesel

Boilers

Page 1 of 1

Date: 7/1/2021 10:31 AM

Eterna Tower, 17 & 29 E Santa Clara St, San Jose - Santa Clara County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

10.1 Stationary Sources

Unmitigated/Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					tons	s/yr							МТ	Γ/yr		
Emergency Generator - Diesel	0.0275	0.0768	0.0701	1.3000e-004		4.0400e- 003	4.0400e-003		4.0400e- 003	4.0400e-003	0.0000	12.7567	12.7567	1.7900e- 003	0.0000	12.8014
Total	0.0275	0.0768	0.0701	1.3000e-004		4.0400e- 003	4.0400e-003		4.0400e- 003	4.0400e-003	0.0000	12.7567	12.7567	1.7900e- 003	0.0000	12.8014

11.0 Vegetation

Attachment 3: EMFAC2021 Emissions Adjustment Factors

CalEEMod Construction Inputs

	CalEEMod WORKER	CalEEMod VENDOR	Total Worker	Total Vendor	CalEEMod HAULING		in Vendor	r Trin Hauling	Trip Worker Vehicle	Vendor Vehicle	Hauling Vehicle	Worker	Vendor	Hauling
Phase	TRIPS	TRIPS	Trips	Trips	TRIPS	Length	Length		Class	Class	Class	VMT	VMT	VMT
Demolition	1	0	0 !	900	0	35 1	0.8	7.3	20 LD_Mix	HDT_Mix	HHDT	9720	0	700
Site Preparation		8	0	720	0	0 1	0.8	7.3	20 LD_Mix	HDT_Mix	HHDT	7776	0	0
Grading		8	0 10	048	0 8	50 1	0.8	7.3	20 LD_Mix	HDT_Mix	HHDT	11318.4	0	17000
Trenching		5	0	500	0	0 1	0.8	7.3	20 LD_Mix	HDT_Mix	HHDT	6480	0	0
Building Construction	14	5 2	2 46	100 704	10	54 1	0.8	7.3	7.3 LD_Mix	HDT_Mix	HHDT	501120	51392	467.2
Architectural Coating	2	9	0 69	931	0	0 1	0.8	7.3	20 LD_Mix	HDT_Mix	HHDT	74854.8	0	0

Number of Days Per Year			
2028	5/1/28	12/31/28	245
2029	1/1/29	12/31/29	365
2030	1/1/30	8/22/30	234

234 167844 **604** *Total Workdays*

175 261

Phase	Start Date	End Date	Days/Week	Workdays
Demolition	5/1/2028	9/1/2028	5	90
Site Preparation	5/1/2028	9/1/2028	5	90
Grading	7/1/2028	1/1/2029	5	131
Trenching	1/1/2029	6/15/2029	5	120
Building Construction	6/1/2029	8/22/2030	5	320
Architectural Coating	6/1/2029	5/1/2030	5	239

Summary of Construction Traffic Emissions (EMFAC2021)

									•		•			
					Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5				
Pollutants	ROG	NOx	СО	SO2	PM10	PM10	Total	PM2.5	PM2.5	Total	NBio- CO2	CH4	N2O	CO2e
YEAR					To	ns						Metric	Tons	
							Criteria	Pollutants						
2028	0.0212	0.0548	0.1863	0.0008	0.0651	0.0060	0.0712	0.0098	0.0023	0.0121	78.5171	0.0032	0.0057	80.3051
2029	0.0301	0.0782	0.2669	0.0012	0.0970	0.0090	0.1060	0.0146	0.0034	0.0180	115.0504	0.0045	0.0083	117.6350
2030	0.0186	0.0481	0.1652	0.0007	0.0622	0.0057	0.0679	0.0094	0.0021	0.0115	72.5390	0.0027	0.0052	74.1452
						Toxic Air (Contaminar	nts (0.5 Mil	e Trip Lengt	h)				
2028	0.0196	0.0196	0.0632	0.0001	0.0031	0.0003	0.0034	0.0005	0.0001	0.0006	6.3103	0.0014	0.0010	6.6340
2029	0.0279	0.0285	0.0906	0.0001	0.0046	0.0005	0.0051	0.0007	0.0002	0.0009	9.2325	0.0020	0.0014	9.7021
2030	0.0173	0.0178	0.0560	0.0001	0.0030	0.0003	0.0033	0.0004	0.0001	0.0006	5.8121	0.0012	0.0009	6.1052

	CalEEMod EMFAC2021 Fleet Mix Input												
FleetMixLandUseSubType	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments High Rise	0.529137	0.031005	0.234316	0.130484	0.026305	0.00652	0.011184	0.023553	0.001665	0.001218	0.003469	0.000536	0.000609
Strip Mall	0.529137	0.031005	0.234316	0.130484	0.026305	0.00652	0.011184	0.023553	0.001665	0.001218	0.003469	0.000536	0.000609

CH_BUNEX 0,001197 0,002965 0,001808 0,001970 0,001971 0,002946 0,0080769611 0,0080769611 0,0180769612 0,0180769612 0,0180769612 0,0180769612 0,0180769612 0,018076961	CalEEMod EMFAC2021 Emission Factors Input Ye													Year	2031
CH-E_BUNEX 0.00197 0.002895 0.001808 0.001990 0.003470 0.0067951 0.008076951 0.003608 0.002309 0.003230 0.002231 A CO_LDLEX 0.043508 0.05809 0.55803 0.061782 0.015855 0.008301 0.052213 0.052213 0.023215 A CO_LRINEX 0.48299 0.25545 0.65958 0.486011 0.346563 0.139976 0.59328282 0.256517 3.73720568 1.09497 0.612373 1.086278 A CO_RNIGO_LIDEX 0 0 0 0.669373 1.087680 0.021246 0.053537 0.072700 0.061373 1.086216 0.027810 0.002720 7.41740 0.002472 1.15130 8.03608 0.002720 0.002864 1.035357 1.051246 1.035357 1.027924 1.035357 1.027924 1.035357 1.027924 1.035357 1.027924 1.035357 1.027924 1.035357 1.027924 1.035357 1.027924 1.035357 1.027924 1.035357 1.027924 <	Season	EmissionType	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	МН
CHA_STREX Q.043.08 Q.066.09 Q.057803 Q.061782 Q.015318 Q.008271 Q.022718 Q.032776 Q.123937 Q.00272 Q.022718 Q.020718 Q.018018 Q.02718	Α	CH4_IDLEX	0	0	0	0	0.004163	0.002431	0.015576	0.193547448	0.00749	0	0	0.082527	0
CO_IDEX	Α	CH4_RUNEX	0.001197	0.002965	0.001808	0.00199	0.003572	0.004191	0.009346	0.080769617	0.010907	0.630967551	0.142192	0.086023	0.005697
CO_RUNEX 0.48299 0.855246 0.639548 0.639548 0.699508 0.49907 0.671567 0.334368 CO_STREX 2.036775 2.343055 2.681869 2.722512 0.03584 0.697576 6.04336 0.50707920 7.317108 0.61737 1.08236 A COZ_NBIO_IDLEX 0 0 0 7.604903 1.33135 1.38.667 0.14911037 89.3908 0 0 1.78.7406 1.653.043 A COZ_NBIO_STREX 59.30204 80.5383 81.83539 6.88251 15.43562 8.355321 1.35536 3.3333 1.3353 1.356265 3.51349 1.22277 2.21241 2.20261 2.20261 2.335244 2.00261 2.038393 0.04464 2.038393 0.04464 2.038393 0.074221 0.08900 0.002277 0.05614 0.388393 0.04464 0.002394 0.002394 0.002394 0.002394 0.002394 0.002394 0.002394 0.002394 0.002394 0.002394 0.002394 0.002394 0.002394	Α	CH4_STREX	0.043508	0.066209	0.057803	0.061782	0.015536	0.008301	0.006271	3.8937E-08	0.012838	0.002427586	0.153937	0.005212	0.022315
CO_STREX 2.03675 3.234055 2.68109 2.72251 2.0038078 1.098707 0.000807266 1.40533 0.007079002 7.81108 0.681075 1.82200 A COZ_NBIO_TRIEX 23.25284 314.3084 324.3457 366.7522 642.9346 68.93561 1.099.462 11.5378 2.9552132 42.0016 0.000 A COZ_NBIO_TRIEX 53.0014 80.586 1.78399 9.88872 15.43562 8.885897 1.49665 0.00902477 1.15378 2.9552132 4.00163 3.31378 19.35322 A NOX_RUNKX 0.02277 0.08616 0.08889 0.40444 0.27551 0.43522 0.15632 0.19632 0.32644 0.00931 0.01 0.03536 0.01646 0.023404 0.00536 0.00666 0.00333 0.00056 0.00345 0.00340 0.00057 0.00340 0.00140 0.00340 0.00032 0.00140 0.00358 0.00032 0.00420 0.00358 0.00032 0.00140 0.00358 0.00032 0.00022	Α	CO_IDLEX	0	0	0	0	0.178146	0.134714	0.612329	4.946380741	0.548912	0	0	1.832379	0
COZ_NBIO_DIDEX	Α	CO_RUNEX	0.482959	0.855246	0.639548	0.656958	0.496011	0.364363	0.139057	0.595282824	0.266251	7.347205688	10.94097	0.671567	0.338889
A COZ_NBIO_TRINEX	Α	CO_STREX	2.036775	3.234055	2.681896	2.722251	2.003584	1.098578	0.67172	0.000892766	1.40535	0.507079202	7.811708	0.661875	1.862105
A NOX_ROLEX	Α	CO2_NBIO_IDLEX	0	0	0	0	7.604903	13.31535	138.4966	701.4911037	89.39808	0	0	178.7408	0
A NOX_IDLEX	Α	CO2_NBIO_RUNEX	232.5284	314.3084	324.3457	386.7522	642.9346	689.5361	1029.462	1353.639487	1222.157	854.6079045	185.7066	919.1898	1653.043
A NOX_RUNEX 0.022277 0.058614 0.038893 0.04646 0.275514 0.45352 0.521697 1.39408401 0.799974 0.210803121 0.504082 1.385254 1.247134 A NOX_STREX 0.174849 0.260187 0.240905 0.261965 0.261965 0.00876 0.008577 0.00858 0.008576 0.0085776 0.008576 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.00857776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.0085776 0.00857776 0.0085776 0.0085776 0.0085776 0.0085776 0.00857776 0.0085776 0.00857776 0.0085776 0.00857776 0.00857776 0.00857776 0.00857776 0.00857776 0.00857776 0.00857776 0.00857776 0.00857	Α	CO2_NBIO_STREX	59.30204	80.5368	81.78539	96.88925	15.43562	8.385892	6.479863	0.009024472	11.5378	2.98552132	42.09261	3.913478	19.85322
A PM10_IDLEX 0.174849 0.260187 0.240905 0.261965 0.310879 0.700654 0.001461 0.000538 0.001674964 0.002039 0.02340429 0.00890 0.523347 0.295934 A PM10_IDLEX 0.007313 0.009313 0.009055 0.0090065 0.003467 0.0045602 0.08198742 0.0499924 0.175105303 0.010 0.003656 0.003468 0.001461 0.00538 0.004602 0.08198742 0.0499924 0.175105303 0.010 0.003359 0.043359 0.043359 0.043359 0.043359 0.041084 0.001401 0.001405 0.00151 0.00151 0.00151 0.01513 0.001513 0.00151 0.01513 0.035151572 0.0010 0.00151 0.001512 0.000257 0.001513 0.00151 0.01513 0.001513 0.001513 0.00151 0.01513 0.001513 0.00051 0.01513 0.00151 0.00151 0.00151 0.00151 0.00151 0.00151 0.001513 0.000151 0.00151 0.000151 0.	Α	NOX_IDLEX	0	0	0	0	0.034397	0.074221	0.698879	3.751612565	0.324644	0	0	1.020934	0
A PM10_IDIEX 0.0 0 0.000525 0.009076 0.000654 0.001461 0.00538 0.001674964 0.00293 0.009039 0.010 0.000656 0.004693 0.004693 0.001196 0.002534 0.009078 0.00867 0.004693 0.004693 0.004189742 0.004932 0.17510530 0.012 0.004339 0.004938 0.00410 0.004938 0.00418 0.004938 0.00418 0.004938 0.00418 0.004938 0.00418 0.004938 0.00418 0.004938 0.00418 0.004939 0.004938	Α	NOX_RUNEX	0.022277	0.058614	0.038893	0.044644	0.275514	0.45352	0.521637	1.39408401	0.799974	0.210803121	0.504082	1.385254	1.247134
A PM10_PM1W 0.008 0.009313 0.009313 0.009315 0.009316 0.009315 0.009314 0.085796 0.024620 0.0818742 0.04924 0.175105303 0.010 0.043359 0.049339 A PM10_PM1W 0.008 0.0098 0.0098 0.009311 0.004678 0.010478 0.0103515572 0.012 0.07912302 0.004 0.10421 0.013358 A PM10_FM1EX 0.00086 0.001196 0.000955 0.00937 0.008607 0.016134 0.004723 0.033515572 0.012 0.07912302 0.0004 0.00242 0.021638 A PM10_FM1EX 0.00141 0.00145 0.001545 0.001530 0.00122 0.00143 0.004723 0.0035365 0.000081 0.000615 0.00026 0.00257 0.0026 0.00034 0.00141 0.001595 0.00014 0.000141 0.000141 0.00014	Α	NOX_STREX	0.174849	0.260187	0.240905	0.261965	0.310879	0.170726	1.163022	2.555038036	0.907664	0.023940429	0.0987	0.523347	0.295934
A PM10_PMTW	Α	PM10_IDLEX	0	0	0	0	0.000654	0.001461	0.000538	0.001674964	0.000293	0	0	0.000656	0
A PMIO_RUNEX 0.000806 0.00196 0.000955 0.000937 0.008607 0.016134 0.004723 0.020365954 0.012088 0.00396615 0.00205 0.007576 0.021639 0.001978 0.001979 0.00	Α	PM10_PMBW	0.007213	0.009313	0.009025	0.009076	0.073417	0.085796	0.042602	0.08198742	0.049924	0.175105303	0.012	0.043359	0.044939
A PM10_STREX	Α	PM10_PMTW	0.008	0.008	0.008	0.008	0.009311	0.010478	0.012	0.035151572	0.012	0.07912302	0.004	0.010421	0.013358
A PM25_IDLEX 0 0 0 0 0.006626 0.001398 0.001544 0.00159617 0.00028 0.001344 0.00159617 0.00028 0.001345 0.001516 0.0015	Α	PM10_RUNEX	0.000806	0.001196	0.000955	0.000937	0.008607	0.016134	0.004723	0.023036954	0.012088	0.00396615	0.002026	0.007756	0.021639
A PM25_PMBW 0.00254 0.00326 0.003159 0.003179 0.025696 0.030029 0.014911 0.028695579 0.01474 0.061286856 0.0042 0.015176 0.015729 A PM25_RUNEX 0.00074 0.001028 0.000879 0.000859 0.00858 0.002619 0.003 0.008787839 0.003 0.015978075 0.001 0.002605 0.00334 A PM25_STREX 0.001288 0.001788 0.001484 0.00114 0.00112 4.82E-05 7.2E-05 1.20569E-07 0.00105 1.1596E-05 0.00189 0.004009 0.0020067 A ROG_DIURN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 A ROG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.057259 0.007109717 3.59893 0.048139 18.86004 A ROG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.057259 0.007109717 3.59893 0.048139 18.86004 A ROG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.057259 0.007109717 3.59893 0.048139 18.86004 A ROG_RUNEX 0.00411 0.01226 0.065573 0.005597 0.04673 0.013865 3.19262E-05 0.057259 0.007109717 3.59893 0.048139 18.86004 A ROG_RUNEX 0.00411 0.01226 0.065573 0.005597 0.04673 0.03865 3.19262E-05 0.057259 0.007109717 3.59893 0.048139 18.86004 A ROG_STREX 0.168942 0.313402 0.253471 0.283876 0.073293 0.038975 0.012690 0.03167468 0.03016 0.045144992 0.880643 0.036576 0.046673 0.038975 0.032303 0.11076-07 0.06834 0.00801506 1.106857 0.029399 0.086271 A ROG_STREX 0.00544 0.000739 0.000751 0.03548 0.003293 0.003632 0.003654 0.00065149 0.000416 0.000330 0.000516 0.006573 0.086271 0.006573 0.006575 0.007479 0.008627 0.006575	Α	PM10_STREX	0.001401	0.001945	0.001571	0.001523	0.000122	5.24E-05	7.89E-05	1.3113E-07	0.000114	1.26121E-05	0.003383	4.61E-05	0.000227
A PM25_PMTW 0.002 0.002 0.002 0.002 0.0020 0.00328 0.00219 0.00389 0.008878893 0.003 0.01980755 0.001 0.002605 0.00344 0.002667 0.003494 0.002667 0.003494 0.002667 0.003494 0.002667 0.002667 0.0026	Α	PM25_IDLEX	0	0	0	0	0.000626	0.001398	0.000514	0.001595617	0.00028	0	0	0.000626	0
A PMZ5_RUNEX 0.000742 0.00199 0.000879 0.000863 0.008205 0.015423 0.004511 0.022037233 0.011557 0.003790605 0.00189 0.00740 0.020667 A PMZ5_STREX 0.001288 0.001748 0.02144 0.000112 4.82E-05 7.25E-05 1.20569E-07 0.000105 1.15963E-05 0.003163 4.24E-05 0.000209 A ROG_DIURN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.04813 18.86004 A ROG_BIEX 0.058E51 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 A ROG_RUNEX 0.00411 0.0126 0.06557 0.007579 0.001687 0.082009 0.0311 1.00075E-05 0.013378 0.002202354 3.552992 0.010052 4.450796 A ROG_RUNEX 0.00411 0.0126 0.06557 0.007579 0.007597 0.046133 0.082009 0.03673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 A ROG_RUNEX 0.00411 0.0126 0.08557 0.007579 0.007597 0.046133 0.078809 0.013674768 0.00306 0.045144992 0.8086643 0.036576 0.048613 A ROG_RUNEX 0.186918 0.339196 0.183782 0.203675 0.145575 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.036574 A ROG_STREX 0.186942 0.313402 0.253471 0.283876 0.073293 0.038975 0.032303 2.1107E-07 0.06834 0.008071506 1.106857 0.023399 0.036574 A SO2_RUNEX 0.002134 0.002585 0.000735 0.002585 0.0066313 0.006513 0.008591 0.006514 0.006301336 0.00836 0.00540 0.006301 0.006514 0.006301336 0.00836 0.00540 0.006514 0.006301 0.006514 0.006301 0.006301 0.006514 0.006301 0.00	Α	PM25_PMBW	0.002524	0.00326	0.003159	0.003177	0.025696	0.030029	0.014911	0.028695597	0.017474	0.061286856	0.0042	0.015176	0.015729
A ROG_DIURN 0.22255 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.007109717 3.59893 0.048139 18.86004 A ROG_DIURN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 A ROG_IDLEX 0.057826 0.113462 0.061282 0.066273 0.019896 0.010499 0.00311 1.00075E-05 0.013378 0.00220354 3.552992 0.010052 4.450796 A ROG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 A ROG_RUNEX 0.00411 0.01226 0.06557 0.007597 0.046133 0.078809 0.012929 0.013674768 0.03016 0.045144992 0.880643 0.036576 0.048139 18.86004 A ROG_SUNIS 0.166918 0.339196 0.183782 0.203675 0.115755 0.06201 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.023099 0.109657 A ROG_STREX 0.186942 0.313402 0.253471 0.283876 0.073293 0.038957 0.002173 0.006051549 0.008842 0 0 0 0 0.001609 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Α	PM25_PMTW	0.002	0.002	0.002	0.002	0.002328	0.002619	0.003	0.008787893	0.003	0.019780755	0.001	0.002605	0.00334
A ROG_DIURN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 A ROG_IDLKX 0.057826 0.113462 0.066273 0.019296 0.010499 0.00311 1.00075E-05 0.013378 0.02202354 3.52992 0.010052 4.450796 A ROG_IDLKX 0 0 0.06657 0.018676 0.013376 0.02019 0.03743389 0.033344 0 0 0.186964 0.046149 0.086044 A ROG_RUNEX 0.00411 0.01226 0.06557 0.007597 0.046133 0.078809 0.012679 0.013674768 0.03016 0.045144992 0.886043 0.036576 0.0486044 A ROG_STREX 0.166918 0.333409 0.238759 0.02534 0.026291 0.026524 8.98588E-05 0.074799 0.007880244 3.777267 0.032399 0.026271 A SOZ_IDLEX 0.166918 0	Α	PM25_RUNEX	0.000742	0.001099	0.000879	0.000863	0.008205	0.015423	0.004511	0.022037233	0.011557	0.003790605	0.00189	0.007404	0.020667
A ROG_HTSK 0.057826 0.113462 0.061282 0.066273 0.019296 0.010499 0.00311 1.00075E-05 0.013378 0.002202354 3.552992 0.010052 4.450796 A ROG_IDLEX 0 0 0 0 0.016876 0.013376 0.020019 0.30743389 0.03344 0 0 0.0198227 0.00464 A ROG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 A ROG_RUNEX 0.00411 0.01226 0.006557 0.007597 0.046133 0.078809 0.012929 0.013674768 0.03016 0.045144992 0.880643 0.03656 0.0486143 A ROG_STREX 0.166918 0.339196 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.096574 A ROG_STREX 0.186942 0.313402 0.253471 0.283876 0.073293 0.038975 0.032303 2.1107E-07 0.06834 0.008071506 1.106857 0.023997 0.086271 A SO2_IDLEX 0.002134 0.002885 0.002977 0.03548 0.006273 0.006051549 0.000452 0.001604 0.006301336 0.001836 0.008526 0.016191 A SO2_STREX 0.002134 0.002885 0.002977 0.003548 0.006273 0.006632 0.009736 0.012198032 0.011004 0.006301336 0.001836 0.008526 0.016191 A SO2_STREX 0.00544 0.000739 0.000751 0.000889 0.000153 8.29E-05 6.41E-05 8.92161E-05 0.000144 2.95149E-05 0.000416 3.87E-05 0.000146 A TOG_IDLEN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_IDLEX 0.057826 0.113462 0.061282 0.06273 0.012996 0.014099 0.0311 1.00075E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_RUNEX 0.057826 0.13462 0.061282 0.06273 0.002996 0.010499 0.0311 1.00075E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_RUNEX 0.05983 0.01489 0.009553 0.011054 0.05503 0.090571 0.02393 0.09651369 0.00473 0.0683730 0.0083720 1.02666 0.12839 0.099586 A TOG_RUNEX 0.05886 0.339196 0.183782 0.031865 0.000574 0.02393 0.090571 0.02393 0.096131629 0.04473 0.06383702 1.02616 0.128390 0.099456 A TOG_RUNEX 0.05993 0.01497 0.034870 0.000565 0.000574 0.002652 0.0026524 0.004573 0.0074824 0.00837283 1.02466 0.022399 0.09456	Α	PM25_STREX	0.001288	0.001788	0.001444	0.0014	0.000112	4.82E-05	7.25E-05	1.20569E-07	0.000105	1.15963E-05	0.003163	4.24E-05	0.000209
A ROG_IDLEX 0 0 0 0 0.016876 0.013376 0.020019 0.30743389 0.039344 0 0 0 0.198227 0.04673 0.04673 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 0.06678	Α	ROG_DIURN	0.222055	0.450464	0.246266	0.271815	0.082009	0.04673	0.013865	3.19262E-05	0.067259	0.007109717	3.59893	0.048139	18.86004
A ROG_RESTIL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 3.59893 0.048139 18.86004 A ROG_RUNEX 0.00411 0.01226 0.006557 0.007597 0.046133 0.078809 0.012929 0.013674768 0.03016 0.045144992 0.880643 0.036576 0.048613 A ROG_SUNLS 0.166918 0.339196 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.109657 A ROG_STREX 0.186942 0.313402 0.253471 0.283876 0.073293 0.032303 2.1107E-07 0.06834 0.0087150 1.106857 0.029379 0.086271 A SOZ_IDLEX 0.002134 0.002885 0.002977 0.003848 0.006153 0.091630 0.001410 0.06301336 0.00416 3.87E-05 0.0016191 A TOG_DURN 0.222055 <	Α	ROG_HTSK	0.057826	0.113462	0.061282	0.066273	0.019296	0.010499	0.00311	1.00075E-05	0.013378	0.002202354	3.552992	0.010052	4.450796
A ROG_RUNEX 0.00411 0.01226 0.006557 0.007597 0.046133 0.078809 0.012929 0.013674768 0.030016 0.045144992 0.880643 0.036576 0.0486133 A ROG_RUNLS 0.166918 0.339196 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.109657 A ROG_STREX 0.186942 0.313402 0.253471 0.283876 0.073293 0.038975 0.032303 2.1107E-07 0.06834 0.008071506 1.106857 0.023397 0.086271 A SO2_IDLEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Α	ROG_IDLEX	0	0	0	0	0.016876	0.013376	0.020019	0.30743389	0.039344	0	0	0.198227	0
A ROG_RUNLS	Α	ROG_RESTL	0.222055	0.450464	0.246266	0.271815	0.082009	0.04673	0.013865	3.19262E-05	0.067259	0.007109717	3.59893	0.048139	18.86004
A ROG_STREX 0.186942 0.313402 0.253471 0.283876 0.073293 0.038975 0.032303 2.1107E-07 0.06834 0.008071506 1.106857 0.029397 0.086271 A SO2_IDLEX 0 0 0 0 0 7.4E-05 0.000127 0.001273 0.006051549 0.000842 0 0 0.001609 0.001609 A SO2_RUNEX 0.002134 0.002885 0.002977 0.003548 0.006273 0.006632 0.009736 0.012198032 0.011604 0.006301336 0.001836 0.008526 0.016191 A SO2_STREX 0.000544 0.000739 0.000751 0.000889 0.000153 8.29E-05 6.41E-05 8.92161E-08 0.000114 2.95149E-05 0.000416 3.87E-05 0.000196 A TOG_DIURN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_IDLEX 0.057826 0.113462 0.061282 0.066273 0.019296 0.010499 0.0011 1.00075E-05 0.013378 0.002202354 3.552992 0.010052 4.450796 A TOG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_RUNEX 0.005993 0.01789 0.009553 0.011054 0.05503 0.090571 0.023939 0.096131629 0.04473 0.68338702 1.082616 0.128396 0.059846 A TOG_RUNEX 0.005993 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.109657 A TOG_STREX 0.204678 0.343136 0.277519 0.310808 0.080246 0.042672 0.035368 2.31095E-07 0.074824 0.008837283 1.204268 0.032186 0.094456 A N2O_IDLEX 0.003093 0.005447 0.00436 0.005169 0.034253 0.070046 0.131839 0.216271217 0.15052 0.132844713 0.036744 0.108945 0.0688587	Α	ROG_RUNEX	0.00411	0.01226	0.006557	0.007597	0.046133	0.078809	0.012929	0.013674768	0.030016	0.045144992	0.880643	0.036576	0.048613
A SO2_IDLEX 0 0 0 0 7.4E-05 0.000127 0.001273 0.006051549 0.000842 0 0 0.001609 0.00644	Α	ROG_RUNLS	0.166918	0.339196	0.183782	0.203675	0.115755	0.062901	0.026524	8.98588E-05	0.074799	0.007880204	3.777267	0.032309	0.109657
A SO2_RUNEX 0.002134 0.002885 0.002977 0.003548 0.006273 0.006632 0.009736 0.012198032 0.011604 0.006301336 0.001836 0.008526 0.016191 A SO2_STREX 0.000544 0.000739 0.000751 0.000889 0.000153 8.29E-05 6.41E-05 8.92161E-08 0.000114 2.95149E-05 0.000416 3.87E-05 0.000196 A TOG_DIURN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_HTSK 0.057826 0.113462 0.061282 0.066273 0.019296 0.010499 0.00311 1.00075E-05 0.013378 0.002202354 3.552992 0.010052 4.450796 A TOG_IDLEX 0 0 0 0 0.023785 0.017683 0.038328 0.530153632 0.052007 0 0.0324528 0.046796 A TOG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_RUNEX 0.005993 0.01789 0.009553 0.011054 0.05503 0.090571 0.023939 0.096131629 0.04473 0.68338702 1.082616 0.128396 0.059846 A TOG_RUNLS 0.166918 0.339196 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.109657 A TOG_STREX 0.204678 0.343136 0.277519 0.310808 0.080246 0.042672 0.035368 2.31095E-07 0.074824 0.008837283 1.204268 0.032186 0.094456 A N2O_IDLEX 0 0 0 0 0 0.000574 0.001681 0.021452 0.113410989 0.013107 0 0 0 0.022998 0.044 0.000000000000000000000000000000	Α	ROG_STREX	0.186942	0.313402	0.253471	0.283876	0.073293	0.038975	0.032303	2.1107E-07	0.06834	0.008071506	1.106857	0.029397	0.086271
A 502_STREX 0.000544 0.000739 0.000751 0.000889 0.000153 8.29E-05 6.41E-05 8.92161E-08 0.000114 2.95149E-05 0.000416 3.87E-05 0.000196 A TOG_DIURN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_HTSK 0.057826 0.113462 0.061282 0.066273 0.019296 0.010499 0.00311 1.00075E-05 0.013378 0.002202354 3.552992 0.010052 4.450796	Α	SO2_IDLEX	0	0	0	0	7.4E-05	0.000127	0.001273	0.006051549	0.000842	0	0	0.001609	0
A TOG_DIURN 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_HTSK 0.057826 0.113462 0.061282 0.066273 0.019296 0.010499 0.00311 1.00075E-05 0.013378 0.002202354 3.552992 0.010052 4.450796 A TOG_IDLEX 0 0 0 0 0 0.023785 0.017683 0.038328 0.530153632 0.052007 0 0 0.324528 0 0 0.0000000000000000000000000000000	Α	SO2_RUNEX	0.002134	0.002885	0.002977	0.003548	0.006273	0.006632	0.009736	0.012198032	0.011604	0.006301336	0.001836	0.008526	0.016191
A TOG_HTSK 0.057826 0.113462 0.061282 0.066273 0.019296 0.010499 0.00311 1.00075E-05 0.013378 0.002202354 3.552992 0.010052 4.450796 A TOG_IDLEX 0 0 0 0 0 0.023785 0.017683 0.038328 0.530153632 0.052007 0 0 0.324528 0.00000000000000000000000000000000000	Α	SO2_STREX	0.000544	0.000739	0.000751	0.000889	0.000153	8.29E-05	6.41E-05	8.92161E-08	0.000114	2.95149E-05	0.000416	3.87E-05	0.000196
A TOG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_RUNEX 0.005993 0.01789 0.009553 0.011054 0.05503 0.090571 0.023939 0.096131629 0.04473 0.68338702 1.082616 0.128396 0.059846 A TOG_RUNLS 0.166918 0.339196 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.109657 A TOG_STREX 0.204678 0.343136 0.277519 0.310808 0.080246 0.042672 0.035368 2.31095E-07 0.074824 0.008837283 1.204268 0.032186 0.094456 A N2O_IDLEX 0 0 0 0 0 0.000574 0.001681 0.021452 0.113410989 0.013107 0 0 0.022998 0.0048384 0.0080948 0.0094456 0.009445	Α	TOG_DIURN	0.222055	0.450464	0.246266	0.271815	0.082009	0.04673	0.013865	3.19262E-05	0.067259	0.007109717	0.078884	0.048139	18.86004
A TOG_RESTL 0.222055 0.450464 0.246266 0.271815 0.082009 0.04673 0.013865 3.19262E-05 0.067259 0.007109717 0.078884 0.048139 18.86004 A TOG_RUNEX 0.005993 0.01789 0.009553 0.011054 0.05503 0.090571 0.023939 0.096131629 0.04473 0.68338702 1.082616 0.128396 0.059846 A TOG_RUNLS 0.166918 0.339196 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.109657 A TOG_STREX 0.204678 0.343136 0.277519 0.310808 0.080246 0.042672 0.035368 2.31095E-07 0.074824 0.008837283 1.204268 0.032186 0.094456 A N2O_IDLEX 0 0 0 0 0 0.000574 0.001681 0.021452 0.113410989 0.013107 0 0 0.022998 0.001681 0.00000000000000000000000000000000000	Α	TOG_HTSK	0.057826	0.113462	0.061282	0.066273	0.019296	0.010499	0.00311	1.00075E-05	0.013378	0.002202354	3.552992	0.010052	4.450796
A TOG_RUNEX 0.005993 0.01789 0.009553 0.011054 0.05503 0.090571 0.023939 0.096131629 0.04473 0.68338702 1.082616 0.128396 0.059846 A TOG_RUNLS 0.166918 0.339196 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.109657 A TOG_STREX 0.204678 0.343136 0.277519 0.310808 0.080246 0.042672 0.035368 2.31095E-07 0.074824 0.008837283 1.204268 0.032186 0.094456 A N2O_IDLEX 0 0 0 0 0.000574 0.001681 0.021452 0.113410989 0.013107 0 0 0.022998 0.0000000000000000000000000000000000	Α	TOG_IDLEX	0	0	0	0	0.023785	0.017683	0.038328	0.530153632	0.052007	0	0	0.324528	0
A TOG_RUNLS 0.166918 0.339196 0.183782 0.203675 0.115755 0.062901 0.026524 8.98588E-05 0.074799 0.007880204 3.777267 0.032309 0.109657 A TOG_STREX 0.204678 0.343136 0.277519 0.310808 0.080246 0.042672 0.035368 2.31095E-07 0.074824 0.008837283 1.204268 0.032186 0.094456 A N2O_IDLEX 0 0 0 0 0.000574 0.001681 0.021452 0.113410989 0.013107 0 0 0.022998 0.0000000000000000000000000000000000	Α	TOG_RESTL	0.222055	0.450464	0.246266	0.271815	0.082009	0.04673	0.013865	3.19262E-05	0.067259	0.007109717	0.078884	0.048139	18.86004
A TOG_STREX 0.204678 0.343136 0.277519 0.310808 0.080246 0.042672 0.035368 2.31095E-07 0.074824 0.008837283 1.204268 0.032186 0.094456 A N2O_IDLEX 0 0 0 0 0.000574 0.001681 0.021452 0.113410989 0.013107 0 0 0.0022998 A N2O_RUNEX 0.003093 0.005447 0.00436 0.005169 0.034253 0.072046 0.131839 0.216271217 0.15052 0.132844713 0.036744 0.108945 0.068587	Α	TOG_RUNEX	0.005993	0.01789	0.009553	0.011054	0.05503	0.090571	0.023939	0.096131629	0.04473	0.68338702	1.082616	0.128396	0.059846
A N2O_IDLEX 0 0 0 0 0.000574 0.001681 0.021452 0.113410989 0.013107 0 0.0022998 0 0.00000000000000000000000000000000	Α	TOG_RUNLS	0.166918	0.339196	0.183782	0.203675	0.115755	0.062901	0.026524	8.98588E-05	0.074799	0.007880204	3.777267	0.032309	0.109657
A N2O_RUNEX 0.003093 0.005447 0.00436 0.005169 0.034253 0.072046 0.131839 0.216271217 0.15052 0.132844713 0.036744 0.108945 0.068587	Α	TOG_STREX	0.204678	0.343136	0.277519	0.310808	0.080246	0.042672	0.035368	2.31095E-07	0.074824	0.008837283	1.204268	0.032186	0.094456
-	Α	N2O_IDLEX	0	0	0	0	0.000574	0.001681	0.021452	0.113410989	0.013107	0	0	0.022998	0
A N2O_STREX 0.024918 0.031595 0.031191 0.031598 0.027323 0.014624 0.004551 2.81532E-06 0.010736 0.004374983 0.006118 0.004889 0.033146	Α	N2O_RUNEX	0.003093	0.005447	0.00436	0.005169	0.034253	0.072046	0.131839	0.216271217	0.15052	0.132844713	0.036744	0.108945	0.068587
	Α	N2O_STREX	0.024918	0.031595	0.031191	0.031598	0.027323	0.014624	0.004551	2.81532E-06	0.010736	0.004374983	0.006118	0.004889	0.033146

Source: EMEAC3031 (v1.0.1) Emirrion Rater

Region Type: County

Calendar Year: 2028

reason: Annual

Units: miles/day for C/WTA and EVMT, trips/day for Trips, kWh/day for Energy Consumption, g/mile for RUNEX, PMBW and PMTW, g/trip for STREX, HOTSOAK and RUNLOSS, g/vehicle/day for IDLEX and DIUE

Units: mileo(day for CVMT and EVMT, trips/sig/stror Trips, kWh/day for Tenergy Consumption, g/mile for EVRINE, VPMP and PARTW, g/trop for STREX, HOTSOAK and RUNIOSS, g/web/clos/day for IDEX and DIURN
Resion Calendar' Viehio's Calmoder' Calmode
Spiral Carelan Femicia-informatic applies of the Carelan Femicia-informa
Sinta Clara - Could Hori
Sinta Ciara - Si
Santa Clara 2028 PHOT Agreemate Agre
Santa Clara 2028 IDA Agricostate Agricostate Gazoline 6001547, 21978505 1278505 0 2786473 0 0.009254 0 0.017367 0.009997 0 0.00183 0.008 0.007582 295.6812 0 65.1265 0.001855 0 0.057308 0.003885 0 0.029999 0.009911 0 0.251605 0.076497 0.209635 1.284962 0.008625 0 0.275476 0.076497 0.209635 1.284962 0.008025 0 0.275476 0.076497 0.209635 1.284962 0.008025 0 0.00925 0
Sinta Clary 2028 IDA Agricolate A
Santa Clara 2028 LDA Apprentia Appre
Sinital Claim 2028 LDA Aggregative Aggrega
Santa Clara 2028 LDT1 Aggregate Aggregate Gasculine 49081.01 1563338 1563538 0 218519.1 0 0.084208 0 0.0002171 0.002 0.00324 0.00136 0 0.0002171 0.002 0.00324 0.00136 0 0.0002171 0 0.003482 0.017566 0 0.0397179 0.135555 0.390418 2.261735 0.037652 0 0.434851 0.135565 0.390418 2.261735 0.037654 1.051411 0 3.964013 0.003063 0 0.0000791
Sinita Claira 2028 LIDT1 Aggregate Aggregate Discel 3.375419 51.57305 51.57305 0 9.61996 0 1.103246 0 0.0026,003602 0.17:924 0 0 0.003 0.010292 378.4488 0 0 0.012442 0 0 0.059625 0 0 0 0 0 0 0.00368 0 0 0 0 0 0 0.0031 1.8775 0 0 0.003586 0 0
Santa Clara 2028 LDT1 Aggregate Rectricity 344.7167 14328.81 014328.81 1657.81 5532.102 0 0 0 0 0 0.008 0.004382 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Samita Clara 2028 LDT1 Aggregative Aggregative Aggregative Plug-ini Pyle 21:097723 9740.0009 3862.249 5377.766 877.3706 102.4246 0.002743 0 0.11551 0.000276 0 0.0001152 0.000040 11:5535 0 68.31316 0.000085 0 0.041529 0.000473 0 0.019863 0.274915 0.021732 0 0.019863 0.274915 0.021732 0 0.019869 0 0.773285 0.023021 0.019869 0 0.773285 0.023021 0.019869 0 0.773285 0.023021 0.019869 0 0.773285 0.023021 0.019869 0 0.074152 0 0.0000473 0 0.
Santa Clara 2028 LDT2 Aggregate Aggregate Gasceline 3062895 10804407 10804407 0 1428230 0 0.004884 0 0.272265 0.001037 0 0.0001722 0.002 0.00314 0.001128 0 0.0008973 321.5584 0 81.40965 0.002155 0 0.006757 0.00483 0 0.032046 0.071308 0.20464 1.273765 0.011733 0 0.3300702 0.071308 0.20464 1.273765 0.081979 0 0.000805
Santa Clara 2028 LDT2 Aggregate Aggregate Discel 1124-654 40163-3.1 40163-3.
Santa Clara 2028 LDT2 Aggregate Rescrictly 3966-166 1285865 0 1285865 1988652 49645.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
State Claim 2028 LIDT 1 Aggregate Aggregate Paggregate Aggregate A
SantaCisra 2028.WPDI Approprie Approprie Del 1012449 9152581 4252841 0 183875.7 0 0.959403 15745.7 0 0.005418 0.005447 0 0.003 0.0273 0.027512 0.027542 0 0.005234 0.005598 0 0.00777 0.015777 0.015773 0
SHIRD CASE OF DISTORTING AND ADDRESS OF THE PROPERTY OF THE PR
SHIRD CLASS JURID To Assessment Design St. St
Sinta Clara - Agreeate Agreeate Exercise 15:85:907 14:517 0 14:51.07 0 14:51.
Sand Care 2028 MC/ Aprilent Agreement Agreement Agreement Cooling 29377.65 158474 158474 0001 00042 001453 001957 0 000451 0004 001 158:1355 0 444414 0.148032 0 0.15433 0019577 0 0006825 0.94888 0 1.195378 3.558397 3.787612 3.814128 0.000993 11.46379 0 7.875637 0.00084 0 0.000499
Santa Glara 2028 MOV Agreeable Agree
Santa Claira 2028 MOV Aggregate Aggregate Aggregate Aggregate Discis 2425,795 81862,87 81862,87 0 11233,79 0 0.0321614 0 0 0.0003665 0 0 0.000310 389,9259 0 0 0.000421 0 0 0.005483 0 0 0.009068 0 0 0 0 0 0.0010323 0 0 0 0 0 0.00310 389,9259 0 0 0.000421 0 0 0.005483 0 0 0.009068 0 0 0 0 0 0.00310 389,9259 0 0 0.000421 0 0 0.0005643 0 0 0 0 0 0 0.0005643 0 0 0 0 0 0.000566 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0.000566 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0 0.000566 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Santa Clara 2028 MDV Aggregate Aggregate Aggregate Eductricity 4086684 132418.2 0 132418.2 0 132418.2 20489.55 51214.34 0 0 0 0 0 0.002 0.00153 0 0 0.008 0.004371 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sinita Claira 2028 MOV Aggregate Agg
Smita Claim 2028 MH Aggregate Aggregate Gascoline 2135/932 20452.38 0 213.6786 0 0.26549 0 0.443358 0.001576 0 0.000379 0.012 0.0450217 1945.922 0 3.035522 0.009219 0 0.035524 0.019212 0 0.048669 0.036579 0 0.14567 9.09894 0.210886 3.673671 0.053375 0 0.156136 9.08984 0.220886 3.673671 0.05 0.773269 0 3.09885 0.019237 0 0.0000306
Sanita Claim 2028 MM Aggregate Aggregate Aggregate Disnel 1038.172 9908.83 9908.83 0 103.8.172 0 3.609205 0 0 0.004 0.015675 0.074006 0 0 0.0166.0.04.785 1083.65 0 0 0.005048 0 0 0.108673 0 0 0 0 0 0.123716 0 0 0 0 0.173727 0.351812 0 0 0.010268 0 0
Santa Clara 2028 MHDT Aggregate Aggregate Gasceline 1401234 721892 721892 5 0 0247516 0.07558 0.00145 0 0.000548 0.003 0.015756 0.00145 0 0.000548 0.00046 0.00052 0.012 0.04507 0.00052 0.012 0.04507 0.000508 0.00046 0.00052 0.012 0.04507 0.000508 0.00046 0.00052 0.012 0.04507 0.000508 0.00046 0.00052 0.012 0.04507 0.000508 0.00046 0.00052 0.012 0.04507 0.000508 0.00046 0.00052 0.012 0.04507 0.000508 0.00046 0.00052 0.012 0
Santa Clara 2028 MHDT Aggregate Aggregate Disnel 1088308 4307295 4307295 0 1291142 0 0.860613 11.835 1.688029 0.008248 0.013921 0 0.003 0.015941 0.008621 0.01455 0 0.012 0.04554 1122.135 2173.473 0 0.000865 0.009699 0 0.176799 0.342432 0 0.018619 0.207523 0 0 0 0 0.215906 0.083705 7.507183 0 0.010626 0.020581 0
Santa Clara 2028 MHDT Aggregate Rescrictly 455.7542 23641.62 0 23641.62 0 23641.62 0 23641.62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Santa Clara 2028 MHOT Aggregate Aggr
Santaciura 2002 0885 Aggregate Aggregate Gardine 2971445 15427.29 154527.00 15452 0005824 0.001188 0.00118 0.0000289 0.001 0.01589 0.001181 0.0014055 0.001585 0.001889 0.001187 0.001851 0.018879 3.413145 0.08815 1.088879 3.413145 0.08815 1.088879 3.413145 0.08815 1.088879 3.413145 0.08815 0.011879 3.413145 0.08815 0.011879 3.413145 0.08815 0.011879 3.413145 0.08815 0.011879 3.413145 0.08815 0.011879 3.413145 0.08815 0.08815 0.08815 0.08815 0.011879 3.413145 0.08815
SantaCisur 2023 CRRS. A Aggregate Aggregate Design Schröder 1900-04.12 Sark-155.5 SARK-155.5 SARK-155.5 SARK-155.5 O 1000-1155 0 1000-1255
Santa Clara 2028085 Appropria Appropria Management Mana
Sinta Clara - 0.700 Stuts Superant Agreeate Agreeate Septime 192,5005 9 15,5200 0.000037 0.000057 0.000057 0.000059 0.00000007 0.000059 0.0000000000000000000000000000
Sinta Clara - Control - Co
Sinta Clara - Agreeate Agreeate Exercise 1928 915 Agreeate Agreeate Exercise 1928 10 533451 25244 5638 0 0 0 0 0 000005 502245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sinta Clara 2008 SBUS Approprie Aggregate Aggregate Natural Gs 377.79861 667.4476 66
Santa Clara 2028 UBUS Agricolate
Sinta Clara 2028 UBUS Approprie Aggregate Discel 3977/907 44897.62 0 1591.63 0 0.382093 0 0 0.006945 0 0 0.00221 0.0385 0.00725 0 0 0.003188 0 0 0.174969 0 0 0.068627 0 0 0 0 0 0.074126 0 0 0 0 0.022 0.07852 0 0 0.010573 0 0
Sinita Clairs 20228 UBUS Appropriate Appro
Santa Clara 2028 UBUS Aggregate Aggregate Aggregate Aggregate Natural Gas 63:25774 7303.084 7303.084 0 253.0309 0 0.06078 0 0 0.000288 0 0 0.0000288 0 0 0.0033778 0.11 1320.856 0 0 0.333778 0.11 1320.856 0 0 0.061899 0 0 0 0 0 4.421388 0 0 0 0 0 0 0.97 50.55236 0 0 0 0

Source: EMFAC2021 (v1.0.1) Emission Rates Region Type: County Region: Santa Clara Calendar Year: 2029 Season: Annual Vehicle Classification: EMFAC2007 Categories

Units: mileo(day for CVMT and EVINT, trips(day for Trips, kWh)(day) for finergy Consumption, glmille for RUNEX, PMBW and PMTW, gitting for STREX, HDTSDAK and RUNLDSS, glveincley(day for IDLEX and DIURN
RISSIO GIGHDAY TYMINIO CAMINOSI (TRIA SANCE) FULL TIMES SANCE FULL PROVIDED CHINAGO STREAM SANCE FULL STREAM STREAM FULL STREAM SANCE FULL
Santa Clara 2029 HHDT Aggregate Aggregate Gazeline 15:36793 165:5766 0 30.74816 0 30.80162 0 0.000721 0.005 0.00248 0.001911 0 0.000785 0.122812 0 0.00219 0.536122 0 0.001496 0.078932 0.79967 4.983494 0.783208 0 0.001496 0.078932 0.79967 4.983494 0.045 25.44879 0 4.988994 0.019186 0 0.000481
Santa Claria 2029 HHOT Aggregate Aggregate Discel 9189.951 1025176 1025176 1025176 0 135692.8 0 1.603158 61.35773 2.911981 0.024839 0.025083 0 0.008784 0.027987 0.029963 1905.078 0 0 0 0 0.016213 5.754789 0 0 0 0 0.016213 5.754789 0 0 0 0 0.016213 5.754789 0 0 0 0 0.016213 5.754789
Santa Claria 2029 HHDT Aggregate Aggregate Rectricity 389.0127 40402.41 0 404
Santa Clara 2029 HHDT Aggregate Aggr
Sant-Loca 2021-DA Aggregate Aggregate Aggregate Assigned Scale (1911) 1007-84 (2015-02) 1258-144 (2015-02) 1
Santa Cara 2029-10.04 Aggregate Aggregate Desire 1 1094.711 1107.55.84 1005.84 0 448.657 0 0.011.99 0 0.006.89 0 0 0.002 0.002723 0.006.858 0 0 0.000777 133.894 0 0 0.000774 0 0.008.955 0 0.016.654 0 0 0 0 0.001.877 0 0 0.00277 0 0.0002079 0 0 0.003 0.003 0.00077 0 0.0002079 0 0 0.003 0.00079 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Samica Cara - Data - Da
Santa Ciaga 2029 UT1 American Resource Resource 4318.99 1534144 153541
Santa Clara 2029 LDT1 Aggregate Aggregate Discel 1:653364 28:5403 28:5
Santa Clara 2029 LDT1 Appropriate Appropriate Appropriate Descripting 937.5767 16724 0 16724 1920.733 6456.843 0 0 0 0 0 0.002 0.001533 0 0 0 0.008 0.00438 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Santa Clara 2029 IDT1 Aggregate Aggregate Plage in high 258,7815 11179.88 4644.176 6535.705 1070.061 1973.978 0.002776 0 0.001143 0.0002.76 0 0.001145 0.000048 0 0.001981 0.001179 0 0.173285 0.02298 0.01978 0.027468 0.00172 0 0.189715 0.02298 0.01978 0.027468 0.001747 0.178783 0 1.338983 0.001145 0 0.0000672
Santa Clara 2029 LDT2 Aggregate Aggr
Santi-Cara 2029-1072 Aggregate Aggregate Delay 64 1143-888 40564-17 40564.77 0 5175.525 0 0.031452 0 0.000485 0 0 0.002 0.003142 0.000471 0 0 0.00387 0 0.000587 0 0.
Sant Care 2029-1077 Agregate Aggregate Educatively, 4975-899 1494115 9 1494115 9 1385483 5786688 0 0 0 0 0 0 0002 000153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38884 CH267 2019/1017 Agreemate Section 19 (2017) 38 (20
Santa Ciaga 209 HPTI Amenate Agreement 1116.51 427899 0 0.00553 0 0.00573 0.00589 0 0.0073 0.00589 0 0.0075 0.00599 0 0.00599
Santa Clara 2029 1410T1 Aggregate Aggregate Exteriorly 1496.343 86923.24 0 86923.24 20957.77 56999.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Santa Clara 2029 HPOTZ Aggregate Gazeline 2481214 88578.37 88578.37 0 38966.39 0 0.0086112 0.039466 0.039405 0.000123 0.00013
Santa Claria 2029 IH/DTZ Aggregate Aggregate Discel 5355.483 1999/92.9 1999/92.9 0 67365.214 0 0.0026578 0.0216972 0 0.003 0.03185 0.0216734 0.002185 0 0.015285 0.03151 0 0.115285 0.03151 0 0.115285 0.03151 0 0.115285 0.03151 0 0.115285 0.03151 0 0.009/94 0.0009/94
Santa Clara 2029 H/D/TZ Aggregate Aggregate Electricity 378.39905 2/1014.89 0 2/1014.89 5018.993 13555.63 0 0 0 0 0 0.002 0.015925 0 0 0 0.008 0.0455 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Santa Clara 2029 MCV: Aggregate Aggr
Sant-Loa 2029-MUV Agregate Aggregate Conference 17481.4 5884155 5884155 0789277.1 0.0555948 0 0.2998 0.000355 0 0.000355 0 0.000359 0 0.000375 0.000399 0 0.000775 0.000399 0 0.000775 0.000399 0 0.000775 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.000775 0 0.00039 0 0.00039 0 0.000775 0 0.00039 0 0.00039 0 0.00039 0 0.00039 0 0.00039 0 0.00039 0 0.00039 0
Santi-Caira 2029-MIVV Aggregate Aggregate Desired 2418.84 8977033 9 0.1181.69 0.0029555 0 0.0023128 0 0 0.002 0.0023137 0.00203139 0 0 0.0003313 0 0.00039355 0 0.000313 0 0 0.000313 0 0 0.000313 0 0 0.000313 0 0 0.000313 0 0 0.000313 0 0 0.000313 0 0 0.000313 0 0 0.000313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.mm Carrier 20.00 MV Agricultur Aggregative Aggregati
Santa Casar 2029 Met Aggregate Escoriole 2008.159 (2018) (
Santa Clara 2029 MH Agenerate Discel 1051.791 10000.18 1000.18 0 1051.791 10000.18 1000.18 0 1051.791 10000.18 1000.18 0 0 0 0 0 0 0 0.004 0.01575 0.059484 0 0 0.006 0.04785 1084.041 0 0 0.009944 0 0 0.10791 0 0 0.105435 0 0 0 0 0 0.127169 0 0 0 0 0 0.127504 0.342376 0 0 0.001272 0 0
Santa Clara
Santa Claria 2029 MHOT Aggregate Aggregate Discel 10773.71 424561.3 424561.3 0 128772.1 0 0.791583 11.6255 1574117 0.0073 0.011577 0 0.003 0.01594 0.00763 0.012093 0 0.01527 0 0.009357 0 0.175779 0.339733 0 0.016471 0.201454 0 0 0 0 0.018751 0.22934 0 0 0 0 0.018751 0.22934
Santa Clara 2029 MHOT Aggregate Aggregate Exercisity 692.4864 35786.03 0 35786.03 0 35786.03 0 35786.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Santa Clara 2029 MHOT Aggregate Aggr
Santa Clara 2029 OBUS Aggregate Aggr
Santa Cap 207-08665 Agregate Agregate Design Santa 207-08665 Agreeate Design Santa 207-08665 A
Samita Data 2015-0005 Aggregate Aggregate Assignation (1994) 749-1438 749-7458 0 105-757 5-257-889 10005 10009-1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sent City 2029 98/5 Americal Remote Exposure 155/98/0 048/97 0129/99 0.049/97 0.000 0.049/97 1.059/99 0.000935 0.02009 0.049/99 0.049/99 0.000935 0.02009 0.049/99 0.049/99 0.000935 0.02009 0.049/99 0.049/99 0.000935 0.02009 0.049/99 0.049/99 0.000935 0.000935 0.0009 0.049/99 0.049/99 0.000935 0.0009 0.049/99 0.04
Senta Clara 2029 SNUS Assertate Discel 657, 2037 14758-12 0 9661,109 0 2,770552 18,87512 0.55398 0.01498 0.01296 0 0.001 0.015759 0.01558 0.01398 0.010575 0.01558 0.01398 0.0016759 0.01559 0
Santa Clara 2029 58US Aggregate Aggregate Exercisely 28:58612 952.7034 0 952.7034 344.1721 1003.651 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Santa Claria 2029 5815 Aggregate Agg
Sinta Clara 2029 URUS Aggregate Aggr
Santa Clara 2029 UBUS Aggregate Aggregate Aggregate Aggregate Descei 338,5092 37119.08 37119.08 0 1354.037 0 0.007269 0 0 0.0007869 0 0 0 0.0007869 0 0 0.0007869 0 0 0 0.0007869 0 0 0 0.0007869 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0 0.0007869 0 0 0 0 0.0007869 0 0 0 0 0 0.0007869 0 0 0 0 0 0 0.0007869 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Santa Clara 2029 UBUS Aggregate Aggr
Santa Clara 2029 UBUS Aggregate Ratural Ga 78.02557 8070.557 0 307.3023 0 0.058538 0 0 0.0000292 0 0 0.00815 0.0385 0.0000294 0 0 0.025599 0.11 1295.487 0 0 4.22523 0 0 0.254397 0 0 0.066513 0 0 0 0 0 4.222562 0 0 0 0 0 0.097 48.85872 0 0 0 0 0

Source: EMEAC3031 (v1.0.1) Emirrion Rater

Region Type: County

alendar Year: 2030

reason: Annual

Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, g/mile for RUNEX, PMBW and PMTW, g/trip for STREX, HOTSOAK and RUNLOSS, g/vehicle/day for IDLEX and DIUR

Units: miles/day for CVNIT and SVNIT, trips/day for Trips, kWh/day for Energy Consumption, g/mile for BUNDE, PMBW and PMITW, g/trip for STREX, HOTSOAK and RUNLOSS, g/vehicle/day for IDEX and DIURN	
Region Calendar Y Vehicle Calend	,
Spira Caretina i Vientici	
Senta Circuit - Control -	
Santa Clara 2030 PHOT Agreemate Agreemate Electricity 530/2501 54781.35 0547	
Santa Clara 2030 PHOT Agreemant Agre	
Santa Clara 2030 LDA Agreemants Agreemant Agre	
Santa Clara 2030 LDA Assersatar Assersate Discel 965.715 27889.12 77899.12 77899.12 77899.12 0 4169.431 0 0.08452 0 0 0.002 0.002772 216.2434 0 0 0.000652 0 0.034059 0 0 0 0 0.015978 0 0 0 0 0.0031 0.244061 0 0.0020049 0 0	
Santa Clara 2030 LDA Appropriate Assertable	
Sinta Clair 2030 IDA Aggregate Aggre	
Santa Clara 2030 LDT1 Aggregate Aggr	
Santa Clara 2030 LDT1 Aggregate Aggr	
Santa Clara 2030 LDT1 Aggregate Aggregate Exercisity 459-5988 19527-57 0 19527-57 0 19527-57 2229-168 7539-252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Santa Clara 2090 LDT1 Aggregate Aggregate Aggregate Plugin Hyle 311-9596 13308.96 5503.171 7805.787 1289.953 2357.88 0.00273 0 0.11551 0.000237 0 0.000682 0.002 0.001404 0.0000238 0 0.00168 0.000 0.004012 115.302 0 67.69965 0.00018 0 0.019726 0.001173 0 0.179285 0.023088 0.020052 0.277122 0.001712 0 0.189735 0.022088 0.020052 0.277122 0.001737 0 0.139893 0.00014 0 0.0006690 0.0000000000000000000000000	
Santa Clara 2090 LDTZ Aggregate Aggregate Gazoline 315384 11011602 LD 1467133 0 0.042512 0 0.254215 0.0000293 0 0.001699 0.000 0.0008992 313.0844 0 78.91261 0.001939 0 0.061959 0.004491 0 0.03322 0.007052 0 0.277663 0.065379 0.191547 1.192189 0.010291 0 0.288532 0.065379 0.191547 1.192189 0.010291 0 0.0008992 313.0844 0 78.91261 0.001939 0 0.061959 0.004491 0 0.03122 0.007052 0 0.277663 0.065379 0.191547 1.192189 0.010291 0 0.0885379 0.191547 1.192189 0.000933 0 0.000933 0 0.0001699 0.000 0.0001899 0.0008 0.0001899 0 0.0001899 0 0.0001899 0 0.0001899 0 0.0001899 0.0001899 0 0.0001899 0.000189 0.0001899 0.0001	
Santa Clara 2030 LDT2 Aggregate Aggregate Denel 1588-99 49966.35 49966.35 0 5439-347 0 0.000058 0 0 0.002 0.00143 0.004169 0 0 0.008 0.000812 285.9943 0 0 0.00559 0 0 0.012039 0 0 0 0 0 0 0.0013706 0 0 0 0 0.00013706 0 0 0 0.00021 0 0	
Santa Clava 2090 LDT2 Aggregate Aggregate Electricity 5453.194 171699 0 171699 27128.05 66289.98 0 0 0 0 0 0 0.0002 0.001511 0 0 0.0008 0.004374 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Santa Circa 200 LOTT A gargespite Aggregate Place Aggregate Place Aggregate Place Aggregate Place Aggregate Aggregate Place Aggregate Aggregate Place Aggregate Aggreg	
SantaCiar 2001/UFIOT Approprie Approprie Del 1139/32 4/757528 4/75	
SHIRD CLUS 2019/10/17 Appropriate National 2019/10/17 Appropriate National 2019/10/17 Appropriate National 2019/17 Appropriate Natio	
Sinta Ciara 2000 UPIOT Americant Agriculture Developed 5433.248 1996/24.8 90 004/972 002/975 0 0 0.00 003437 003/975 0 0 0 0 0 0.14376 003/294 0 0.02888 0.189/85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Sinta Ciara Agreeate Agreeate Exercises \$2,54,449 28,544,50 26,544,50 28,544	
Sintal Clair 2030 MCV Appropriate Appropriate Conscious Program (Appropriate Appropriate Conscious Program (Appropriate Appropriate Conscious Program (Appropriate Conscious Program (Appr	
Santa Clara 2030 MOV Aggregate Aggre	
Santa Clara 2030 MIDV Aggregate Aggregate Discel 2406:787 79682.09 9 0 11072.82 0 0.026422 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0 0.00310 1.81552 0 0 0.00360 0 0 0 0 0 0.00360 0 0 0 0 0 0.00360 0 0 0 0 0 0 0.00360 0 0 0 0 0 0 0.00360 0 0 0 0 0 0 0.00360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Santa Clara 2030 MOV Appressate A	
Samita Claim 2030 MIDV Aggregate Agg	
Santa Clara 2030 MH Aggregate Aggreg	
Santa Clara 2030 MH Aggregate Aggregate Denel 1064-938 10092.31 0 1064-938 10092.31 0 1064-938 0 0 0.004 0.015675 0.054-995 0 0 0.016 0.044785 1084-369 0 0 0.00483 0 0 0.170843 0 0 0.170843 0 0 0.01997 0 0 0 0 0 0.118394 0 0 0 0 0.0181066 0.332398 0 0 0.010275 0 0	
Santa Clara 2030 MHDT Aggregate Aggregate Gazoline 1369.784 6978655 6978655 0 2740663 0 0.082504 0.074496 0.34723 0.000588 0.021979 0.027836 1.022884 0 2.1089 0.021107 0.176695 1.842552 0.04668 0.029379 0.027836 1.022884 0 2.1089 0.021107 0.176695 1.842552 0.04668 0.029379 0.027836 1.022884 0.021099 0.000588 0.000414	
Santa Class 2090 MH/IDT Aggregate Aggregate Distail 10679.13 415833.4 U 127641.8 0 0.730884 11.4465 1.94354 0.006512 0.00996 0 0.003 0.015916 0.223779 0 0 0 0 0.016716 0.223779 0 0 0 0 0.016516 0.22379 0 0 0 0 0.016716 0.22379	
State Clark 2000 MHDT Aggregate Aggregate Exerciticity 99:13385 5131093 1 0 5131093 1 1279333 55704 DB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SantaCiara 2003/08/8, Agregate	
Senta Clara 2000 0815 Agregates Agregates Natural Ga 124437 7850477 7804	
Santa Clara 2030 591/5 Americante Agricorate	
Santa Clara 2030 581/5 Agreemable Agreemable Delived 699 30/29 1450/239 0 9546-705 0 2.539594 18,10728 0.550789 0.00409 0.011508 0 0.003 0.015721 0.014674 0.012133 0 0.012 0.044917 118.5 2161.652 0 0.00094 0.007833 0 0.17622 0.340599 0 0 0 0 0.051221 0.19199 0 0 0 0.071779 0.148382 5367405 0 0.010592 0.00047 0	
Santa Clara 2030 SBUS Agenerate Harmoniate Electricity 42,27556 1362,719 0 1362,719 492,3385 1455,554 0 0 0 0 0 0,000555 000785 0 0 0 0,000555 000785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Sinta Clara 2000 DBUS Aggregate Aggregate Natural Gs 29.19825 683.5221 0 0.003378 0.012589 0 0.003378 0.012589 0 0.003378 0.012589 0 0.003378 0.012589 0 0.003378 0.012589 0 0.003378 0.012589 0 0 0 0 0 0.325822 14.92316 0 0 0 0 1.06 10.47906 23.50992 0 0 0 0 0	
Santa Clara 2030 UBUS Aggregate Aggr	
Santa Clara 2030 UBUS Appressate	
Santa Clara 2030 UBUS - Appregate Aggregate Electricity 78.67725 8935.028 0 8935.028 314.689 15575.94 0 0 0 0 0 0.0007594 0.01925 0 0 0.0038975 0.055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Santa Clara 2030 UBUS Aggregate Aggregate Natural Ga 76.22557 8920.557 0 307.3023 0 0.058538 0 0 0.000294 0 0 0.032599 0.11 1296-487 0 0 4.23523 0 0 0.264297 0 0 0.066513 0 0 0 0 0 0 0.97.48.85872 0 0 0 0 0 0 0 0.97.48.85872 0 0 0 0 0	

Attachment 4: Project Construction and Operation Dispersion Modeling Inputs and Risk Calculations

Construction Health Risk Assessment and Calculations

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA

	Unmitigated	DPM	Unmitigated	Unmitigated	Fug PM2.5	Unmitigated
Year	DPM	EMFAC2021	Emissions	Fug PM2.5	EMFAC2021	Emissions
2028	0.0157	0.0003	0.0160	0.0527	0.0005	0.0532
2029	0.0239	0.0005	0.0244	0.0001	0.0007	0.0008
2030	0.0060	0.0003	0.0063	0.0000	0.0004	0.0004
	Mitigated	DPM	Mitigated	Mitigated	Fug PM2.5	Mitigated
Year	DPM	EMFAC2021	Emissions	Fug PM2.5	EMFAC2021	Emissions
2028	0.0013	0.0003	0.0016	0.0237	0.0005	0.0242
2029	0.0049	0.0005	0.0054	0.00003	0.0007	0.0007
2030	0.0037	0.0003	0.0040	0.0000	0.0004	0.0004

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA

DPM Construction Emissions and Modeling Emission Rates

								Emissions
Construction		DPM	Source	No.	D	PM Emissi	ons	per Point Source
Year	Activity	(ton/year)	Type	Sources	(lb/yr)	(lb/hr)	(g/s)	(g/s)
2028	Construction	0.0160	Point	23	32.1	0.00977	1.23E-03	5.35E-05
2029	Construction	0.0244	Point	23	48.8	0.01486	1.87E-03	8.14E-05
2030	Construction	0.0063	Point	23	12.6	0.00383	4.83E-04	2.10E-05
Total		0.0467			93.5	0.0285	0.0036	

Emissions assumed to be evenly distributed over each construction areas

hr/day = 9 (8am - 5pm) days/yr = 365

hours/year = 3285

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA

PM2.5 Fugitive Dust Construction Emissions for Modeling

Construction		Area		PM2.5	Emissions		Modeled Area	DPM Emission Rate
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m^2)	$g/s/m^2$
2028	Construction	CON_FUG	0.0532	106.3	0.03237	4.08E-03	676.5	6.03E-06
2029	Construction	CON_FUG	0.0008	1.5	0.00046	5.77E-05	676.5	8.53E-08
2030	Construction	CON_FUG	0.0004	0.9	0.00027	3.41E-05	676.5	5.04E-08
Total			0.0544	108.7	0.0331	0.0042		

Emissions assumed to be evenly distributed over each construction areas

hr/day = 9 (8am - 5pm)

days/yr = 365

hours/year = 3285

DPM Construction Emissions and Modeling Emission Rates - With Mitigation

Construction		DPM	Source	No.	D	PM Emissi	ons	Emissions per Point Source
Year	Activity	(ton/year)	Type	Sources	(lb/yr)	(lb/hr)	(g/s)	(g/s)
2028	Construction	0.0016	Point	23	3.3	0.00099	1.25E-04	5.43E-06
2029	Construction	0.0054	Point	23	10.9	0.00331	4.17E-04	1.81E-05
2030	Construction	0.0040	Point	23	8.0	0.00242	3.05E-04	1.33E-05
Total		0.0110			22.1	0.0067	0.0008	

Emissions assumed to be evenly distributed over each construction areas

hr/day = 9 (8am - 5pm)

days/yr = 365 hours/year = 3285

PM2.5 Fugitive Dust Construction Emissions for Modeling - With Mitigation

Construction		Area		PM2.5	Emissions		Modeled Area	DPM Emission Rate
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m^2)	$g/s/m^2$
2028	Construction	CON_FUG	0.0242	48.3	0.01471	1.85E-03	676.5	2.74E-06
2029	Construction	CON_FUG	0.0007	1.4	0.00044	5.54E-05	676.5	8.19E-08
2030	Construction	CON_FUG	0.0004	0.9	0.00027	3.41E-05	676.5	5.04E-08
Total			0.0253	50.7	0.0154	0.0019		

Emissions assumed to be evenly distributed over each construction areas

hr/day = 9 (8am - 5pm)

days/yr = 365 hours/year = 3285

Eterna Tower, 17 & 29 E. Santa Clara St, San Jose, CA - Construction Health Impact Modeling Source Parameters for Point Sources Used in Construction Modeling

Source Construction Equipment	Stack Height (ft) 9.0	Stack Diam (in) 2.5	Exhaust Temp (F) 918	Volume Flow (acfm) 632	Velocity (ft/min) 18540	Velocity (ft/sec) 309.0
Source Construction Equipment	Stack Height (m) 2.74	Stack Diam (m) 0.064	Exhaust Temp (K) 765.37			Velocity (ft/sec) 94.2

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - Construction Health Impact Summary

Maximum Impacts at MEI Residential Location - Without Mitigation

	Maximum Cond	entrations				Maximum
	Exhaust	Fugitive	Cancer	· Risk*	Hazard	Annual PM2.5
Emissions	PM10/DPM	PM2.5	(per million)		Index	Concentration*
Year	$(\mu g/m^3)$	$(\mu g/m^3)$	Infant/Child Adult		(-)	$(\mu g/m^3)$
2028	0.0362	0.1495	6.44	0.10	0.01	0.32
2029	0.0551	0.0021	9.05	0.16	0.01	0.26
2030	0.0142	0.0013	0.37	0.04	0.003	0.07
Total	-	-	15.85	0.30	-	-
Maximum	0.0551	0.1495	-	-	0.01	0.32

^{*} Maximum cancer risk and maximum PM2.5 concentration occur at different receptors.

Maximum Impacts at MEI Residential Location - With Mitigation

	Maximum Cond Exhaust	centrations Fugitive	Cancer	· Risk*	Hazard	Maximum Annual PM2.5		
Emissions	PM10/DPM	PM2.5	(per million)		(per million)		Index	Concentration*
Year	$(\mu g/m^3)$	(μg/m ³)	Infant/Child Adult		(-)	(μg/m ³)		
2028	0.0037	0.0679	0.65	0.01	0.001	0.09		
2029	0.0123	0.0020	2.02	0.04	0.002	0.06		
2030	0.0090	0.0013	0.23	0.03	0.002	0.04		
Total	-	-	2.90	0.07	-	-		
Maximum	0.0123	0.0679	-	-	0.002	0.09		

^{*} Maximum cancer risk and maximum PM2.5 concentration occur at different receptors.

⁻ Tier 4 Interim Engine and BMP Mitigation

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 6.1 meter receptor height (2nd Floor Level)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)
AT = Averaging time for lifetime cancer risk (years)
FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	1.00	1.00	1.00	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	- Exposure 1	nformation	Infant/Child	Adult - Exp	osure Infor	mation	Adult
	Exposure				Age	Cancer	Model	ed	Age	Cancer
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)
0	0.25	-0.25 - 0*	2028	0.0362	10	0.49	2028	0.0362	-	-
1	1	0 - 1	2028	0.0362	10	5.95	2028	0.0362	1	0.10
2	1	1 - 2	2029	0.0551	10	9.05	2029	0.0551	1	0.16
3	1	2 - 3	2030	0.0142	3	0.37	2030	0.0142	1	0.04
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00
Total Increase	ed Cancer Ris	sk				15.85				0.30

Maximum Hazard Fugitive Total Index PM2.5 PM2.5

0.1877 0.2239

0.0027 0.0577

0.0016 0.0158

0.0072

0.0110

0.0028

^{*} Third trimester of pregnancy

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Future 19 N. 2nd Street (Adult Seniors Only) - 6.1 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	1	nfant/Child		Adult
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH =	1.00	1.00	1.00	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	on cuncer is	•	Adult - E	xpos ure Info	rmation	Adult
	Exposure		Model	led	Age	Cancer
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk
Year	(years)	Age	Year	Annual	Factor	(per million)
1	1	55-56	2028	0.1695	1	0.49
2	1	56-57	2029	0.2578	1	0.74
3	1	57-58	2030	0.0666	1	0.19
4	1	58-59		0.0000	1	0.00
5	1	59-60		0.0000	1	0.00
6	1	60-61		0.0000	1	0.00
7	1	61-62		0.0000	1	0.00
8	1	62-63		0.0000	1	0.00
9	1	63-64		0.0000	1	0.00
10	1	64-65		0.0000	1	0.00
11	1	65-66		0.0000	1	0.00
12	1	66-67		0.0000	1	0.00
13	1	67-68		0.0000	1	0.00
14	1	68-69		0.0000	1	0.00
15	1	69-70		0.0000	1	0.00
16	1	70-71		0.0000	1	0.00
17	1	71-72		0.0000	1	0.00
18	1	72-73		0.0000	1	0.00
19	1	73-74		0.0000	1	0.00
20	1	74-75		0.0000	1	0.00
21	1	75-76		0.0000	1	0.00
22	1	76-77		0.0000	1	0.00
23	1	77-78		0.0000	1	0.00
24	1	78-79		0.0000	1	0.00
25	1	79-80		0.0000	1	0.00
26	1	80-81		0.0000	1	0.00
27	1	81-82		0.0000	1	0.00
28	1	82-83		0.0000	1	0.00
29	1	83-84		0.0000	1	0.00
30	1	84-85		0.0000	1	0.00
Total Increas	ed Cancer Ris	k				1.42

_				
*	Assumed	Adult	Seniors	Only

Maximum						
Hazard	Fugitive	Total				
Index	PM2.5	PM2.5				
0.0339	0.1495	0.3190				
0.0516	0.0021	0.2599				
0.0133	0.0013	0.0678				

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 9.1 meter receptor height (3rd Floor Level)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

10⁻⁶ = Conversion factor

Values

	I	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	1.00	1.00	1.00	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

Exposure Vear Vear Age Vear Annual Factor Qer million Qer million				Infant/Child	- Exposure	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult
Year (years) Age Year Annual Factor (per million) Year Annual Annual Factor (per million) 0 0.25 -0.25 - 0.9* 2028 0.0332 10 0.45 2028 0.0332 1 0.10 1 1 0 - 1 2028 0.0332 1 0.10 2 1 1 - 2 2029 0.0505 10 8.30 2029 0.0505 1 0.15 3 1 2 - 3 2030 0.0130 3 0.34 2030 0.0130 1 0.05 4 1 3 - 4 0.0000 3 0.00 0.0000 1 0.00 5 1 4 - 5 0.0000 3 0.00 0.0000 1 0.00 6 1 5 - 6 0.0000 3 0.00 0.0000 1 0.00 7 1 6 - 7 0.0000 3 0.00 0.0000 1 0.00		Exposure				Age	Cancer	Model	ed	Age	Cancer
0 0.25 -0.25 - 0* 2028 0.0332 10 0.45 2028 0.0332 1 0-1 2028 0.0332 1 0.10 5.46 2028 0.0332 1 0.10 0.10 0.10 0.15 3 1 1-2 2029 0.0505 1 0.15 3 1 2-3 2030 0.0130 3 0.34 2030 0.0130 1 0.04 4 1 3-4 0.0000 3 0.00 0.0000 1 0.00 5 1 4-5 0.0000 3 0.00 0.0000 1 0.00 6 1 5-6 0.0000 3 0.00 0.0000 1 0.00 7 1 6-7 0.0000 3 0.00 0.0000 1 0.00 8 1 7-8 0.0000 3 0.00 0.0000 1 0.00 10 1 9-10 0.0000	Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk
1 1 0-1 2028 0.0332 10 5.46 2028 0.0332 1 0.10 2 1 1-2 2029 0.0505 10 8.30 2029 0.0505 1 0.15 3 1 2-3 2030 0.0130 3 0.34 2030 0.0130 1 0.04 4 1 3-4 0.0000 3 0.00 0.0000 1 0.00 5 1 4-5 0.0000 3 0.00 0.0000 1 0.00 6 1 5-6 0.0000 3 0.00 0.0000 1 0.00 7 1 6-7 0.0000 3 0.00 0.0000 1 0.00 8 1 7-8 0.0000 3 0.00 0.0000 1 0.00 9 1 8-9 0.0000 3 0.00 0.0000 1 0.00 10 <	Year									Factor	(per million)
2 1 1 - 2 2029 0.0505 10 8.30 2029 0.0505 1 0.15 3 1 2 - 3 2030 0.0130 3 0.04 4 1 3 - 4 0.0000 3 0.00 0.0000 1 0.04 5 1 4 - 5 0.0000 3 0.00 0.0000 1 0.00 6 1 5 - 6 0.0000 3 0.00 0.0000 1 0.00 7 1 6 - 7 0.0000 3 0.00 0.0000 1 0.00 8 1 7 - 8 0.0000 3 0.00 0.0000 1 0.00 9 1 8 - 9 0.0000 3 0.00 0.0000 1 0.00 10 1 9 - 10 0.0000 3 0.00 0.0000 1 0.00 11 1 1 - 1 - 12 0.0000 3 0.00 0.0000	0	0.25			0.0332	10		2028	0.0332	-	-
3 1 2-3 2030 0.0130 3 0.34 2030 0.0130 1 0.04 4 1 3-4 0.0000 3 0.00 0.0000 1 0.00 5 1 4-5 0.0000 3 0.00 0.0000 1 0.00 6 1 5-6 0.0000 3 0.00 0.0000 1 0.00 7 1 6-7 0.0000 3 0.00 0.0000 1 0.00 8 1 7-8 0.0000 3 0.00 0.0000 1 0.00 9 1 8-9 0.0000 3 0.00 0.0000 1 0.00 10 1 9-10 0.0000 3 0.00 0.0000 1 0.00 11 1 10-11 0.0000 3 0.00 0.0000 1 0.00 12 1 11-12 0.0000 3 <	1	1								1	
4 1 3-4 0.0000 3 0.00 0.0000 1 0.00 5 1 4-5 0.0000 3 0.00 0.0000 1 0.00 6 1 5-6 0.0000 3 0.00 0.0000 1 0.00 7 1 6-7 0.0000 3 0.00 0.0000 1 0.00 8 1 7-8 0.0000 3 0.00 0.0000 1 0.00 9 1 8-9 0.0000 3 0.00 0.0000 1 0.00 10 1 9-10 0.0000 3 0.00 0.0000 1 0.00 11 1 10-11 0.0000 3 0.00 0.0000 1 0.00 12 1 11-12 0.0000 3 0.00 0.0000 1 0.00 13 1 12-13 0.0000 3 0.00 0.0000		1		2029	0.0505		8.30	2029	0.0505	1	0.15
5 1 4 - 5 0.0000 3 0.00 0.0000 1 0.00 6 1 5 - 6 0.0000 3 0.00 0.0000 1 0.00 7 1 6 - 7 0.0000 3 0.00 0.0000 1 0.00 8 1 7 - 8 0.0000 3 0.00 0.0000 1 0.00 9 1 8 - 9 0.0000 3 0.00 0.0000 1 0.00 10 1 9 - 10 0.0000 3 0.00 0.0000 1 0.00 11 1 10 - 11 0.0000 3 0.00 0.0000 1 0.00 12 1 11 - 12 0.0000 3 0.00 0.0000 1 0.00 13 1 12 - 13 0.0000 3 0.00 0.0000 1 0.00 14 - 15 1 0.0000 3 0.00 0.0000	3	1	2 - 3	2030	0.0130	3	0.34	2030	0.0130	1	0.04
6 1 5-6 0.0000 3 0.00 0.0000 1 0.00 7 1 6-7 0.0000 3 0.00 0.0000 1 0.00 8 1 7-8 0.0000 3 0.00 0.0000 1 0.00 9 1 8-9 0.0000 3 0.00 0.0000 1 0.00 10 1 9-10 0.0000 3 0.00 0.0000 1 0.00 11 1 10-11 0.0000 3 0.00 0.0000 1 0.00 12 1 11-12 0.0000 3 0.00 0.0000 1 0.00 13 1 12-13 0.0000 3 0.00 0.0000 1 0.00 14 1 13-14 0.0000 3 0.00 0.0000 1 0.00 15 1 14-15 0.0000 3 0.00 0.0000 <td></td> <td>1</td> <td></td> <td></td> <td>0.0000</td> <td></td> <td>0.00</td> <td></td> <td>0.0000</td> <td>1</td> <td>0.00</td>		1			0.0000		0.00		0.0000	1	0.00
7 1 6-7 0.0000 3 0.00 0.0000 1 0.00 8 1 7-8 0.0000 3 0.00 0.0000 1 0.00 9 1 8-9 0.0000 3 0.00 0.0000 1 0.00 10 1 9-10 0.0000 3 0.00 0.0000 1 0.00 11 1 10-11 0.0000 3 0.00 0.0000 1 0.00 12 1 11-12 0.0000 3 0.00 0.0000 1 0.00 13 1 12-13 0.0000 3 0.00 0.0000 1 0.00 14 1 13-14 0.0000 3 0.00 0.0000 1 0.00 15 1 14-15 0.0000 3 0.00 0.0000 1 0.00 16 1 15-16 0.0000 3 0.00 0.0000<	5	1			0.0000	-	0.00		0.0000	1	0.00
8 1 7-8 0.0000 3 0.00 0.0000 1 0.00 9 1 8-9 0.0000 3 0.00 0.0000 1 0.00 10 1 9-10 0.0000 3 0.00 0.0000 1 0.00 11 1 10-11 0.0000 3 0.00 0.0000 1 0.00 12 1 11-12 0.0000 3 0.00 0.0000 1 0.00 13 1 12-13 0.0000 3 0.00 0.0000 1 0.00 14 1 13-14 0.0000 3 0.00 0.0000 1 0.00 15 1 14-15 0.0000 3 0.00 0.0000 1 0.00 16 1 15-16 0.0000 3 0.00 0.0000 1 0.00 17 1 16-17 0.0000 1 0.00 0.0	6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00
9 1 8-9 0.0000 3 0.00 0.0000 1 0.00 10 1 9-10 0.0000 3 0.00 0.0000 1 0.00 11 1 10-11 0.0000 3 0.00 0.0000 1 0.00 12 1 11-12 0.0000 3 0.00 0.0000 1 0.00 13 1 12-13 0.0000 3 0.00 0.0000 1 0.00 14 1 13-14 0.0000 3 0.00 0.0000 1 0.00 15 1 14-15 0.0000 3 0.00 0.0000 1 0.00 16 1 15-16 0.0000 3 0.00 0.0000 1 0.00 17 1 16-17 0.0000 1 0.00 0.0000 1 0.00 18 1 17-18 0.0000 1 0.00 0	7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1			0.0000	3	0.00		0.0000	1	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	1	16-17		0.0000	1	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	1	17-18		0.0000	1	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1	18-19		0.0000	1	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1	19-20		0.0000	1	0.00		0.0000	1	0.00
23 1 22-23 0.0000 1 0.00 0.0000 1 0.00 24 1 23-24 0.0000 1 0.00 0.0000 1 0.00 25 1 24-25 0.0000 1 0.00 0.0000 1 0.00 26 1 25-26 0.0000 1 0.00 0.0000 1 0.00 27 1 26-27 0.0000 1 0.00 0.0000 1 0.00 28 1 27-28 0.0000 1 0.00 0.0000 1 0.00 29 1 28-29 0.0000 1 0.00 0.0000 1 0.00 30 1 29-30 0.0000 1 0.00 0.0000 1 0.00	21	1	20-21		0.0000	1	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	1	21-22		0.0000	1	0.00		0.0000	1	0.00
25 1 24-25 0.0000 1 0.00 0.0000 1 0.00 26 1 25-26 0.0000 1 0.00 0.0000 1 0.00 27 1 26-27 0.0000 1 0.00 0.0000 1 0.00 28 1 27-28 0.0000 1 0.00 0.0000 1 0.00 29 1 28-29 0.0000 1 0.00 0.0000 1 0.00 30 1 29-30 0.0000 1 0.00 0.0000 1 0.00	23	1	22-23		0.0000	1	0.00		0.0000	1	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	1	23-24		0.0000	1	0.00		0.0000	1	0.00
27 1 26-27 0.0000 1 0.00 0.0000 1 0.00 28 1 27-28 0.0000 1 0.00 0.0000 1 0.00 29 1 28-29 0.0000 1 0.00 0.0000 1 0.00 30 1 29-30 0.0000 1 0.00 0.0000 1 0.00	25	1	24-25		0.0000	1	0.00		0.0000	1	0.00
28 1 27-28 0.0000 1 0.00 0.0000 1 0.00 29 1 28-29 0.0000 1 0.00 0.0000 1 0.00 30 1 29-30 0.0000 1 0.00 0.0000 1 0.00	26	1	25-26		0.0000	1	0.00		0.0000	1	0.00
29 1 28-29 0.0000 1 0.00 0.0000 1 0.00 30 1 29-30 0.0000 1 0.00 0.0000 1 0.00	27	1	26-27		0.0000	1	0.00		0.0000	1	0.00
30 1 29-30 0.0000 1 0.00 0.0000 1 0.00	28	1	27-28		0.0000	1	0.00		0.0000	1	0.00
	29	1	28-29		0.0000	1	0.00		0.0000	1	0.00
Total Increased Cancer Risk 14.55 0.28	30	1	29-30		0.0000	1	0.00		0.0000	1	0.00
	Total Increas	ed Cancer R	isk				14.55				0.28

Hazard	Fugitive	Total
Index	PM2.5	PM2.5
0.0066	0.1466	0.1798
0.0101	0.0021	0.0526
0.0026	0.0012	0.0143

Maximum

^{*} Third trimester of pregnancy

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Future 19 N. 2nd Street (Adult Seniors Only) - 9.1 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	1.00	1.00	1.00	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Adult - Exposure Information		rmation	Adult
	Exposure		Modeled		Age	Cancer
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk
Year	(years)	Age	Year	Annual	Factor	(per million)
1	1	55-56	2028	0.1261	1	0.36
2	1	56-57	2029	0.1918	1	0.55
3	1	57-58	2030	0.0495	1	0.14
4	1	58-59		0.0000	1	0.00
5	1	59-60		0.0000	1	0.00
6	1	60-61		0.0000	1	0.00
7	1	61-62		0.0000	1	0.00
8	1	62-63		0.0000	1	0.00
9	1	63-64		0.0000	1	0.00
10	1	64-65		0.0000	1	0.00
11	1	65-66		0.0000	1	0.00
12	1	66-67		0.0000	1	0.00
13	1	67-68		0.0000	1	0.00
14	1	68-69		0.0000	1	0.00
15	1	69-70		0.0000	1	0.00
16	1	70-71		0.0000	1	0.00
17	1	71-72		0.0000	1	0.00
18	1	72-73		0.0000	1	0.00
19	1	73-74		0.0000	1	0.00
20	1	74-75		0.0000	1	0.00
21	1	75-76		0.0000	1	0.00
22	1	76-77		0.0000	1	0.00
23	1	77-78		0.0000	1	0.00
24	1	78-79		0.0000	1	0.00
25	1	79-80		0.0000	1	0.00
26	1	80-81		0.0000	1	0.00
27	1	81-82		0.0000	1	0.00
28	1	82-83		0.0000	1	0.00
29	1	83-84		0.0000	1	0.00
30	1	84-85		0.0000	1	0.00
Total Increas	ed Cancer Ris	k				1.05

	Maximum	I
Hazard	Fugitive	Total
Index	PM2.5	PM2.5
0.0252	0.0469	0.1729
0.0384	0.0007	0.1924
0.0099	0.0004	0.0499

^{*} Assumed Adult Seniors Only

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 6.1 meter receptor height (2nd Floor Level)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT=	70	70	70	70
FAH=	1.00	1.00	1.00	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	- Exposure l	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult
	Exposure				Age	Cancer	Model	ed	Age	Cancer
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)
0	0.25	-0.25 - 0*	2028	0.0037	10	0.05	2028	0.0037	-	-
1	1	0 - 1	2028	0.0037	10	0.60	2028	0.0037	1	0.01
2	1	1 - 2	2029	0.0123	10	2.02	2029	0.0123	1	0.04
3	1	2 - 3	2030	0.0090	3	0.23	2030	0.0090	1	0.03
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00
* Third trimes:						2.90				0.07

20	1	19-20	0.0000	1	0.00	0.0000	1	0.00	
21	1	20-21	0.0000	1	0.00	0.0000	1	0.00	
22	1	21-22	0.0000	1	0.00	0.0000	1	0.00	
23	1	22-23	0.0000	1	0.00	0.0000	1	0.00	
24	1	23-24	0.0000	1	0.00	0.0000	1	0.00	
25	1	24-25	0.0000	1	0.00	0.0000	1	0.00	
26	1	25-26	0.0000	1	0.00	0.0000	1	0.00	
27	1	26-27	0.0000	1	0.00	0.0000	1	0.00	
28	1	27-28	0.0000	1	0.00	0.0000	1	0.00	
29	1	28-29	0.0000	1	0.00	0.0000	1	0.00	
30	1	29-30	0.0000	1	0.00	0.0000	1	0.00	
otal Increas	ed Cancer R	isk			2.90			0.07	
Third trimes	ter of pregnan	cy							•

Maximum Hazard Fugitive Total Index PM2.5 PM2.5

0.0853 0.0890

0.0026 0.0148

0.0016 0.0106

0.0007

0.0025

0.0018

^{*} T

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Future 19 N. 2nd Street (Adult Seniors Only) - 6.1 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

 $A = Inhalation \ absorption \ factor$

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I	Infant/Child					
Age ->	3rd Trimester	0 - 2	2 - 16	16 - 30			
Parameter							
ASF =	10	10	3	1			
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00			
DBR* =	361	1090	572	261			
A =	1	1	1	1			
EF =	350	350	350	350			
AT =	70	70	70	70			
FAH =	1.00	1.00	1.00	0.73			

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

		lisk by Tear - I	Adult - E	xposure Info		Adult
	Exposure		Model	led	Age	Cancer
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk
Year	(years)	Age	Year	Annual	Factor	(per million)
1	1	55-56	2028	0.0172	1	0.05
2	1	56-57	2029	0.0575	1	0.17
3	1	57-58	2030	0.0420	1	0.12
4	1	58-59		0.0000	1	0.00
5	1	59-60		0.0000	1	0.00
6	1	60-61		0.0000	1	0.00
7	1	61-62		0.0000	1	0.00
8	1	62-63		0.0000	1	0.00
9	1	63-64		0.0000	1	0.00
10	1	64-65		0.0000	1	0.00
11	1	65-66		0.0000	1	0.00
12	1	66-67		0.0000	1	0.00
13	1	67-68		0.0000	1	0.00
14	1	68-69		0.0000	1	0.00
15	1	69-70		0.0000	1	0.00
16	1	70-71		0.0000	1	0.00
17	1	71-72		0.0000	1	0.00
18	1	72-73		0.0000	1	0.00
19	1	73-74		0.0000	1	0.00
20	1	74-75		0.0000	1	0.00
21	1	75-76		0.0000	1	0.00
22	1	76-77		0.0000	1	0.00
23	1	77-78		0.0000	1	0.00
24	1	78-79		0.0000	1	0.00
25	1	79-80		0.0000	1	0.00
26	1	80-81		0.0000	1	0.00
27	1	81-82		0.0000	1	0.00
28	1	82-83		0.0000	1	0.00
29	1	83-84		0.0000	1	0.00
30	1	84-85		0.0000	1	0.00
Total Increas	ed Cancer Ris					0.34

^{*} Assumed Adult Seniors Only

Hazard	Fugitive	Total
Index	PM2.5	PM2.5
0.0034	0.0679	0.0851
0.0115	0.0020	0.0595
0.0084	0.0013	0.0433

Project Generator Health Risk Assessment and Calculations

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA

Standby Emergency Generator Impacts
Off-site Sensitive Receptors
MEI Location = 6.1 meter receptor height

DPM Emission Rates							
	DPM Emissions per Generator						
	Max Daily Annual						
Source Type	(lb/day)	(lb/year)					
One, 500-kW, 670-hp Generator	0.022	8.08					
CalEEMod DPM Emissions	4.04E-03	tons/year					

Modeling Information								
Model	AERMOD							
Source	Diesel Generator Engin	e						
Source Type	Point							
Meteorological Data	2013-2017 San Jose Airport Meterological Data							
Point Source Stack Parameters								
Generator Engine Size (hp) Stack Height (ft)	670 12.00	near ground level release assumed						
Stack Diameter (ft)**	0.60							
Exhaust Gas Flowrate (CFM)*	2527.73							
Stack Exit Velocity (ft/sec)**	149.00							
Exhaust Temperature (°F)**	872.00							
Emissions Rate (lb/hr)	0.0009							

^{*} AERMOD default

^{**}BAAQMD default generator parameters

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose - Cancer Risks from Project Operation Project Emergency Generators

Impacts at Construction MEI Receptor- 6.1m Receptor Height Impact at Project Cancer Risk and PM2.5 MEIs (27-year Exposure)

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

	Infa	Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF =	10	10	3	1
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT =	70	70	70	70
FAH=	0.85	0.85	0.72	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Project Generators Operation Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/C	hild - Expos u	re Information				
	Exposure				Age	Cancer			
Exposure	Duration		DPM Co	nc (ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2028	0.0000	10	0.000			
1	1	0 - 1	2028	0.0000	10	0.000			
2	1	1 - 2	2029	0.0000	10	0.000			
3	1	2 - 3	2030	0.0000	3	0.000			
4	1	3 - 4	2031	0.0048	3	0.089	0.001	0.003	0.01
5	1	4 - 5	2032	0.0048	3	0.089	0.001	0.003	0.01
6	1	5 - 6	2033	0.0048	3	0.089	0.001	0.003	0.01
7	1	6 - 7	2034	0.0048	3	0.089	0.001	0.003	0.01
8	1	7 - 8	2035	0.0048	3	0.089	0.001	0.003	0.01
9	1	8 - 9	2036	0.0048	3	0.089	0.001	0.003	0.01
10	1	9 - 10	2037	0.0048	3	0.089	0.001	0.003	0.01
11	1	10 - 11	2038	0.0048	3	0.089	0.001	0.003	0.01
12	1	11 - 12	2039	0.0048	3	0.089	0.001	0.003	0.01
13	1	12 - 13	2040	0.0048	3	0.089	0.001	0.003	0.01
14	1	13 - 14	2041	0.0048	3	0.089	0.001	0.003	0.01
15	1	14 - 15	2042	0.0048	3	0.089	0.001	0.003	0.01
16	1	15 - 16	2043	0.0048	3	0.089	0.001	0.003	0.01
17	1	16-17	2044	0.0048	1	0.014	0.001	0.003	0.01
18	1	17-18	2045	0.0048	1	0.014	0.001	0.003	0.01
19	1	18-19	2046	0.0048	1	0.014	0.001	0.003	0.01
20	1	19-20	2047	0.0048	1	0.014	0.001	0.003	0.01
21	1	20-21	2048	0.0048	1	0.014	0.001	0.003	0.01
22	1	21-22	2049	0.0048	1	0.014	0.001	0.003	0.01
23	1	22-23	2050	0.0048	1	0.014	0.001	0.003	0.01
24	1	23-24	2051	0.0048	1	0.014	0.001	0.003	0.01
25	1	24-25	2052	0.0048	1	0.014	0.001	0.003	0.01
26	1	25-26	2053	0.0048	1	0.014	0.001	0.003	0.01
27	1	26-27	2054	0.0048	1	0.014	0.001	0.003	0.01
28	1	27-28	2055	0.0048	1	0.014	0.001	0.003	0.01
29	1	28-29	2056	0.0048	1	0.014	0.001	0.003	0.01
30	1	29-30	2057	0.0048	1	0.014	0.001	0.003	0.01
Total Increas	ed Cancer Ris	k				1.34	Max 0.001	0.003	0.01

^{*} Third trimester of pregnancy

Attachment 5: Cumulative Community Risk from Existing TAC Sources

CT-EMFAC2017 Emissions Factors for E. Santa Clara Street 2028

File Name: Eterna Tower - Santa Clara St - Santa Clara (SF) - 2028 - Annual.EF

CT-EMFAC2017 Version: 1.0.2.27401

Run Date: 7/6/2021 14:47 Area: Santa Clara (SF)

Analysis Year: 2028 Season: Annual

VMT Diesel VMT Gas VMT Vehicle Category Fraction Fraction Fraction Across Within Within Category Category Category Truck 1 0.014 0.517 0.483 Truck 2 0.021 0.933 0.05 Non-Truck 0.965 0.015 0.945

Road Type: Major/Collector

Silt Loading Factor: CARB 0.032 g/m2

Precipitation Correction: CARB P = 64 days N = 365 days

Fleet Average Running Exhaust Emission Factors (grams/veh-mile)

Pollutant Name <= 5 mph 10 mph 15 mph 20 mph 25 mph 30 mph 35 mph PM2.5 0.003186 0.00228 0.001732 0.001402 0.00121 0.007234 0.004693 TOG 0.150241 0.098664 0.066256 0.04689 0.035556 0.028455 0.023901 0.000631 0.000535 0.000424 0.000345 0.000303 0.000288 0.000296 Diesel PM

Fleet Average Running Loss Emission Factors (grams/veh-hour)

Pollutant Name Emission Factor TOG 1.122713

Fleet Average Tire Wear Factors (grams/veh-mile)

Pollutant Name Emission Factor PM2.5 0.002113

Fleet Average Brake Wear Factors (grams/veh-mile)

Pollutant Name Emission Factor PM2.5 0.016796

Fleet Average Road Dust Factors (grams/veh-mile)

Pollutant Name Emission Factor

PM2.5 0.014896

E. Santa Clara Street Emissions and Health Risk Calculations

Analysis Year = 2028

Vehicle Type	2021 Caltrans Vehicles (veh/day)	2028 Vehicles (veh/day)
Truck 1 (MDT)	460	493
Truck 2 (HDT)	124	132
Non-Truck	16,061	17,185
Total	16,645	17,810

Increase From 20211.07Vehicles/Direction8,905Avg Vehicles/Hour/Direction371

Traffic Data Year = 2021

Nearby Project Cumulative ADT		Total
	AADT Total	Truck
E. Santa Clara Street	16,645	584

Percent of Total Vehicles

3.51%

Traffic Increase per Year (%) = 1.00%

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose - Offsite Residential Roadway Modeling Cumulative Operation - Santa Clara Street

DPM Modeling - Roadway Links, Traffic Volumes, and DPM Emissions

Year = 2028

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
DPM_EBSC	Santa Clara Street Eastbound	EB	2	635.2	0.39	13.3	43.7	3.4	20	8,905
DPM_WBSC	Santa Clara Street Westbound	WB	2	636.8	0.40	13.3	43.7	3.4	20	8,905
									Total	17,810

Emission Factors - DPM

Speed Category	1	2	3	4
Travel Speed (mph)	20			
Emissions per Vehicle (g/VMT)	0.00035			

Emisson Factors from CT-EMFAC2017

2028 Hourly Traffic Volumes and DPM Emissions - DPM_EBSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	3.96%	353	1.33E-05	9	6.46%	575	2.18E-05	17	5.61%	500	1.89E-05
2	2.66%	237	8.96E-06	10	7.36%	655	2.48E-05	18	3.24%	289	1.09E-05
3	2.88%	256	9.70E-06	11	6.40%	570	2.16E-05	19	2.22%	198	7.48E-06
4	3.28%	292	1.10E-05	12	6.97%	621	2.35E-05	20	0.86%	77	2.90E-06
5	2.09%	186	7.04E-06	13	6.23%	555	2.10E-05	21	3.06%	272	1.03E-05
6	3.34%	297	1.13E-05	14	6.17%	549	2.08E-05	22	4.25%	378	1.43E-05
7	6.06%	540	2.04E-05	15	5.10%	454	1.72E-05	23	2.55%	227	8.59E-06
8	4.54%	404	1.53E-05	16	3.86%	344	1.30E-05	24	0.85%	76	2.86E-06
								Total		8,905	

2028 Hourly Traffic Volumes Per Direction and DPM Emissions - DPM_WBSC

	% Per				% Per	_			% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	3.96%	353	1.34E-05	9	6.46%	575	2.18E-05	17	5.61%	500	1.89E-05
2	2.66%	237	8.98E-06	10	7.36%	655	2.49E-05	18	3.24%	289	1.09E-05
3	2.88%	256	9.73E-06	11	6.40%	570	2.16E-05	19	2.22%	198	7.50E-06
4	3.28%	292	1.11E-05	12	6.97%	621	2.35E-05	20	0.86%	77	2.90E-06
5	2.09%	186	7.06E-06	13	6.23%	555	2.10E-05	21	3.06%	272	1.03E-05
6	3.34%	297	1.13E-05	14	6.17%	549	2.08E-05	22	4.25%	378	1.44E-05
7	6.06%	540	2.05E-05	15	5.10%	454	1.72E-05	23	2.55%	227	8.61E-06
8	4.54%	404	1.53E-05	16	3.86%	344	1.30E-05	24	0.85%	76	2.87E-06
								Total		8,905	

Cumulative Operation - Santa Clara Street

PM2.5 Modeling - Roadway Links, Traffic Volumes, and PM2.5 Emissions

Year = 2028

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
PM25_EBSC	Santa Clara Street Eastbound	EB	2	635.2	0.39	13.3	44	1.3	20	8,905
PM25_WBSC	Santa Clara Street Westbound	WB	2	636.8	0.40	13.3	44	1.3	20	8,905 17,810
PM25_WBSC		WB	2	636.8	0.40	13.3	44	1.3		20 otal

Emission Factors - PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	20			
Emissions per Vehicle (g/VMT)	0.002280			

Emisson Factors from CT-EMFAC2017

2028 Hourly Traffic Volumes and PM2.5 Emissions - PM25_EBSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	102	2.56E-05	9	7.11%	633	1.58E-04	17	7.39%	658	1.65E-04
2	0.42%	37	9.35E-06	10	4.39%	391	9.77E-05	18	8.18%	728	1.82E-04
3	0.40%	36	8.90E-06	11	4.66%	415	1.04E-04	19	5.70%	508	1.27E-04
4	0.26%	23	5.79E-06	12	5.89%	525	1.31E-04	20	4.27%	380	9.51E-05
5	0.49%	44	1.09E-05	13	6.15%	548	1.37E-04	21	3.25%	289	7.23E-05
6	0.90%	80	2.00E-05	14	6.04%	538	1.34E-04	22	3.30%	294	7.35E-05
7	3.79%	338	8.44E-05	15	7.01%	624	1.56E-04	23	2.46%	219	5.48E-05
8	7.76%	691	1.73E-04	16	7.14%	636	1.59E-04	24	1.87%	167	4.16E-05
								Total		8,903	

2028 Hourly Traffic Volumes Per Direction and PM2.5 Emissions - PM25 WBSC

ZUZO HUUII	y manic v	olullies Pe	Direction	allu Piviz	.5 EIIII5510	JIIS - PIVIZO	_wbsc				
	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	102	2.57E-05	9	7.11%	633	1.59E-04	17	7.39%	658	1.65E-04
2	0.42%	37	9.37E-06	10	4.39%	391	9.80E-05	18	8.18%	728	1.83E-04
3	0.40%	36	8.93E-06	11	4.66%	415	1.04E-04	19	5.70%	508	1.27E-04
4	0.26%	23	5.80E-06	12	5.89%	525	1.31E-04	20	4.27%	380	9.53E-05
5	0.49%	44	1.09E-05	13	6.15%	548	1.37E-04	21	3.25%	289	7.25E-05
6	0.90%	80	2.01E-05	14	6.04%	538	1.35E-04	22	3.30%	294	7.36E-05
7	3.79%	338	8.46E-05	15	7.01%	624	1.56E-04	23	2.46%	219	5.49E-05
8	7.76%	691	1.73E-04	16	7.14%	636	1.59E-04	24	1.87%	167	4.17E-05
								Total		8,903	

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose - Offsite Residential Roadway Modeling

Cumulative Operation - Santa Clara Street

TOG Exhaust Modeling - Roadway Links, Traffic Volumes, and TOG Exhaust Emissions

Year = 2028

			No.	Link Length	Link Length	Link Width	Link Width	Release Height	Average Speed	Average Vehicles
Road Link	Description	Direction	Lanes	(m)	(mi)	(m)	(ft)	(m)	(mph)	per Day
TEXH_EBSC	Santa Clara Street Eastbound	EB	2	635.2	0.39	13.3	44	1.3	20	8,905
TEXH_WBSC	Santa Clara Street Westbound	WB	2	636.8	0.40	13.3	44	1.3	20	8,905
									Total	17,810

Emission Factors - TOG Exhaust

Speed Category	1	2	3	4
Travel Speed (mph)	20			
Emissions per Vehicle (g/VMT)	0.04689			

Emisson Factors from CT-EMFAC2017

2028 Hourly Traffic Volumes and TOG Exhaust Emissions - TEXH_EBSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	102	5.26E-04	9	7.11%	633	3.25E-03	17	7.39%	658	3.38E-03
2	0.42%	37	1.92E-04	10	4.39%	391	2.01E-03	18	8.18%	728	3.74E-03
3	0.40%	36	1.83E-04	11	4.66%	415	2.13E-03	19	5.70%	508	2.61E-03
4	0.26%	23	1.19E-04	12	5.89%	525	2.70E-03	20	4.27%	380	1.95E-03
5	0.49%	44	2.24E-04	13	6.15%	548	2.82E-03	21	3.25%	289	1.49E-03
6	0.90%	80	4.12E-04	14	6.04%	538	2.77E-03	22	3.30%	294	1.51E-03
7	3.79%	338	1.74E-03	15	7.01%	624	3.21E-03	23	2.46%	219	1.13E-03
8	7.76%	691	3.55E-03	16	7.14%	636	3.27E-03	24	1.87%	167	8.56E-04
								Total		8,903	

2028 Hourly Traffic Volumes Per Direction and TOG Exhaust Emissions - TEXH_WBSC

	.,											
	% Per				% Per				% Per			
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	
1	1.15%	102	5.28E-04	9	7.11%	633	3.26E-03	17	7.39%	658	3.39E-03	
2	0.42%	37	1.93E-04	10	4.39%	391	2.01E-03	18	8.18%	728	3.75E-03	
3	0.40%	36	1.84E-04	11	4.66%	415	2.14E-03	19	5.70%	508	2.62E-03	
4	0.26%	23	1.19E-04	12	5.89%	525	2.70E-03	20	4.27%	380	1.96E-03	
5	0.49%	44	2.25E-04	13	6.15%	548	2.82E-03	21	3.25%	289	1.49E-03	
6	0.90%	80	4.13E-04	14	6.04%	538	2.77E-03	22	3.30%	294	1.51E-03	
7	3.79%	338	1.74E-03	15	7.01%	624	3.22E-03	23	2.46%	219	1.13E-03	
8	7.76%	691	3.56E-03	16	7.14%	636	3.28E-03	24	1.87%	167	8.58E-04	
								Total		8,903		

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose - Offsite Residential Roadway Modeling Cumulative Operation - Santa Clara Street

TOG Evaporative Emissions Modeling - Roadway Links, Traffic Volumes, and TOG Evaporative Emissions

Year = 2028

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
TEVAP_EBSC	Santa Clara Street Eastbound	EB	2	635.2	0.39	13.3	44	1.3	20	8,905
TEVAP_WBSC	Santa Clara Street Westbound	WB	2	636.8	0.40	13.3	44	1.3	20	8,905
									Total	17,810

Emission Factors - PM2.5 - Evaporative TOG

Ziniosioni raetoro i inizio ziaporativo ree				
Speed Category	1	2	3	4
Travel Speed (mph)	20			
Emissions per Vehicle per Hour (g/hour)	1.12271			
Emissions per Vehicle per Mile (g/VMT)	0.05614			

Emisson Factors from CT-EMFAC2017

2028 Hourly Traffic Volumes and TOG Evaporative Emissions - TEVAP_EBSC

	% Per				% Per	_			% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	102	6.30E-04	9	7.11%	633	3.90E-03	17	7.39%	658	4.05E-03
2	0.42%	37	2.30E-04	10	4.39%	391	2.41E-03	18	8.18%	728	4.48E-03
3	0.40%	36	2.19E-04	11	4.66%	415	2.55E-03	19	5.70%	508	3.12E-03
4	0.26%	23	1.42E-04	12	5.89%	525	3.23E-03	20	4.27%	380	2.34E-03
5	0.49%	44	2.69E-04	13	6.15%	548	3.37E-03	21	3.25%	289	1.78E-03
6	0.90%	80	4.93E-04	14	6.04%	538	3.31E-03	22	3.30%	294	1.81E-03
7	3.79%	338	2.08E-03	15	7.01%	624	3.84E-03	23	2.46%	219	1.35E-03
8	7.76%	691	4.25E-03	16	7.14%	636	3.91E-03	24	1.87%	167	1.02E-03
		•					-	Total	• •	8,903	

2028 Hourly Traffic Volumes Per Direction and TOG Evaporative Emissions - TEVAP_WBSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	102	6.32E-04	9	7.11%	633	3.91E-03	17	7.39%	658	4.06E-03
2	0.42%	37	2.31E-04	10	4.39%	391	2.41E-03	18	8.18%	728	4.49E-03
3	0.40%	36	2.20E-04	11	4.66%	415	2.56E-03	19	5.70%	508	3.13E-03
4	0.26%	23	1.43E-04	12	5.89%	525	3.24E-03	20	4.27%	380	2.35E-03
5	0.49%	44	2.69E-04	13	6.15%	548	3.38E-03	21	3.25%	289	1.79E-03
6	0.90%	80	4.95E-04	14	6.04%	538	3.32E-03	22	3.30%	294	1.81E-03
7	3.79%	338	2.08E-03	15	7.01%	624	3.85E-03	23	2.46%	219	1.35E-03
8	7.76%	691	4.26E-03	16	7.14%	636	3.92E-03	24	1.87%	167	1.03E-03
								Total		8,903	

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose - Offsite Residential Roadway Modeling

Cumulative Operation - Santa Clara Street

Fugitive Road PM2.5 Modeling - Roadway Links, Traffic Volumes, and Fugitive Road PM2.5 Emissions

Year = 2028

Road Link	Description	Direction	No. Lanes	Link Length (m)	Link Length (mi)	Link Width (m)	Link Width (ft)	Release Height (m)	Average Speed (mph)	Average Vehicles per Day
FUG_EBSC	Santa Clara Street Eastbound	EB	2	635.2	0.39	13.3	44	1.3	20	8,905
FUG_WBSC	Santa Clara Street Westbound	WB	2	636.8	0.40	13.3	44	1.3	20	8,905
									Total	17,810

Emission Factors - Fugitive PM2.5

Speed Category	1	2	3	4
Travel Speed (mph)	20			
Tire Wear - Emissions per Vehicle (g/VMT)	0.00211			
Brake Wear - Emissions per Vehicle (g/VMT)	0.01680			
Road Dust - Emissions per Vehicle (g/VMT)	0.01490			
Total Fugitive PM2.5 - Emissions per Vehicle (g/VMT)	0.03381			

Emisson Factors from CT-EMFAC2017

2028 Hourly Traffic Volumes and Fugitive PM2.5 Emissions - FUG_EBSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s	Hour	Hour	VPH	g/s
1	1.15%	102	3.80E-04	9	7.11%	633	2.35E-03	17	7.39%	658	2.44E-03
2	0.42%	37	1.39E-04	10	4.39%	391	1.45E-03	18	8.18%	728	2.70E-03
3	0.40%	36	1.32E-04	11	4.66%	415	1.54E-03	19	5.70%	508	1.88E-03
4	0.26%	23	8.58E-05	12	5.89%	525	1.94E-03	20	4.27%	380	1.41E-03
5	0.49%	44	1.62E-04	13	6.15%	548	2.03E-03	21	3.25%	289	1.07E-03
6	0.90%	80	2.97E-04	14	6.04%	538	1.99E-03	22	3.30%	294	1.09E-03
7	3.79%	338	1.25E-03	15	7.01%	624	2.31E-03	23	2.46%	219	8.12E-04
8	7.76%	691	2.56E-03	16	7.14%	636	2.36E-03	24	1.87%	167	6.17E-04
			-	•			-	Total	•	8,903	

2028 Hourly Traffic Volumes Per Direction and Fugitive PM2.5 Emissions - FUG_WBSC

	% Per				% Per				% Per		
Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile	Hour	Hour	VPH	g/mile
1	1.15%	102	3.81E-04	9	7.11%	633	2.35E-03	17	7.39%	658	2.45E-03
2	0.42%	37	1.39E-04	10	4.39%	391	1.45E-03	18	8.18%	728	2.71E-03
3	0.40%	36	1.32E-04	11	4.66%	415	1.54E-03	19	5.70%	508	1.89E-03
4	0.26%	23	8.60E-05	12	5.89%	525	1.95E-03	20	4.27%	380	1.41E-03
5	0.49%	44	1.62E-04	13	6.15%	548	2.03E-03	21	3.25%	289	1.08E-03
6	0.90%	80	2.98E-04	14	6.04%	538	2.00E-03	22	3.30%	294	1.09E-03
7	3.79%	338	1.25E-03	15	7.01%	624	2.32E-03	23	2.46%	219	8.14E-04
8	7.76%	691	2.57E-03	16	7.14%	636	2.36E-03	24	1.87%	167	6.19E-04
								Total		8,903	

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose - E. Santa Clara Street Traffic - TACs & PM2 AERMOD Risk Modeling Parameters and Maximum Concentrations at Construction Cancer Risk and PM2.5 MEI Receptors, 6.1m receptor height (2nd floor)

Emission Year 2028

Receptor Information Construction Cancer Risk & PM2.5 MEI receptors

Number of Receptors 2

Receptor Height 2nd Floor, 6.1 meters

Receptor Distances At Construction MEI locations

Meteorological Conditions

BAQMD San Jose Airport Met Data 2013-2017
Land Use Classification Urban
Wind Speed Variable
Wind Direction Variable

Construction Cancer Risk MEI Maximum Concentrations

Meteorological	Concentration (µg/m3)						
Data Years	DPM	Exhaust TOG	Evaporative TOG				
2013-2017	0.0008	0.1106	0.1323				

Construction PM2.5 MEI Maximum Concentrations

Meteorological	PM2.5 Concentration (μg/m3)						
Data Years	Total PM2.5	Fugitive PM2.5	Vehicle PM2.5				
2013-2017	0.07266	0.0681	0.0046				

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - E. Santa Clara Street Cancer Risk & PM2.5 Impacts at Construction Cancer Risk & PM2.5 MEIs - 6.1 meter receptor height (2nd floor) 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor

EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3.70E-04

Values

	Inf	Adult		
Age>	3rd Trimester	imester 0 - 2		16 - 30
Parameter				
ASF=	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT=	70	70	70	70
FAH=	0.85	0.85	0.72	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Max	kimum - Expos ui	re Information		Conc	entration (u	g/m3)	Canc	er Risk (per	million)				
Exposure	Exposure Duration			Age Sensitivity	DPM	Exhaust TOG	Evaporative TOG	DPM	Exhaust	Evaporative	TOTAL			
Year	(years)	Age	Year	Factor					TOG	TOG			Maximun	n
10	(jears)		Tear	ractor					100	100		1	Fugitive	
0	0.25	-0.25 - 0*	2028	10	0.0008	0.1106	0.1323	0.009	0.007	0.0005	0.02	Index	PM2.5	
1	1	0 - 1	2028	10	0.0008	0.1106	0.1323	0.113	0.088	0.0062	0.21	0.0002	0.07	
2	1	1 - 2	2029	10	0.0008	0.1106	0.1323	0.113	0.088	0.0062	0.21			
3	1	2 - 3	2030	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
4	1	3 - 4	2031	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
5	1	4 - 5	2032	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
6	1	5 - 6	2033	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
7	1	6 - 7	2034	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
8	1	7 - 8	2035	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
9	1	8 - 9	2036	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
10	1	9 - 10	2037	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
11	1	10 - 11	2038	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
12	1	11 - 12	2039	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
13	1	12 - 13	2040	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
14	1	13 - 14	2041	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
15	1	14 - 15	2042	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
16	1	15 - 16	2043	3	0.0008	0.1106	0.1323	0.015	0.012	0.0008	0.03			
17	1	16-17	2044	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
18	1	17-18	2045	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
19	1	18-19	2046	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
20	1	19-20	2047	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
21	1	20-21	2048	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
22	1	21-22	2049	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
23	1	22-23	2050	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
24	1	23-24	2051	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
25	1	24-25	2052	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
26	1	25-26	2053	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
27	1	26-27	2054	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
28	1	27-28	2055	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
29	1	28-29	2056	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
30	1	29-30	2057	1	0.0008	0.1106	0.1323	0.002	0.002	0.0001	0.00			
Total Increas	ed Cancer R	isk						0.48	0.373	0.026	0.88			

Total PM2.5

^{*} Third trimester of pregnancy

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose - E. Santa Clara Street Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations On-Site 2nd Floor Residential Receptors (6.1 meter receptor height)

Emission Year 2023

Receptor Information Maximum On-Site Receptor

Number of Receptors 23

Receptor Height 6.1 meters

Receptor Distances 6 meter grid spacing in residential area

Meteorological Conditions

BAQMD San Jose Airport Met Data 2013-2017
Land Use Classification Urban
Wind Speed Variable
Wind Direction Variable

2nd Floor Project Cancer Risk Maximum Concentrations

Meteorological	Concentration (µg/m3)				
Data Years	DPM	Exhaust TOG	Evaporative TOG		
2013-2017	0.0012	0.1006	0.1204		

2nd Floor Project PM2.5 Maximum Concentrations

Meteorological	PM2.5 Concentration (μg/m3)					
Data Years	Total PM2.5	Fugitive PM2.5	Vehicle PM2.5			
2013-2017	0.0776	0.0727	0.0049			

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - E. Santa Clara Street Cancer Risk Impacts at On-Site 2nd Floor Residential Receptors - 6.1 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

TAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3.70E-04

Values

		Inf		Adult	
	Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
P	Parameter				
	ASF=	10	10	3	1
	DBR* =	361	1090	572	261
	A =	1	1	1	1
	EF =	350	350	350	350
1	AT=	70	70	70	70
	FAH=	0.85	0.85	0.72	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

	Max	ximum - Expos u	re Information		Conc	entration (u	g/m3)	Canc	er Risk (per	million)				
Exposure	Exposure Duration			Age Sensitivity	DPM	Exhaust TOG	Evaporative TOG	DPM	Exhaust	Evaporative	TOTAL			
Year	(years)	Age	Year	Factor	101 141	100	100	D11	TOG	TOG			Maximun	
Icai	(years)	Age	Year	ractor					100	100		4	Fugitive	
0	0.25	-0.25 - 0*	2031	10	0.0012	0.1006	0.1204	0.014	0.007	0.0005	0.02	Index	PM2.5	
1	1	0 - 1	2031	10	0.0012	0.1006	0.1204	0.168	0.080	0.0057	0.25	0.0002	0.07	
2	1	1 - 2	2032	10	0.0012	0.1006	0.1204	0.168	0.080	0.0057	0.25			
3	1	2 - 3	2033	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
4	1	3 - 4	2034	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
5	1	4 - 5	2035	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
6	1	5 - 6	2036	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
7	1	6 - 7	2037	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
8	1	7 - 8	2038	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
9	1	8 - 9	2039	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
10	1	9 - 10	2040	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
11	1	10 - 11	2041	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
12	1	11 - 12	2042	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
13	1	12 - 13	2043	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
14	1	13 - 14	2044	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
15	1	14 - 15	2045	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
16	1	15 - 16	2046	3	0.0012	0.1006	0.1204	0.022	0.011	0.0008	0.03			
17	1	16-17	2047	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
18	1	17-18	2048	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
19	1	18-19	2049	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
20	1	19-20	2050	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
21	1	20-21	2051	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
22	1	21-22	2052	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
23	1	22-23	2053	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
24	1	23-24	2054	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
25	1	24-25	2055	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
26	1	25-26	2056	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
27	1	26-27	2057	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
28	1	27-28	2058	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
29	1	28-29	2059	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
30	1	29-30	2060	1	0.0012	0.1006	0.1204	0.003	0.002	0.0001	0.01			
Total Increas	ed Cancer R	tisk					1	0.71	0.340	0.024	1.07	l		

Total PM2.5

^{*} Third trimester of pregnancy

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose - E. Santa Clara Street Traffic - TACs & PM2.5 AERMOD Risk Modeling Parameters and Maximum Concentrations On-Site 3rd Floor Residential Receptors (9.1 meter receptor height)

Emission Year 2023

Receptor Information Maximum On-Site Receptor

Number of Receptors 23

Receptor Height 9.1 meters

Receptor Distances 6 meter grid spacing in residential area

Meteorological Conditions

BAQMD San Jose Airport Met Data 2013-2017
Land Use Classification Urban
Wind Speed Variable
Wind Direction Variable

4th Floor Project Cancer Risk Maximum Concentrations

Meteorological	Concentration (μg/m3)				
Data Years	DPM	Exhaust TOG	Evaporative TOG		
2013-2017	0.0007	0.0521	0.0623		

4th Floor Project PM2.5 Maximum Concentrations

Meteorological	PM2.5 Concentration (μg/m3)				
Data Years	Total PM2.5	Fugitive PM2.5	Vehicle PM2.5		
2013-2017	0.04015	0.0376	0.0025		

Eterna Tower, 17 & 29 E. Santa Clara Street, San Jose, CA - E. Santa Clara Street Cancer Risk Impacts at On-Site 3rd Floor Residential Receptors - 9.1 meter receptor height 30 Year Residential Exposure

Cancer Risk Calculation Method

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factor EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Cancer Potency Factors (mg/kg-day)⁻¹

control r otterery r netters (m	g, 11g 1111,)
TAC	CPF
DPM	1.10E+00
Vehicle TOG Exhaust	6.28E-03
Vehicle TOG Evaporative	3 70F-04

Values

	Inf		Adult	
Age>	3rd Trimester	0 - 2	2 - 16	16 - 30
Parameter				
ASF=	10	10	3	1
DBR* =	361	1090	572	261
A =	1	1	1	1
EF =	350	350	350	350
AT=	70	70	70	70
FAH=	0.85	0.85	0.72	0.73

^{* 95}th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

Construction	Maximum - Exposure Information				entration (u	g/m3)	Canc	er Risk (per	million)					
Exposure Year	Exposure Duration (vears)	Age	Year	Age Sensitivity Factor	DPM	Exhaust TOG	Evaporative TOG	DPM	Exhaust TOG	Evaporative TOG	TOTAL		Maximum	
10111	(Jears)	.150	Tear	ractor			1		100	100			Fugitive	Total
0	0.25	-0.25 - 0*	2031	10	0.0007	0.0521	0.0623	0.008	0.003	0.0002	0.01	Index	PM2.5	PM2.5
1	1	0 - 1	2031	10	0.0007	0.0521	0.0623	0.094	0.042	0.0029	0.14	0.0001	0.04	0.04
2	1	1 - 2	2032	10	0.0007	0.0521	0.0623	0.094	0.042	0.0029	0.14			
3	1	2 - 3	2033	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
4	1	3 - 4	2034	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
5	1	4 - 5	2035	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
6	1	5 - 6	2036	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
7	1	6 - 7	2037	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
8	1	7 - 8	2038	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
9	1	8 - 9	2039	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
10	1	9 - 10	2040	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
11	1	10 - 11	2041	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
12	1	11 - 12	2042	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
13	1	12 - 13	2043	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
14	1	13 - 14	2044	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
15	1	14 - 15	2045	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
16	1	15 - 16	2046	3	0.0007	0.0521	0.0623	0.012	0.006	0.0004	0.02			
17	1	16-17	2047	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
18	1	17-18	2048	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
19	1	18-19	2049	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
20	1	19-20	2050	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
21	1	20-21	2051	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
22	1	21-22	2052	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
23	1	22-23	2053	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
24	1	23-24	2054	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
25	1	24-25	2055	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
26	1	25-26	2056	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
27	1	26-27	2057	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
28	1	27-28	2058	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
29	1	28-29	2059	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
30	1	29-30	2060	1	0.0007	0.0521	0.0623	0.002	0.001	0.0001	0.00			
Total Increas	ed Cancer R	tisk				l	1	0.40	0.176	0.012	0.58			

^{*} Third trimester of pregnancy

Risk & Hazard Stationary Source Inquiry Form

This form is required when users request stationary source data from BAAQMD

This form is to be used with the BAAQMD's Google Earth stationary source screening tables.

Click here for guidance on coducting risk & hazard screening, including roadways & freeways, refer to the District's Risk & Hazard Analysis flow chart.

Click here for District's Recommended Methods for Screening and Modeling Local Risks and Hazards document.

Table A: Requester Contact Information

Date of Request	4/8/2021
Contact Name	Casey Divine
Affiliation	Illingworth & Rodkin, Inc.
Phone	707-794-0400 x103
	cdivine@illingworthrodkin.co
Email	<u>m</u>
Dura in at Norma	Ft T
Project Name	Eterna Tower
Address	17 & 29 E Santa Clara St
City	San Jose
County	Santa Clara
Type (residential,	
commercial, mixed	
use, industrial, etc.)	Mixed-Use
Project Size (# of	
units or building	
square feet)	200 du, 5-ksf retail

Comments:

For Air District assistance, the following steps must be completed:

- 1. Complete all the contact and project information requested in Table A noomplete forms will not be processed. Please include a project site map.
- 2. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's website, http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx. The small points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc. Click on a point to view the source's InformationTable, including the name, location, and preliminary estimated cancer risk, hazard index, and PM2.5 concentration.
- 3. Find the project site in Google Earth by inputting the site's address in the Google Earth search box.
- 4. Identify stationary sources within at least a 1000ft radius of project site. Verify that the location of the source on the map matches with the source's address in the Information Table, by using the Google Earth address search box to confirm the source's address location. Please report any mapping errors to the District.
- 5. List the stationary source information in Table 8
- 6. Note that a small percentage of the stationa ve Health Risk Screening Assessment (HRSA) data INSTEAD of screening level data. These sources will be noted by an asterisk next to the Plant Name (Map B on right). If HRSA values are presented, these values have already been modeled and cannot be adjusted further.
- 7. Email this completed form to District staff. District staff will provide the most recent risk, hazard, and PM2.5 data that are available for the source(s). If this information or data are not available, source emissions data will be provided. Staff will respond to inquiries within three weeks.

Note that a public records request received for the same stationary source information will cancel the processing of your SSIF request.

Submit forms, maps, and questions to Areana Flores at 415-749-4616, or aflores@baaqmd.gov

										Project N	Project MEI			
Distance from Receptor (feet) or MEI ¹	Plant No.	Facility Name	Address	Cancer Risk ² H	azard Risk ²	PM _{2.5} ² S	Source No. ³ Type of Source ⁴	Fuel Code ⁵	Status/Comments	Distance Adjustment Multiplier	Adjusted Cancer Risk Estimate	Adjusted Hazard Risk		
875	12969	Verizon Business - SBEZCA	55 So Market Street	46.29	0.07	0.03	Generators	2	018 Dataset	0.05	2.31	0.004	0.002	
650	19758	60 SOMA Fee Owner CA,LLC c/o Harvest Properties	60 So Market	6.34		0.01	Generators	2	018 Dataset	0.08	0.51	#VALUE!	0.001	
1000	20324	Judicial Council of California, JCC 43-B2	161 N 1st Street	124.87	0.19	0.16	Generators	2	018 Dataset	0.04	4.99	0.01	0.01	
875	20903	CoreSite	55 So Market Street	75.09	0.07	0.11	Generators	2	018 Dataset	0.05	3.75	0.004	0.01	
850	22415	Essex OSM Reit LLC	1 So Market Street	3.62			Generators	2	018 Dataset	0.05	0.18	#VALUE!	#VALUE!	
735	22612	Digital Realty	150 So 1st Street	1.41			Generators	2	018 Dataset	0.07	0.10	#VALUE!	#VALUE!	
300	23479	SV Towers Investments LLC, C/O Harvest Properties	75 E Santa Clara St	2.73			Generators	2	018 Dataset	0.25	0.68	#VALUE!	#VALUE!	
650	104124	Chevron #4259	147 E Santa Clara St	13.39	0.06		Gas Dispensing Facility	2	018 Dataset	0.03	0.39	0.002	#VALUE!	

Footnotes:

- 1. Maximally exposed individual
- 2. These Cancer Risk, Hazard Index, and PM2.5 columns represent the values in the Google Earth Plant Information Table.
- 3. Each plant may have multiple permits and sources.
- 4. Permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc.
- 5. Fuel codes: 98 = diesel, 189 = Natural Gas.
- 6. If a Health Risk Screening Assessment (HRSA) was completed for the source, the application number will be listed here.
- 7. The date that the HRSA was completed.
- 8. Engineer who completed the HRSA. For District purposes only.
- 9. All HRSA completed before 1/5/2010 need to be multiplied by an age sensitivity factor of 1.7.
- 10. The HRSA "Chronic Health" number represents the Hazard Index.
- 11. Further information about common sources:
 - a. Sources that only include diesel internal combustion engines can be adjusted using the BAAQMD's Diesel Multiplier worksheet.
- b. The risk from natural gas boilers used for space heating when <25 MM BTU/hr would have an estimated cancer risk of one in a million or less, and a chronic hazard index of 0.003
- c. BAAQMD Reg 11 Rule 16 required that all co-residential (sharing a wall, floor, ceiling or is in the same building as a residential unit) dry cleaners cease use of perc on July 1, 2010. Therefore, there is no cancer risk, hazard or PM2.5 concentrations from co-residential dry cleaning businesses in the BAAQMD.
- d. Non co-residential dry cleaners must phase out use of perc by Jan. 1, 2023. Therefore, the risk from these dry cleaners does not need to be factored in over a 70-year period, but instead should
- e. Gas stations can be adjusted using BAAQMD's Gas Station Distance Mulitplier worksheet.
- f. Unless otherwise noted, exempt sources are considered insignificant. See BAAQMD Reg 2 Rule 1 for a list of exempt sources.
- g. This spray booth is considered to be insignificant.

Date last updated:

03/13/2018

Distance from Receptor (feet)		Distance Adjustment	Adjusted Cancer Risk	Adjusted Hazard	Adjusted
or MEI ¹	FACID (Plant No.)	Multiplier	Estimate	Risk	PM2.5
825	12969	0.05	2.31	0.004	0.002
650	19758	0.08	0.51	#VALUE!	0.001
825	20324	0.05	6.24	0.01	0.01
825	20903	0.05	3.75	0.004	0.01
700	22415	0.07	0.25	#VALUE!	#VALUE!
1000	22612	0.04	0.06	#VALUE!	#VALUE!

0.50

0.03

1.37

0.42

#VALUE! #VALUE!

0.002

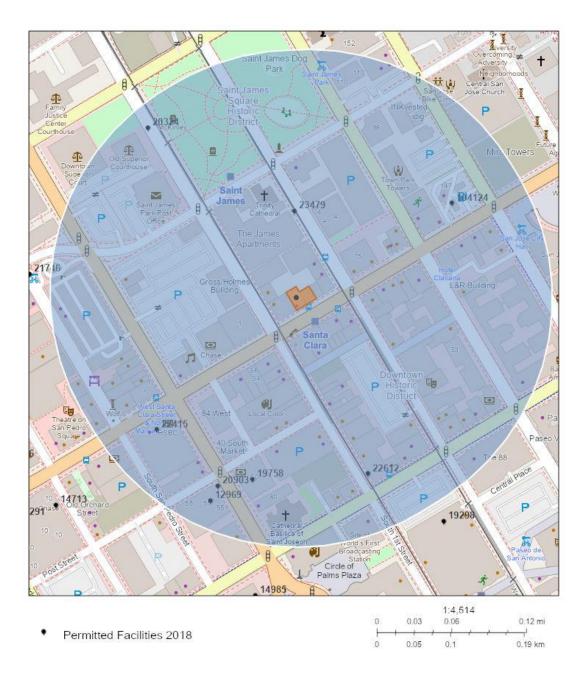
#VALUE!

175

23479

104124

Project Site



Stationary Source Risk & Hazards Screening Report

Area of Interest (AOI) Information

Area: 3,495,235.08 ft2

Mar 30 2021 11:45:19 Pacific Daylight Time

Map data © OpenStreetMap contributors, Map layer by Esri

Summary

Name	Count	Area(ft²)	Length(ft)
Permitted Facilities 2018	8	N/A	N/A

Permitted Facilities 2018

#	FACID	Name	Address	City	St
1	12969	Verizon Business - SBEZCA	55 So Market Street	San Jose	CA
2	19758	60 SOMA Fee Owner CA,LLC c/o Harvest Properties	60 So Market	San Jose	CA
3	20324	Judicial Council of California, JCC 43-B2	161 N 1st Street	San Jose	CA
4	20903	CoreSite	55 So Market Street	San Jose	CA
5	22415	Essex OSM Reit LLC	1 So Market Street	San Jose	CA
6	22612	Digital Realty	150 So 1st Street	San Jose	CA
7	23479	SV Towers Investments LLC, C/O Harvest Properties	75 E Santa Clara St	San Jose	CA
8	104124	Chevron #4259	147 E Santa Clara St	San Jose	CA

#	Zip	County	Cancer	Hazard	PM_25	Туре	Count
1	95113	Santa Clara	46.290	0.070	0.030	Generators	1
2	95113	Santa Clara	6.340	0.000	0.010	Generators	1
3	95113	Santa Clara	124.870	0.190	0.160	Generators	1
4	95113	Santa Clara	75.090	0.070	0.110	Generators	1
5	95113	Santa Clara	3.620	0.000	0.000	Generators	1
6	95113	Santa Clara	1.410	0.000	0.000	Generators	1
7	95113	Santa Clara	2.730	0.000	0.000	Generators	1
8	95113	Santa Clara	13.390	0.060	0.000	Gas Dispensing Facility	1

Note: The estimated risk and hazard impacts from these sources would be expected to be substantially lower when site specific Health Risk Screening Assessments are conducted.

The screening level map is not recommended for evaluating sensitive land uses such as schools, senior centers, day cares, and health facilities.

© Copyright 2018 Bay Area Air Quality Management District